

Constraints on task sets

- Timing constraints: deadline for each task,
 - Relative to arriving time or absolute deadline
- Other constraints
 - Precedence constraints
 - Precedence graphs imposed e.g by input/output relation
 - Resource constraints: mutual exclusion
 - Resource access protocols

_

Scheduling Problems

Given a set of tasks (ready queue)

- 1. Check if the set is schedulable
- 2. If yes, construct a schedule to meet all deadlines
- If yes, construct an optimal schedule e.g. minimizing response

8

Tasks with the same arrival time

Assume a list of tasks

(A,C1, D1)(A,C2, D2) ...(A,Cn,Dn)

that arrive at the same time i.e. A

- How to find a feasible schedule?
- (OBS: there may be many feasible schedules)

Earlist Due Date first (EDD) [Jackson 1955]

- EDD: order tasks with nondecreasing deadlines.
 - Simple form of EDF (earlist deadline first)
- Example: (1,10)(2,3)(3,5)Schedule: (2,3)(3,5)(1,10)
- FACT: EDD is optimal
 - If EDF cann't find a feasible schedule for a task set, then no other algorithm can, i.e. The task set is non schedulable.

10

EDD: Schedulability test

- If C1+C2...+Ck <=Dk for all k<=n for the schedule with nondescreasing ordering of deadlines, then the task set is schedulable
- Response time for task i, Ri =C1+...+Ci
- Prove that EDD is optimal?

11

EDD: Examples

- (2, 4)(1,5)(6,10) is schedulable:
 - Feasible schedule: (2,4)(1,5)(6,10)
 - Note that (1,5)(2,4)(6,10) is also feasible
- (1,10)(3,3)(2,5) is schedulable
 - The feasible schedule: (3,3)(2,5)(1,10)
 - Why not shortest task first?
- (4,6)(1,10)(3,5) is not schedulable
 - (3,5)(4,6)(1,10) is not feasible: 3+4 > 6!

EDD: optimality

- Assume that Ri is the finishing time (relative to the release time) of task i. Note that R means response time. Let Li = Ri-Di (the lateness for task i)
- FACT: EDD is optimal with respect to minimizing the maximum lateness Lmax= MAXi(Li) (the general form of optimality of EDD)
- Note that even a task set is non schedulable, EDD may minimize the maximal lateness (minimizes loss for soft tasks?)

13

EDD: Exercises

- Prove: EDD is optimal in finding a feasible schedule
- Program the schedulability test for EDD

14

Tasks with different arrival times

- Assume a list of tasks
 - S= (A1,C1, D1)(A2,C2, D2) ...(An,Cn,Dn)
- Preemptive EDF [Horn 1974]:
 - Whenever new tasks arrive, sort the ready queue according to earlist deadlines first at the moment
 - Run the first task of the queue if it is non empty
- FACT: Preemptive EDF is optimal [Dertouzos 1974] in finding feasible schedules.

15

Preemptive EDF: Schedulability test

- At time Ai, if the list ordered according to EDF
 (A'1,C'1,D'1)(A'2,C'2,D'2)...(A'i,C'i,D'i)
 satisfies C'1+...+C'k <=D'k for all k=1,2...i, then S
 is schedulable at time Ai
- If S is schedulable at all Ai's, S is schedulable

16

Preemptive EDF: Example

Consider (1, 5, 11)(2,1,3)(3, 4,8)

- Deadlines are relative to arrival times
- At 1, (5,11)
- At 2, (1,3)(4,10)
- At 3, (4,8)(4,9)

Preemptive EDF: Response time calculation

- Complicated
- But possible

17

Preemptive EDF: Exercises

 Write a program to calculate the response times for (non)preemptive EDF

Preemptive EDF: Optimality

- Assume that Ri is the finishing time (relative to the release time) of task i. Note that R means response time. Let Li = Ri-Di (the lateness for task i)
- FACT: preemptive EDF is optimal with respect to minimizing the maximum lateness Lmax= MAXi(Li) (the general form of optimality of preemptive EDF)

20

19

Non preemptive EDF (on-line version)

- Alternative 1: Run a task until it's finished and then sort the queue according to EDF
 - +The algorithm may be run on-line, easy to implement, less overhead (no more context switch than necessay)
 - However it is not optimal, it may not find the feasible schedule even it exists e.g (0,5,20)(1,1,3)(6,7,30): the second task misses its deadline. Note that the feasible schedule: (1,1,3)(0,5,20)(6,7,30)

21

On-line non preemptive EDF: Optimal?

