Real-Time Networks and

Distributed slstems

% Topics

¢ Distributed Real-Time Systems
= Bus-based multi-processor systems

¢ Real Time Networks
= RT busses e.g. CAN, TTP, TTCAN

¢ Analysis of Distributed RT Systems
- T ission Analysi
= Response Time Analysis

A Distributed Real-Time System

w— High-speed
m— Low-speed

AUM

Electronics in automobiles

% Trend towards more and more electronics

+ 15% to 30% of component cost of a car is electronics
% Trend towards more complex systems

+ Many functions (both comfort and vehicle control)

+ Eg. Volvo S80 contains 18 major units connected via two
in-vehicle networks

Why Distributed Systems ?

¢ Physically dlstrlbuted appllcatlons -

close to phy eq gine control)

* Capaclty (better pncelperformance than single CPU and much less
wiring, 1200m in 1997!)

+ Modularity (components developed in isolation)
+ Scalability (just add another node)
+ Debugging (easier?)
+ Fault tolerance (errors only
propagate within rt of sy)

Challenge build complex distributed systems and maintain high reliability at
low costl

Dsign of Distributed RTS

Tasks :-
- Execution time Bl Runnin
cution tim Keme 9
- Perloc_l - . system
- Deadlines gy allocation/
- Dependences et scheduling =

Functional
e

3 as ects: . . The core for the development
- off-line allocation of real time systems
- run-time scheduling
- a priori schedulability analysis

RT-Networking: Basic Problem

Bounded latency: A—> B

+ Competing traffic
* Guarantees

+ Hard-RT: Absolute G.

+ Soft-RT: Probabilistic G.
+ Other issues

+ Reliability

= F. detection & recovery
+ Resource Utilisation

Network

RT-Networking: Solutions

CSMA/CD ken-ring
(Carrier Sense Multiple Access / Collision Detection) . . .
Physical or logical ring
Ethernet Circulating tok
Collisions Nlrcu ﬁ_"_'g oken
back-off o collisions

Stochastic behaviour RT-guarantees possible

No RT-guarantees

Ly -

RT-Networking: Solutions

Time triggered
TDMA

(Time Division Multiple Access e.g. GSM)

Pre-Scheduled

Event triggered
CSMA/CR
Priority driven
Dynamic Scheduling

Predictable
Testable Flexible
Static e.g. CAN
e.g. TTP Pri: A>B>C>D

D c©BA D

0 I' time

time

0

Response time for C

More examples

% Time triggered:
¢ SAFEbus - airplanes, eg. Boeing
¢ TTA - cars, eg. Audi, Volkswagen
+ FlexRay - cars, eg. BMW, DaimlerChrysler

+* Event triggered
¢ CAN - cars, eg. Volvo, Saab, VW, Ford, GM
+ Byteflight - cars, BMW
+ LIN — a cheaper and simple bus protocol

% Mixtures
¢ Time-triggered CAN
+ TTA extended with events

Controller Area Network (CAN)

* Initiated in the late 70’s to connect a number of processors
over a cheaper shared serial bus
% From Bosch (mid 80ies) for automotive applications

#* De facto standard for

invehicle comm.
(100 million CAN nodes sold 2000)

% Controllers available
(from Phillips, Intel, NEC, Siemens, etc.)

#* Shared broadcast bus (one sender many receivers)
(CSMA/CR)

% Highly robust (error mechanisms to overcome
disturbance on the bus)

% Medium speed:
+ Max: 1Mbit/sec; typically used from 35 Kbit/sec up to 500Kbit/sec

twisted-pair,
optic fibre or coax

Controller Area Network (CAN)

Line Voltage

—
Recessive | Dominant | Recessive
Loge"T Logies" Logie™t"

Control Field _Data Field ACK.
™ Leimi

2

7
—

Asbitration Field

SOF [Tbpart1 | RTR] 1DE | 0 [DLC |IDATAOBHE)] CROGode
s

IR

Max. 64 data
bis

CAN data frame

Global Time

Controller Area Network (CAN)

Frame layout:

SOF, Surt [Tdemiifier | RIR, | Coowol | Dais CRC, CRC | ACK, | ACK |BOF,Ead | IFS, Inter
Of Frame Remois. Cyclic | DEL, | Acaow- | DEL [OfFmme | Frame
Trﬂu Redun- CRC ledge Acknow- Space.
mission dascy | Delismiter lodge
Request Check Delimiter |
Toic | Ifbimr | 16 | 6buar | O-8byies | 15buar | 16 Toie | 1B | 76 |3 min3
bitar.

+ Small sized frames (messages)

¢ 0 to 8 bytes
+ Very different from mainstream computing messaging

+ Relatively high overhead
+ A frame size of more than 100 bits to send just 64 bits

11 bits 36 bits 0-8 bytes

The CAN Arbitration Mechanism

+# Shared broadcast bus

% Bus behaves like a large AND-gate
- if all nodes sends 1 the bus becomes 1, otherwise 0.

