Real-Time Networks and

Distributed slstems

% Topics

¢ Distributed Real-Time Systems
= Bus-based multi-processor systems

¢ Real Time Networks
= RT busses e.g. CAN, TTP, TTCAN

¢ Analysis of Distributed RT Systems
- T ission Analysi
= Response Time Analysis

A Distributed Real-Time System

w— High-speed
m— Low-speed

AUM

Electronics in automobiles

% Trend towards more and more electronics

+ 15% to 30% of component cost of a car is electronics
% Trend towards more complex systems

+ Many functions (both comfort and vehicle control)

+ Eg. Volvo S80 contains 18 major units connected via two
in-vehicle networks

Why Distributed Systems ?

¢ Physically dlstrlbuted appllcatlons -

close to phy eq gine control)

* Capaclty (better pncelperformance than single CPU and much less
wiring, 1200m in 1997!)

+ Modularity (components developed in isolation)
+ Scalability (just add another node)
+ Debugging (easier?)
+ Fault tolerance (errors only
propagate within rt of sy )

Challenge build complex distributed systems and maintain high reliability at
low costl

Dsign of Distributed RTS

Tasks :-
- Execution time Bl Runnin
cution tim Keme 9
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Functional
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3 as ects: . . The core for the development
- off-line allocation of real time systems
- run-time scheduling
- a priori schedulability analysis

RT-Networking: Basic Problem

Bounded latency: A—> B

+ Competing traffic
* Guarantees

+ Hard-RT: Absolute G.

+ Soft-RT: Probabilistic G.
+ Other issues

+ Reliability

= F. detection & recovery
+ Resource Utilisation

Network




RT-Networking: Solutions

CSMA/CD ken-ring
(Carrier Sense Multiple Access / Collision Detection) . . .
Physical or logical ring
Ethernet Circulating tok
Collisions Nlrcu ﬁ_"_'g oken
back-off o collisions

Stochastic behaviour RT-guarantees possible

No RT-guarantees

Ly -

RT-Networking: Solutions

Time triggered
TDMA

(Time Division Multiple Access e.g. GSM)

Pre-Scheduled

Event triggered
CSMA/CR
Priority driven
Dynamic Scheduling

Predictable
Testable Flexible
Static e.g. CAN
e.g. TTP Pri: A>B>C>D
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More examples

% Time triggered:
¢ SAFEbus - airplanes, eg. Boeing
¢ TTA - cars, eg. Audi, Volkswagen
+ FlexRay - cars, eg. BMW, DaimlerChrysler

+* Event triggered
¢ CAN - cars, eg. Volvo, Saab, VW, Ford, GM
+ Byteflight - cars, BMW
+ LIN — a cheaper and simple bus protocol

% Mixtures
¢ Time-triggered CAN
+ TTA extended with events

Controller Area Network (CAN)

* Initiated in the late 70’s to connect a number of processors
over a cheaper shared serial bus
% From Bosch (mid 80ies) for automotive applications

#* De facto standard for

invehicle comm.
(100 million CAN nodes sold 2000)

% Controllers available
(from Phillips, Intel, NEC, Siemens, etc.)

#* Shared broadcast bus (one sender many receivers)
(CSMA/CR)

% Highly robust (error mechanisms to overcome
disturbance on the bus)

% Medium speed:
+ Max: 1Mbit/sec; typically used from 35 Kbit/sec up to 500Kbit/sec

twisted-pair,
optic fibre or coax

Controller Area Network (CAN)
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Controller Area Network (CAN)
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+ Small sized frames (messages)

¢ 0 to 8 bytes
+ Very different from mainstream computing messaging

+ Relatively high overhead
+ A frame size of more than 100 bits to send just 64 bits

11 bits 36 bits 0-8 bytes




The CAN Arbitration Mechanism

+# Shared broadcast bus

% Bus behaves like a large AND-gate
- if all nodes sends 1 the bus becomes 1, otherwise 0.

% A frame is tagged by an /dentifier
+ indicates contents of frame
+ also used for arbitration as ”priority”

% Bit-wise arbitration

+ Each message has unique priority =
node with message with lowest id wins arbitration
+ Lowest id = highest priority!

