

So far, we have talked about

- Programming Languages to implement the Tasks
- Run-TIme/Operating Systems to run the Tasks

Task models

- Non periodic/Aperiodic (three parameters)
- A: arrving time
- C: computing time
- D: deadline (relative deadline)

Constraints on task sets

- Timing constraints: deadline for each task,
- Relative to arriving time or absolute deadline
- Other constraints
- Precedence constraints
- Precedence graphs imposed e.g by input/output relation
- Resource constraints: mutual exclusion
- Resource access protocols

Scheduling Problems

Given a set of tasks (ready queue)

1. Check if the set is schedulable
2. If yes, construct a schedule to meet all deadlines
3. If yes, construct an optimal schedule e.g. minimizing response times

Tasks with the same arrival time

Assume a list of tasks
(A,C1, D1)(A,C2, D2) ...(A,Cn,Dn)
that arrive at the same time i.e. A

- How to find a feasible schedule?
- (OBS: there may be many feasible schedules)
- EDD: order tasks with nondecreasing deadlines.
- Simple form of EDF (earlist deadline first)
- Example: $(1,10)(2,3)(3,5)$
- Schedule: $(2,3)(3,5)(1,10)$
- FACT: EDD is optimal
- If EDF cann't find a feasible schedule for a task set, then no other algorithm can, i.e. The task set is non schedulable.

EDD: Schedulability test

EDD: Examples

- If C1+C2...+Ck <=Dk for all $\mathrm{k}<=\mathrm{n}$ for the schedule with nondescreasing ordering of deadlines, then the
- $(2,4)(1,5)(6,10)$ is schedulable:
- Feasible schedule: $(2,4)(1,5)(6,10)$
- Note that $(1,5)(2,4)(6,10)$ is also feasible
- Response time for task $\mathrm{i}, \mathrm{Ri}=\mathrm{C} 1+\ldots+\mathrm{Ci}$
- Prove that EDD is optimal ?
- $(1,10)(3,3)(2,5)$ is schedulable
- The feasible schedule: $(3,3)(2,5)(1,10)$
- Why not shortest task first?
- $(4,6)(1,10)(3,5)$ is not schedulable
- $(3,5)(4,6)(1,10)$ is not feasible: $3+4>6$!

EDD: optimality

EDD: Exercises

- Assume that Ri is the finishing time (relative to the release time) of task i. Note that R means response time. Let $\mathrm{Li}=\mathrm{Ri}$-Di (the lateness for task i)
- FACT: EDD is optimal with respect to minimizing the maximum lateness Lmax= MAXi(Li) (the general form of optimality of EDD)
- Note that even a task set is non schedulable, EDD may minimize the maximal lateness (minimizes loss for soft tasks?)
- Prove: EDD is optimal in finding a feasible schedule
- Program the schedulability test for EDD

- Assume a list of tasks
- $S=(A 1, C 1, D 1)(A 2, C 2, D 2) \ldots(A n, C n, D n)$
- Preemptive EDF [Horn 1974]:
- Whenever new tasks arrive, sort the ready queue according to earlist deadlines first at the moment
- Run the first task of the queue if it is non empty
- FACT: Preemptive EDF is optimal [Dertouzos 1974] in finding feasible schedules.

Preemptive EDF: Schedulability test

- At time Ai, if the list ordered according to EDF ($\left.A^{\prime} 1, C^{\prime} 1, D^{\prime} 1\right)\left(A^{\prime} 2, C^{\prime} 2, D^{\prime} 2\right) . . .\left(A^{\prime} i, C^{\prime}, D^{\prime} i\right)$ satisfies $C^{\prime} 1+\ldots+C^{\prime} k<=D^{\prime} k$ for all $k=1,2 \ldots$ i, then S is schedulable at time Ai
- If S is schedulable at all Ai's, S is schedulable

Consider ($1,5,11$)(2,1,3)(3, 4,8)

- Deadlines are relative to arrival times
- At $1,(5,11)$
- At $2,(1,3)(4,10)$
- At $3,(4,8)(4,9)$

Preemptive EDF: Response time calculation

- Complicated
- But possible

Preemptive EDF: Exercises

- Write a program to calculate the response times for (non)preemptive EDF

Preemptive EDF: Optimality

- Assume that Ri is the finishing time (relative to the release time) of task i. Note that R means response time. Let Li = Ri-Di (the lateness for task i)
- FACT: preemptive EDF is optimal with respect to minimizing the maximum lateness $\operatorname{Lmax}=\mathrm{MAXi}(\mathrm{Li})$ (the general form of optimality of preemptive EDF)
- Alternative 1: Run a task until it's finished and then sort the queue according to EDF
+The algorithm may be run on-line, easy to implement, less overhead (no more context switch than necessay)
- However it is not optimal, it may not find the feasible schedule even it exists e.g $(0,5,20)(1,1,3)(6,7,30)$: the second task misses its deadline. Note that the feasible schedule: $(1,1,3)(0,5,20)(6,7,30)$