% A frame is tagged by an /dentifier
+ indicates contents of frame
+ also used for arbitration as ”priority”

% Bit-wise arbitration

+ Each message has unique priority =
node with message with lowest id wins arbitration
+ Lowest id = highest priority!

% The CAN bus is a prio. scheduled resource

The CAN Arbitration Mechanism

o Nej Nm

node A wins
Example: arbitration
Ji
¢ Node A B & D

Priority 001 010 101 o

:

Details on CAN

Each message has a priority: a unique static
number, used as the identifier of the message

% Arbitration mechanism to ensure: the highest
priority message is the one transmitted

% Limits on speed and length (physical/electrical
properties):
* ts%send 1Mbit/sec, wire/bus must be no longer than
m

* Tgosend 0.5Mbit/sec, the bus must be no longer than
m

+ The bus can have an arbitrary number of nodes

+ Each station has a queue for messages ordered by
priorities

Details on CAN

+% When the bus is busy, the stations wait (listening all time)

As soon as the bus is idle, all stations who want to send
enter the arbitration phase (run the arbitration algorithm)
+ Transmit the highest priority message, from the most significant
bit to the least significant one
+ 0 is the highest priority!!
= 0: dominant bit (in fact, sending 0 by "high voltage”)
= 1: recessieve bit
< It behaves like an AND-gate
+ Send and monitor:
= Send a 1, but monitor a 0: a collision

= the protocol says: nodes sending 0’s win, the others back off (monitor and
send)

= This means: the highest priority message wins, to be transmitted
= E.g. 100, 101, 111 on three stations, 100 will be sent

Details on CAN

+* After the priority transmitted (the arbitration is finished), the
rest of the message is transmitted

% A message contains: 0-8 bytes for data and 47bits OH
< Prioritylidentity: 11bits
+ Data field: 0-8 bytes long
+ CRC field (checksum, parity bits etc: checking the message has
not been corrupted, and other "housekeeping” bits)
+ Out of the 47, 34 bits are bitstuffed
% 000000 and 111111 are reserved as "marker” to signal all
stations on the bus
+ So "bitstuffing” is needed: whenever 00000 or 11111 appears in a
bitstream, an extra bit of the opposite sign should be added
+ E.g. 11111000 0111 1000 0111 1 should be
1111 1000 0011 1110 0000 1111 10

More details on CAN

% The total number before bitstuffing: 8n+47

After bitstuffing: 8n+47+ (34+8n-1)/4]
+ Max: 64+47+24=135 bits
+ E.g. 1Mbit/sec, 1 bit needs 1 micro seconds

+ The max transmission time for one message= 135
micro sec

The CAN-bus Abstraction

Frames
queued
priori

in
order

The whole bus + CAN
controllers can be
abstracted as one queue

.Removed after
transmission time

Frame in
transmission

Priority queue

time

R 11111 1 Transmi§sion Delay

o W

Set of messages = M (queued on different nodes)
Mj:<Tj, Cj > (Mj eM)
Tj = period (ime between queuing)
ci =transmission time

Bj = b|0Cking time (waiting for low priority message, bus non-preemptive)

Worst-case waiting/queuing time (before transmission):

q,=B,+Z,,, |_‘I|IT j—lcj
hp(i) = frames with priority higher than P,
Worst-case Response time (delay before delivered):

R; = Ci+q;

Transmission delay analysis

%* Ci = (number of bits) X (time to transmit 1 bit)
* By = MAX , _) (Ci) <= time to transmit135 bits

* Worst case: B; = C;= 135 micro sec
(for 1MB/sec CAN)

End of Story?

| =

% Unfortunately not!
+ Non-periodic queuing times causes jitter
+ No global time reference
< Transmission errors (recovery + retransmission)

Queuing causes jitter

. % Task_3 on node A executes with certain
- periOd
s =8l * Message mAtoB gets same period as

sk 30 { task_3
hile(1) .)
e aasort: # Shortest time before send:
i) = .
l 1/ do some work BCET C3 mmfor task_3
O 1o some other work # Longest time before send: task_3's worst

send_CAN(MAL0B, prio); case response time = R;
/I some more work

sleep_unti_next_period); & R3- C3 = jitter for message mAtoB

Adding lJitter to the Analysis

New equation for worst-case Transmission Delay:

RI = c| +J| +q|
o =By +Xicyy |_(‘II""'J)I Ti—|ci

Error handling

#* Several types of errors:

¢ Checksum error, acknowledge error,
bit error, ...

