
1

1

Language Support for Real Time Programming

Concurrency (Ada tasking)
Communication & synchronization (Ada Rendezvous)
Consistency in data sharing (Ada protected data type)
Real time facilities (Ada real time packages)

2

What to do if we don’t have Ada?

3

Today’s topic: OS Support
for Real Time Programming

4

Why OS?

To run one single program is easy
Two, or three is fine, but more than five would be difficult
without help
you need to take care

memory areas
Program counters
Scheduling, run one instruction each?
....
Communication/synchronization
Device drivers

OS is nothing but a program offering the functions needed in all
applications e.g. the start of Enea’s OSE

5

An example nano-kernel:
a single task cyclic executive

Setup-timer
c=0;
While (1) {suspend until timer expires

c++;
compute tasks due every cycle
if ((c%2)==0) compute tasks due every 2nd cycle
if ((c%3)==0) compute tasks due every 3rd cycle

}

6

Overall Stucture of Computer Systems

Application
Program

Application
Program

Application
Program

OS User Interface Shell

File and Disk Support

OS kernel

Hardware

In most cases, RTOS=OS Kernel

2

7

Basic functions of OS

Process mangement
Memory management
Interrupt handling
Exception handling
Process Synchronization (IPC)
Process schedulling
Disk management

8

Process, Thread and Task

A process is a program in execution ...
Starting a new process is a heavy job for OS: memory has to be
allocated, and lots of data structures and code must be copied.

memory pages (in virtual memory and in physical RAM) for code,
data, stack, heap, and for file and other descriptors; registers in
the CPU; queues for scheduling; signals and IPC; etc.

A thread is a “lightweight” process, in the sense that different
threads share the same address space.

They share global and “static” variables, file descriptors, signal
bookkeeping, code area, and heap, but they have own thread
status, program counter, registers, and stack.
Shorter creation and context switch times, and faster IPC.

to save the state of the currently running task (registers, stack pointer,
PC, etc.), and to restore that of the new task.

Tasks are mostly threads

9

Basic functions of RTOS kernel

Task mangement
Interrupt handling
Memory management

no virtual memory for hard RT tasks

Exception handling (important)
Task synchronization

Avoid priority inversion

Task scheduling
Time management

10

Micro-kernel architecture
External
interrupts

System
calls

Hardware/software
exceptions

Clock
interrupts

Immediate
Interrupt
services

Case of

.

.

.

.

.

.

Create task
Suspend task
Terminate task

Create timer
Sleep-timer
Timer-notify

Other system calls

Scheduling

Time services

Kernel

Exception handling

11

Basic functions of RTOS kernel

Task mangement

Interrupt handling
Memory management
Exception handling
Task synchronization
Task scheduling
Time management

12

Task: basic notion in RTOS

Task = thread (lightweight process)
A sequential program in execution
It may communicate with other tasks
It may use system resources
....

We may have timing constraints for tasks

3

13

Task Classification by deadlines (i.e. timing constraints)

Hard RT task must be computed within the given deadline
(otherwise system failure), e.g ABS control

The course will mainly deal with Hard RT tasks

Soft RT task may be computed after the given deadline e.g.
Multi-media, the web etc

On-time RT tasks (e.g alarm, robotics)

Non RT task (background tasks)

14

RT task characterization

Hard deadline

value

soft deadline

value

On-time deadline

value

no deadline

value

15

Task Classification by release rate (1)

Periodic tasks: arriving at fixed frequency, can be
characterized by 3 parameters (C,D,T) where

C = computing time
D = deadline
T = period (e.g. 20ms, or 50HZ)

Often D=T, but it can be D<T or D>T

Also called Time-driven tasks, their activations are
generated by timers

16

Task Classification by release rate (2)

Non-Periodic or aperiodic tasks = all tasks that are
not periodic, also known as Event-driven, their
activations are generated by interrupts

Sporadic tasks = aperiodic tasks with minimum
interarrival time Tmin (often with hard deadline)

worst case = periodic tasks with period Tmin

17

Task states (1)

Ready
Running
Waiting/blocked/suspended ...
Idling
Terminated

18

Task states (2)

Ready

Blocked

Runnig
Dispatch

preemption

waitsignal

TerminateActivate

4

19

Task states (Ada, delay)

Ready

Blocked

Runnig
Dispatch

preemption

waitsignal

TerminateActivate

Idling
delaytimeout

20

Task states (Ada95)

Ready

Blocked

Runnig
Dispatch

preemption

waitsignal

TerminateActivate

Idling
Sleeptimeout

created

declared

21

TCB (Task Control Block)

Id
Task state (e.g. Idling)
Task type (hard, soft, background ...)
Priority
Other Task parameters

period
comuting time (if available)
Relative deadline
Absolute deadline

Context pointer
Pointer to program code, data area, stack
Pointer to resources (semaphors etc)
Pointer to other TCBs (preceding, next, waiting queues etc)

22

Basic functions of RT OS

Task mangement
Interrupt handling
Memory management
Exception handling
Task synchronization
Task scheduling
Time management

23

Task managment

Task creation: create a newTCB
Task termination: remove the TCB
Change Priority: modify the TCB
...
State-inquiry: read the TCB

24

Task mangement

Challenges for an RTOS

Creating an RT task, it has to get the memory without delay: this is
difficult because memory has to be allocated and a lot of data
structures, code seqment must be copied/initialized

The memory blocks for RT tasks must be locked in main memoery
to avoid access latencies due to swapping

Changing run-time priorities is dangerous: it may change the run-
time behaviour and predictability of the whole system

5

25

Basic functions of RT OS

Task mangement

Interrupt handling
Memory management
Exception handling
Task synchronization
Task scheduling
Time management

26

Interrupt Handling

Types of interrupts
Asynchronous (or hardware interrupt) by hardware event (timer, network
card …) the interrupt handler as a separated task in a different context.
Synchronous (or software interrupt, or a trap) by software instruction (swi
in ARM, int in Intel 80x86), a divide by zero, a memory segmentation fault,
etc. The interrupt handler runs in the context of the interrupting task

Challenges in RTOS
Interrupt latency

The time between the arrival of interrupt and the start of corresponding ISR.
Modern processors with multiple levels of caches and instruction pipelines that
need to be reset before ISR can start might result in longer latency.