	T1	T2
A	0	1
C	4	2
D	7	5

Assume that D is absolute deadline

- If we only consider non-idle algorithms (CPU waiting only no task to run), is EDF is optimal?
- Unfortunately no!
- Example
- $\mathrm{T} 1=(0,10,100)$
- $\mathrm{T} 2=(0,1,101)$
- T3 $=(1,4,4)$
- Run T1,T3,T2: the 3rd task will miss its deadline
- Run T2,T3,T1: it is a feasible schedule

Off-line Non preemptive EDF (complete search)

- Alternative 2: the decision should be made according to all the parameters in the whole list of tasks
- Consider the example: $(0,5,20)(1,1,3)(6,7,30)$

- Unfortunately, to find a feasible non-preemptive schedule for task set with different arrival times is not easy
- The worst case is to test all possible combinations of n tasks (NP-hard, difficult for large n)
- Search until a non-schedulable situation occur, then backtrack [Bratley's algorithm]
- simple and easy to implement but may not find a schedule if n is too big (worst case)

Practical methods: Bratley's algorithm

-

Heuristic methods: Spring algorithm

- Similar to Bratley's alg. But
- Use heuristic function H to guide the search until a feasible schedule is found, otherwise backtrack: add a new node in the search tree if the node has smallest value according to H e.g H(task i) $=\mathrm{Ci}, \mathrm{Ai}$, Di etc [Spring alg.]
- However it may be difficult to find the right H

Other scheduling algorithms

Latest Release Time (reversed EDF)

- Classical ones
- HPF (priorities = degrees of importance of tasks)
- Weighted Round Robin
- LRT (Latest Release Time or reverse EDF)
- LST (Least Slack Time first)
- Release time = arrival time
- Idea: no advantage to completing any hard task sooner than necessary. We may want to postpone the execution of hard tasks e.g to improve response times for soft tasks.
- LRT: Schedule tasks from the latest deadline to earliest deadline. Treat deadlines as 'release times' and arrival times as 'Deadlines'. The latest 'Deadline' first
- FACT: LRT is optimal in finding feasible schedule (for preemptive tasks)

LRT: + and -

- It needs Arrival times (-)
- It got to be an off-line algorithm (-)
- Only for preemptive tasks (-)
- It could optimize Response times for soft tasks (+)

Least slack time first (LST)

- Let $\mathrm{Si}=\mathrm{Di} \mathrm{Ci}$ (the Slack time for task i)
- Si is the maximal (tolerable) time that task i can be delayed
- Idea: there is no point to complete a task earlier than its deadline. Other (soft) tasks may be executed first
- Slack stealing
- LST: order the queue with nondecreasing slack times
- FACT: preemptive LST is optimal in finding feasible schedules

LST: Example

Comment: a task should run until a Slack reaches 0 (to avoid context switch) And if more than one 0 -slack: nonschedulable

Independent tasks

- OBS! we have assumed that tasks are independent!
- meaning that we can compute them in arbitrary orderings only if the orderings (schedules) are feasible
- All algorithms we have studied so far are applicable only to independent tasks

Task types	Same arrival times	Preepmtive Different arrival times	Non preemptive Different arrival times
Algorithms For Independent tasks	EDD,Jackson55 O($n \log n$), optimal	EDF, Horn 74 O($n * * 2$), Optimal LST, LRT optimal	Tree search Bratley'71 O(n n!), optimal Spring, Stankovic et al 87 O(n**2), Heuristic

Dependent tasks

- In practice, tasks are dependent. We often have conditions or constraints e.g.
- A must be computed before B
- B must be computed before C and D
- Such conditions are called precedence constraints which can be represented as Directed Acyclic Graphs (DAG) known as Precedence graphs
- Such graphs are also known as "Task Graph"

Dependent tasks: Examples

- Input/output relation
- Some task is waiting for output of the others, data flow

- Synchronization
- Some task must be finished before the others e.g. It is holding a shared resource
- Other dependence relations (e.g priority-orderings?)

Precedence graph: Example

- A must be computed before B
- B must be computed before C and D

Dependent tasks with the same arrival times

- Assume a list of tasks:
(A,C1,D1)(A,C2,D2) ...(A,Cn,Dn)
- In addition to the deadlines D1...Dn, the tasks are also constrained by a DAG
- Solution: Latest Deadline First (LDF), Lawler 1973
- FACT: LDF is optimal (in finding feasible schedules)

LDF: Example

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline & \mathrm{T} 1 & \mathrm{~T} 2 & \mathrm{~T} 3 & \mathrm{~T} 4 & \mathrm{~T} 5 & \mathrm{~T} 6 \\
\hline \mathrm{C} & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \mathrm{D} & 2 & 5 & 4 & 3 & 5 & 6 \\
\hline
\end{array}
$$

LDF: T6

LDF: Example

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline & \mathrm{T} 1 & \mathrm{~T} 2 & \mathrm{~T} 3 & \mathrm{~T} 4 & \mathrm{~T} 5 & \mathrm{~T} 6 \\
\hline \mathrm{C} & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline \mathrm{D} & 2 & 5 & 4 & 3 & 5 & 6 \\
\hline
\end{array}
$$