#% When error is detected by node it sends an

error frame
+ starting with 6 dominant bits (000000) in a row
+ tells other nodes that error occurred
¢ other nodes then also send error frames
+ Arbitration restarts when bus is idle

% In effect, error frames are used to resync
protocol engine

Transmission Errors

% Max number of errors must be bounded
% Fault hypothesis =

+ Error function E(t) = max time required for error
signalling and recovery in any time interval of length t

New equation for worst-case transmisslon delay:
R; = C;+q;
i~ Bi + E(q|) +2j€hp(i) |_(qi+Jj)lTj—|cj

Transmission Errors

CAN has a mechanism to protect against broken
hardware: error counters

% The CAN controller in a node counts failed frames and
successful frames
+ When errors exceed a threshold, the controller gets disconnected
ERROR-counter EC
+ EC:= EC+1 when an error is signalled
+ EC:= EC-1 when a frame is correctly received
¢+ EC > K = the node shuts-off itself (is fail-silent)

Analysis of Distr.
_Systems

Send msg Calculate Send msg Inflate
on bus action on bus airbag

Detect obstacle Initial

(read sensor) processing i
il

#* System wide (end-to-end) timing requirements
+ control closed over the entire system
+ includes sensors, CPUs, controllers, busses, actuators, OS, ...

* Holistic analysis can be applied!

me

Holistic Scheduling Problem

#* When tasks on a node can both send and receive

messages we have a holistic scheduling problem
The equations giving the worst case time for

tasks depends on messages arriving at the node
+% We cannot apply the processor

scheduling analysis before we

get values from the bus

scheduling analysis msg)~ Joan
+ Similarly: We cannot apply the meg()

bus scheduling analysis before we get values

from the processor scheduling analysis

% Solution: Holistic Analysis

Distributed Systems

% Tasks on CPUs are exchanging msgs over CAN

% Tasks are queuing messages
+ Completion times will vary =>
< Jitter (variations in release times) will be inherited

% Message m(i), queued by a task send(7):

= In(iy= Rsend(iy) ~ Ceenci
mE

* Task dest(i)is activated by a
message m(i):
= gest(i) = Rm(i) = Cry -

Distributed Systems

send(i)
% Example: N

Node A: | ¢ Rgonqgp) = csend(i)+2 € hp(send(i)) |_(Rsend(i) + Jj)/Tj | C
@ Jini) = Reendgiy = Csendi)
¢ Ry = Wy + Jm(u)
* Wy = Crny* By *+Z ey [Weny * Im) /Ty | Congy
[NS3EEH] ¢ Jgest(y = Ry = Crni)
* Rdest(l) wdest(l)+ ‘ldest(l)
® Wyeeii) = Coest(y 2 thp(dest(i))l—(wdest(i) + Jj)ITj-I C

Coiy = Bpgy = 135 micro sec

Problem with CAN: some of the message
may never get a chance for transmission

Event Driven
Peak Load Deadline for

‘o0 o
EX2RE 000
3 !
£ e i ———

Time

Message Ready

?w °®

%5 o BN

Engm Gear-Shift Gear-Box ABS ABS ABS

Other Solutions:
€.9.TTP - the Time Triggered Protocol

% Intended for X-by-wire applications
Example: Break-by-wire in car

% A lot of features built in into the bus protocol
(which must be added on top of the CAN bus)

% Conceptually similar to
static cyclic scheduling

s &

TTP - Time Triggered (TDMA)

)

® » @

F F Node 4
All nodes
has identical

message tables

TDMA round TDMA round

] |, [(e[

N
TDMA - slot reserved frame Nod 1 does not Delay of message
for node 1 use its slot. sending due to

synchronization

TTP - Clock Synchronization

% All nodes must have the same time

% Clocks synchronized within bound &

% Adjust by speeding Local ¢ dacidt > 1
up or down 4

% Messages used for sync.
+ Expected arrival (EA)
¢ Real arrival (RA)
+ All clocks set to average

TDMA runda EA o 25 75
RA o 23 79
I s Diff o A

dc,/dt = 1

dc/dt <1

Perfect

TTCAN: an example of TTP

BEO B
Node 1 Node 2
Master

Node 3 Node 4

Transmission
Column ¢ 1 2 3 0

Basic Cycle (n) Basic Cycle
(53]

Time

TTP - CAN: a comparison

1P
¢ Time triggered
¢ Overallocation of aperiod
messages
+ No jitter
¢ Ultra-reliable systems
¢ Includes distributed syst¢
functionality
= Clock-synchronization
= Fault-handling
= Membership protocol
+ Capacity 10 Mb/sec

CAN
+ Event triggered

+ No message sending if not
neccessary

< Jitter due to varying system
loads

+ Priority driven
¢ RT-Network

+ Some functionality added
on top

+ Capacity: 1Mb/sec

Trends for RT networks in Automotives

#* Today CAN dominates

#* Time-triggered seems to be the future for X-by-wire: TTP
e.g. FlexRay, TTCAN

% Future cars will include many different and parallel buses:
+ CAN for comfort
+ TT for X-by-wire
+ MOST for multimedia
+ etc.