- If we only consider non-idle algorithms (CPU waiting only no task to run), is EDF is optimal?
- Unfortunately no!
- Example
 - T1= (0, 10, 100)
 - T2= (0,1,101)
 - T3= (1,4,4)
 - Run T1,T3,T2: the 3rd task will miss its deadline
 - Run T2,T3,T1: it is a feasible schedule

Off-line Non preemptive EDF (complete search)

- Alternative 2: the decision should be made according to all the parameters in the whole list of tasks
- Consider the example: (0,5,20)(1,1,3)(6,7,30)

23

Off-line Non preemptive EDF (NP-hard)

- Unfortunately, to find a feasible non-preemptive schedule for task set with different arrival times is not easy
- The worst case is to test all possible combinations of n tasks (NP-hard, difficult for large n)

4

Practical methods: Bratley's algorithm

- Search until a non-schedulable situation occur, then backtrack [Bratley's algorithm]
 - simple and easy to implement but may not find a schedule if n is too big (worst case)

25

Heuristic methods: Spring algorithm

- Similar to Bratley's alg. But
 - Use heuristic function H to guide the search until a feasible schedule is found, otherwise backtrack: add a new node in the search tree if the node has smallest value according to H e.g H(task i) = Ci, Ai, Di etc [Spring alg.]
 - However it may be difficult to find the right H

28

Example Heuristics

- H(Ti) = Ai
 FIFO
- H(Ti) = Ci
- SJF
- H(Ti) = Di EDF
- H(Ti) = Di +w*Ci EDF+SJF
- ...

29

EDF: + and -

- Simple (+)
- Preemptive EDF, Optimal (+)
- No need for computing times (+)
- On-line and off-line (+)
- Preemptive schedule easy to find (+)
- But preemptive EDF is "difficult" to implement efficiently (-)
 Must use a list of "timers", one per task
- Nonpreemptive (feasible) schedule difficult to find (-)
 - But minimal context switch (+)
 - And the only way to schedule non preemtive tasks

Other scheduling algorithms

- Classical ones
 - HPF (priorities = degrees of importance of tasks)
 - Weighted Round Robin
- LRT (Latest Release Time or reverse EDF)
- LST (Least Slack Time first)

31

- Release time = arrival time
- Idea: no advantage to completing any hard task sooner than necessary. We may want to postpone the execution of hard tasks e.g to improve response times for soft tasks.
- LRT: Schedule tasks from the latest deadline to earliest deadline. Treat deadlines as 'release times' and arrival times as 'Deadlines'. The latest 'Deadline' first
- FACT: LRT is optimal in finding feasible schedule (for preemptive tasks)

32

Least slack time first (LST)

- Let Si = Di-Ci (the Slack time for task i)
 - Si is the maximal (tolerable) time that task i can be delayed
- Idea: there is no point to complete a task earlier than its deadline. Other (soft) tasks may be executed first
 - Slack stealing
- LST: order the gueue with nondecreasing slack times
- FACT: preemptive LST is optimal in finding feasible schedules

LST: + and -

- It needs Computing times (-)
- Only for preemptive tasks (-)
- Not easy to implement! (-)
- But it can run on-line (+)
- and it may improve response times?