% The CAN bus is a prio. scheduled resource

The CAN Arbitration Mechanism

o Nej Nm

node A wins
Example: arbitration
Ji
¢ Node A B & D

Priority 001 010 101 o

:

Details on CAN

# Each message has a priority: a unique static
number, used as the identifier of the message

% Arbitration mechanism to ensure: the highest
priority message is the one transmitted

% Limits on speed and length (physical/electrical
properties):
* ts%send 1Mbit/sec, wire/bus must be no longer than
m

* Tgosend 0.5Mbit/sec, the bus must be no longer than
m

+ The bus can have an arbitrary number of nodes

+ Each station has a queue for messages ordered by
priorities

Details on CAN

+% When the bus is busy, the stations wait (listening all time)

# As soon as the bus is idle, all stations who want to send
enter the arbitration phase (run the arbitration algorithm)
+ Transmit the highest priority message, from the most significant
bit to the least significant one
+ 0 is the highest priority!!
= 0: dominant bit (in fact, sending 0 by "high voltage”)
= 1: recessieve bit
< It behaves like an AND-gate
+ Send and monitor:
= Send a 1, but monitor a 0: a collision

= the protocol says: nodes sending 0’s win, the others back off (monitor and
send)

= This means: the highest priority message wins, to be transmitted
= E.g. 100, 101, 111 on three stations, 100 will be sent

Details on CAN

+* After the priority transmitted (the arbitration is finished), the
rest of the message is transmitted

% A message contains: 0-8 bytes for data and 47bits OH
< Prioritylidentity: 11bits
+ Data field: 0-8 bytes long
+ CRC field (checksum, parity bits etc: checking the message has
not been corrupted, and other "housekeeping” bits)
+ Out of the 47, 34 bits are bitstuffed
% 000000 and 111111 are reserved as "marker” to signal all
stations on the bus
+ So "bitstuffing” is needed: whenever 00000 or 11111 appears in a
bitstream, an extra bit of the opposite sign should be added
+ E.g. 11111000 0111 1000 0111 1 should be
1111 1000 0011 1110 0000 1111 10

More details on CAN

% The total number before bitstuffing: 8n+47

# After bitstuffing: 8n+47+ (34+8n-1)/4]
+ Max: 64+47+24=135 bits
+ E.g. 1Mbit/sec, 1 bit needs 1 micro seconds

+ The max transmission time for one message= 135
micro sec




The CAN-bus Abstraction

Frames
queued
priori

in
order

The whole bus + CAN
controllers can be
abstracted as one queue

.Removed after
transmission time

Frame in
transmission

Priority queue

time

R 11111 1 Transmi§sion Delay

o W

Set of messages = M (queued on different nodes)
Mj:<Tj, Cj > (Mj eM)
Tj = period (ime between queuing)
ci =transmission time

Bj = b|0Cking time (waiting for low priority message, bus non-preemptive)

Worst-case waiting/queuing time (before transmission ):

q,=B,+Z,,, |_‘I|IT j—lcj
hp(i) = frames with priority higher than P,
Worst-case Response time (delay before delivered):

R; = Ci+q;

Transmission delay analysis

%* Ci = (number of bits) X (time to transmit 1 bit)
* By = MAX , _ ) (Ci) <= time to transmit135 bits

* Worst case: B; = C;= 135 micro sec
(for 1MB/sec CAN)

End of Story?

| =

% Unfortunately not!
+ Non-periodic queuing times causes jitter
+ No global time reference
< Transmission errors (recovery + retransmission)

Queuing causes jitter

. % Task_3 on node A executes with certain
- periOd
s =8l * Message mAtoB gets same period as

sk 30 { task_3
hile(1) . )
e aasort: # Shortest time before send:
i) = .
l 1/ do some work BCET C3 mmfor task_3
O 1o some other work # Longest time before send: task_3's worst

send_CAN(MAL0B, prio); case response time = R;
/I some more work

sleep_unti_next_period); & R3- C3 = jitter for message mAtoB

Adding lJitter to the Analysis

New equation for worst-case Transmission Delay:

RI = c| +J| +q|
o =By +Xicyy |_(‘II""'J)I Ti—|ci




Error handling

#* Several types of errors:

¢ Checksum error, acknowledge error,
bit error, ...