LDF: T6,T5,T3,T4

Earlest Deadline First (EDF)

- It is a variant of LDF, but start with the root of the DAG:

1. Pick up a task with earlest deadline among all nodes that have no fathers (the roots)
2. Remove the selected task from the DAG and put it to the queue

- Repeat the two steps until the DAG contains no more tasks. Then the queue is a feasible schedule.
- Unfortunately, EDF is not optimal (see the following example)

Dependent tasks with different arrival times

- Assume a list of tasks:

$$
S=(A 1, C 1, D 1)(A 2, C 2, D 2) \ldots(A 3, C n, D n)
$$

- In addition to the deadlines D1...Dn, the tasks are also constrained by a DAG
- Solution: The Complete Search guided by the DAG
- The Bratley's algorithm
- The Spring algorithm
- Assume a list of tasks:

$$
S=(A 1, C 1, D 1)(A 2, C 2, D 2) \ldots(A 3, C n, D n)
$$

- In addition to the deadlines D1...Dn, the tasks are also constrained by a DAG
- Idea:
- Transform the task set S (constrained by the DAG) to an Independent task set S^{*} such that
S is schedulable under DAG iff S^{*} is schedulable
- Idea:

If $\mathrm{Ti}->\mathrm{Tj}$ is in the DAG i.e. Ti must be executed before $T j$, we replace the arrival time for Tj and deadline for Ti with

- $\mathrm{Aj}^{*}=\max (\mathrm{Aj}, \mathrm{Ai}+\mathrm{Ci})$
- Tj can not be computed before the completion of Ti
- $\mathrm{Di}^{*}=\min (\mathrm{Di}, \mathrm{Dj}-\mathrm{Cj})$
- Ti should be finished early enough to meet the deadline for Tj

Algorithm (EDF*): transform S to S*

- Let arrival times and deadlines be 'absolute times'
- Step 1: Transform the arrival times from roots to leafs
- For all initial (root) nodes Ti, let Ai* $=\mathrm{Ai}$
- REPEAT:
- Pick up a node Tj whose fathers arrival times have been modified. If no such node, stop. Otherwise:
- Let $A j^{*}=\max \left(A \mathrm{j}, \max \left\{\mathrm{A}^{*}+\mathrm{Ci}: \mathrm{Ti}->\mathrm{Tj}\right\}\right)$
- Step 2: Transform the deadlines from leafs to roots
- For all terminal (leafs) nodes Tj , let $\mathrm{Dj}{ }^{*}=\mathrm{Dj}$
- REPEAT:
- Pick up a node Ti all whose sons deadlines have been modified. If no such node, stop. Otherwise:
- Let Di* $=$ min($\left(\mathrm{Di}, \min \left\{\mathrm{Dj}^{*}-\mathrm{Cj}: ~ \mathrm{Ti}-\mathrm{Tj}\right\}\right.$)
- Step 3: use EDF to schedule $\mathrm{S}^{*}=\left(\mathrm{A} 1^{*}, \mathrm{C} 1, \mathrm{D1} 1^{*}\right) \ldots(\mathrm{An}$ *.Cn,Dn*)

EDF*: optimality

FACT:

- S is schedulable under a DAG iff S^{*} is schedulable
- EDF* is optimal in finding a feasible schedule

Step 1: Modifying the arrival times (top-down)

Step 2: Modifying the deadlines (bottom-up)

Step 3: schedule S* using EDF

EDF*: Example(2)

	T 1	T 2	T 3	T 4	T 5	T 6
C	1	1	1	1	1	1
D	2	5	4	3	5	6
$\mathrm{~A}^{*}$	0	1	1	2	2	2

Step 2: Modifying the deadlines (bottom-up)
S*

	T1	T2	T3	T4	T5	T6
C	1	1	1	1	1	1
D* *	1	2	4	3	5	6
A*	0	1	1	2	2	2

Step 3: now we don't need the DAG any more!

EDF*: Example(3)
S*

| | T1 | T2 | T3 | T4 | T5 | T6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | 1 | 1 | 1 | 1 | 1 | 1 |
| D* * | 1 | 2 | 4 | 3 | 5 | 6 |
| A * | 0 | 1 | 1 | 2 | 2 | 2 |

Finally we have a schedule: $\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 4, \mathrm{~T} 3, \mathrm{~T} 5, \mathrm{~T} 6$

Summary: scheduling aperiodic tasks

Task types	Same arrival times	Preepmtive Different arrival times	Non preemptive Different arrival times
Algorithms for Independent tasks	EDD,Jackson55 $\mathrm{O}(\mathrm{n} \log \mathrm{n})$, optimal	EDF, Horn 74 $\mathrm{O}\left(\mathrm{n}^{* *} 2\right)$, Optimal LST, optimal LRT, optimal	Tree search Bratley'71 O(n n!), optimal Spring, Stankovic et al 87 $\mathrm{O}(\mathrm{n} * * 2)$ Heuristic
Algorithms for Dependent tasks	LDF, Lawler 73 O(n**2) Optimal	EDF* Chetto et al 90 O(n**2) optimal	Spring As above