Independent tasks

- OBS! we have assumed that tasks are independent!
 - meaning that we can compute them in arbitrary orderings only if the orderings (schedules) are feasible
- All algorithms we have studied so far are applicable only to independent tasks

38

Summary: scheduling independent tasks

Task types	Same arrival times	Preepmtive Different arrival times	Non preemptive Different arrival times
Algorithms For Independent tasks	EDD,Jackson55 O(n log n), optimal	EDF, Horn 74 O(n**2), Optimal LST, LRT optimal	Tree search Bratley'71 O(n n!), optimal Spring, Stankovic et al 87 O(n**2), Heuristic

37

Dependent tasks

- In practice, tasks are dependent. We often have conditions or constraints e.g.
 - A must be computed before B
 - B must be computed before C and D
- Such conditions are called precedence constraints which can be represented as Directed Acyclic Graphs (DAG) known as Precedence graphs
- Such graphs are also known as "Task Graph"

40

-

Dependent tasks: Examples

- Input/output relation
 - Some task is waiting for output of the others, data flow diagrams

- Synchronization
 - Some task must be finished before the others e.g. It is holding a shared resource
- Other dependence relations (e.g priority-orderings?)

Precedence graph: Example

- A must be computed before B
- B must be computed before C and D

42

- AND-node, all incomming edges must be finished first
- OR-node: some of the incomming edges must be finished

44

Dependent tasks with the same arrival times

Assume a list of tasks:

(A,C1,D1)(A,C2,D2) ...(A,Cn,Dn)

- In addition to the deadlines D1...Dn, the tasks are also constrained by a DAG
- Solution: Latest Deadline First (LDF), Lawler 1973
- FACT: LDF is optimal (in finding feasible schedules)

46

Latest Deadline First (LDF)

- It constructs a schedule from tail to head using a queue:
 - 1. Pick up a task from the current DAG, that
 - Has the latest deadline and
 - Does not precede any other tasks (a leaf!)
 - 2. Remove the selected task from the DAG and put it to the queue
- Repeat the two steps until the DAG contains no more tasks.
 Then the queue is a potentilly feasible schedule. The last task selected should be run first.
- Note that this is similar to LRT

Better algorithms?

Assume a list of tasks:

S = (A1,C1,D1)(A2,C2,D2)...(A3,Cn,Dn)

 In addition to the deadlines D1...Dn, the tasks are also constrained by a DAG

Idea:

 Transform the task set S (constrained by the DAG) to an Independent task set S* such that

S is schedulable under DAG iff S* is schedulable

67

Idea: how to transform S to S*?

Idea:

If $Ti \rightarrow Tj$ is in the DAG i.e. Ti must be executed before Tj, we replace the arrival time for Tj and deadline for Ti with

- Aj* = max(Aj, Ai+Ci)
 - Tj can not be computed before the completion of Ti
- Di*=min(Di,Dj-Cj)
 - Ti should be finished early enough to meet the deadline for Tj

68

Algorithm (EDF*): transform S to S*

- Let arrival times and deadlines be 'absolute times'
- Step 1: Transform the arrival times from roots to leafs
- For all initial (root) nodes Ti, let Ai* = Ai
- REPEAT:
 - Pick up a node Tj whose fathers arrival times have been modified. If no such node, stop. Otherwise:
 - no such node, stop. Otherwise:
 Let Aj* =max(Aj, max{Ai*+Ci: Ti->Tj})
- Step 2: Transform the deadlines from leafs to roots
- For all terminal (leafs) nodes Tj, let Dj* = Dj
- REPEAT:
- Pick up a node Ti all whose sons deadlines have been modified. If no such node, stop. Otherwise:
 - Let Di* =min(Di, min{Dj*-Cj: Ti->Tj})
- Step 3: use EDF to schedule S*=(A1*,C1,D1*)...(An*.Cn,Dn*)

69

EDF*: optimality

FACT:

- S is schedulable under a DAG iff S* is schedulable
- EDF* is optimal in finding a feasible schedule

70

Summary: scheduling aperiodic tasks

Task types	Same arrival times	Preepmtive Different arrival times	Non preemptive Different arrival times
Algorithms for Independent tasks	EDD,Jackson55 O(n log n), optimal	EDF, Horn 74 O(n**2), Optimal LST, optimal LRT, optimal	Tree search Bratley'71 O(n n!), optimal Spring, Stankovic et al 87 O(n**2) Heuristic
Algorithms for Dependent tasks	LDF, Lawler 73 O(n**2) Optimal	EDF* Chetto et al 90 O(n**2) optimal	Spring As above