#% When error is detected by node it sends an

error frame
+ starting with 6 dominant bits (000000) in a row
+ tells other nodes that error occurred
¢ other nodes then also send error frames
+ Arbitration restarts when bus is idle

% In effect, error frames are used to resync
protocol engine

Transmission Errors

% Max number of errors must be bounded
% Fault hypothesis =

+ Error function E(t) = max time required for error
signalling and recovery in any time interval of length t

New equation for worst-case transmisslon delay:
R; = C;+q;
i~ Bi + E(q|) +2j€hp(i) |_(qi+Jj)lTj—|cj

Transmission Errors

# CAN has a mechanism to protect against broken
hardware: error counters

% The CAN controller in a node counts failed frames and
successful frames
+ When errors exceed a threshold, the controller gets disconnected
# ERROR-counter EC
+ EC:= EC+1 when an error is signalled
+ EC:= EC-1 when a frame is correctly received
¢+ EC > K = the node shuts-off itself (is fail-silent)

Analysis of Distr.
_Systems

Send msg Calculate Send msg Inflate
on bus action on bus airbag

Detect obstacle Initial

(read sensor) processing i
il

#* System wide (end-to-end) timing requirements
+ control closed over the entire system
+ includes sensors, CPUs, controllers, busses, actuators, OS, ...

* Holistic analysis can be applied!

me

Holistic Scheduling Problem

#* When tasks on a node can both send and receive

messages we have a holistic scheduling problem
# The equations giving the worst case time for

tasks depends on messages arriving at the node
+% We cannot apply the processor

scheduling analysis before we

get values from the bus

scheduling analysis msg)~ Joan
+ Similarly: We cannot apply the meg()

bus scheduling analysis before we get values

from the processor scheduling analysis

% Solution: Holistic Analysis

Distributed Systems

% Tasks on CPUs are exchanging msgs over CAN

% Tasks are queuing messages
+ Completion times will vary =>
< Jitter (variations in release times) will be inherited

% Message m(i), queued by a task send(7):

= In(iy= Rsend(iy) ~ Ceenci
mE

* Task dest(i)is activated by a
message m(i):
= gest(i) = Rm(i) = Cry -




Distributed Systems

send(i)
% Example: N

Node A: | ¢ Rgonqgp) = csend(i)+2 € hp(send(i)) |_(Rsend(i) + Jj)/Tj | C
@ Jini) = Reendgiy = Csendi)
¢ Ry = Wy + Jm(u)
* Wy = Crny* By *+Z ey [ Weny * Im) /Ty | Congy
[NS3EEH] ¢ Jgest(y = Ry = Crni)
* Rdest(l) wdest(l)+ ‘ldest(l)
® Wyeeii) = Coest(y 2 thp(dest(i))l—(wdest(i) + Jj)ITj-I C

Coiy = Bpgy = 135 micro sec

Problem with CAN: some of the message
may never get a chance for transmission

Event Driven
Peak Load Deadline for
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Other Solutions:
€.9.TTP - the Time Triggered Protocol

% Intended for X-by-wire applications
Example: Break-by-wire in car

% A lot of features built in into the bus protocol
(which must be added on top of the CAN bus)

% Conceptually similar to
static cyclic scheduling

s &

TTP - Time Triggered (TDMA)

)

®  » @

F F Node 4
All nodes
has identical

message tables

TDMA round TDMA round

] |, [ (e[

N
TDMA - slot reserved frame Nod 1 does not Delay of message
for node 1 use its slot. sending due to

synchronization

TTP - Clock Synchronization

% All nodes must have the same time

% Clocks synchronized within bound &

% Adjust by speeding Local ¢ dacidt > 1
up or down 4

% Messages used for sync.
+ Expected arrival (EA)
¢ Real arrival (RA)
+ All clocks set to average

TDMA runda EA o 25 75
RA o 23 79
I s Diff o A

dc,/dt = 1

dc/dt <1

Perfect




TTCAN: an example of TTP

BEO B
Node 1 Node 2
Master

Node 3 Node 4

Transmission
Column ¢ 1 2 3 0

Basic Cycle (n) Basic Cycle
(53]

Time

TTP - CAN: a comparison

1P
¢ Time triggered
¢ Overallocation of aperiod
messages
+ No jitter
¢ Ultra-reliable systems
¢ Includes distributed syst¢
functionality
= Clock-synchronization
= Fault-handling
= Membership protocol
+ Capacity 10 Mb/sec

CAN
+ Event triggered

+ No message sending if not
neccessary

< Jitter due to varying system
loads

+ Priority driven
¢ RT-Network

+ Some functionality added
on top

+ Capacity: 1Mb/sec

Trends for RT networks in Automotives

#* Today CAN dominates

#* Time-triggered seems to be the future for X-by-wire: TTP
e.g. FlexRay, TTCAN

% Future cars will include many different and parallel buses:
+ CAN for comfort
+ TT for X-by-wire
+ MOST for multimedia
+ etc.