Interrupt enable/disable
The capability to enable or disable (“mask”) interrupt individually.

Interrupt priority
to block a new interrupt if an ISR of a higher-priority interrupt is still running.
the ISR of a lower-priority interrupt is preempted by a higher-priority interrupt.
The priority problems in task scheduling also show up in interrupt handling.

27

Interrupt Handling

Interrupt nesting
an ISR servicing one interrupt can itself be pre-empted by another
interrupt coming from the same peripheral device.

Interrupt sharing
allow different devices to be linked to the same hardware interrupt.

check a status register on each of the devices that share the interrupt
calling in turn all ISRs that users have registered with this IRQ.

28

Basic functions of RT OS

Task mangement
Interrupt handling

Memory management
Exception handling
Task synchronization
Task scheduling
Time management

29

Memory Management/Protection

Standard methods
Block-based, Paging, hardware mapping for protection

No virtual memory for hard RT tasks
Lock all pages in main memory

Many embedded RTS do not have memory protection – tasks
may access any blocks – Hope that the whole design is proven
correct and protection is unneccessary

to achive predictable timing
to avoid time overheads

Most commercial RTOS provide memory protection as an option
Run into ”fail-safe” mode if an illegal access trap occurs
Useful for complex reconfigurable systems

30

Basic functions of RT OS

Task mangement
Interrupt handling
Memory management

Exception handling
Task synchronization
Task scheduling
Time management

6

31

Exception handling

Exceptions e.g missing deadline, running out of
memory, timeouts, deadlocks

Error at system level, e.g. deadlock
Error at task level, e.g. timeout

Standard techniques:
System calls with error code
Watch dog
Fault-tolerance (later)

However, difficult to know all senarios
Missing one possible case may result in disaster
This is one reason why we need Modelling and Verification

32

Watch-dog

A task, that runs (with high priority) in parallel with all others
If some condition becomes true, it should react ...

Loop
begin

....
end

until condition

The condition can be an external event, or some flags
Normally it is a timeout

33

Example

Watch-dog (to monitor whether the application task is alive)
Loop

if flag==1 then
{
next :=system_time;
flag :=0
}

else if system_time> next+20s then WARNING;
sleep(100ms)
end loop
Application-task

flag:=1 computing something flag:=1 flag:=1

34

Basic functions of RT OS

Task mangement
Interrupt handling
Memory management
Exception handling

Task synchronization
Time management
CPU scheduling

35

Task Synchronization

Synchronization primitives
Semaphore: counting semaphore and binary semaphore

A semaphore is created with initial_count, which is the number of allowed holders
of the semaphore lock. (initial_count=1: binary sem)
Sem_wait will decrease the count; while sem_signal will increase it.
A task can get the semaphore when the count > 0; otherwise, block on it.

Mutex: similar to a binary semaphore, but mutex has an owner.
a semaphore can be “waited for” and “signaled” by any task,
while only the task that has taken a mutex is allowed to release it.

Spinlock: lock mechanism for multi-processor systems,
A task wanting to get spinlock has to get a lock shared by all processors.

Read/write locks: protect from concurrent write, while allow concurrent
read

Many tasks can get a read lock; but only one task can get a write lock.
Before a task gets the write lock, all read locks have to be released.

Barrier: to synchronize a lot of tasks,
they should wait until all of them have reached a certain “barrier.”

36

Task Synchronization

Challenges for RTOS
Critical section (data, service, code) protected by lock
mechanism e.g. Semaphore etc. In a RTOS, the maximum time a
task can be delayed because of locks held by other tasks should be
less than its timing constraints.
Race condition – deadlock, livelock, starvation Some
deadlock avoidance/prevention algorithms are too complicate and
indeterministic for real-time execution. Simplicity is preferred, like

all tasks always take locks in the same order.
allow each task to hold only one resource.

Priority inversion using priority-based task scheduling and
locking primitives should know the “priority inversion” danger: a
medium-priority job runs while a highpriority task is ready to
proceed.

7

37

IPC: Data exchanging

Semaphore
Shared variables
Bounded buffers
FIFO
Mailbox
Message passing
Signal

Semaphore is the most primitive and widely used construct for
Synchronization and communicatioin in all operating systems

38

Semaphore, Dijkstra 60s

A semaphore is a simple data structure with
a counter

the number of ”resources”
binary semaphore

a queue
Tasks waiting

and two operations:

P(S): get or wait for semaphore
V(S): release semaphore

39

Implementation of Semaphores: SCB

SCB: Semaphores Control Block

Pointer to next SCB

Queue of TCBs (tasks waiting)

Counter

The queue should be sorted by priorities (Why not FIFO?)

40

Implementation of semaphores: P-operation

P(scb):
Disable-interrupt;
If scb.counter>0 then

scb.counter - -1;
end then
else

save-context();
current-tcb.state := blocked;
insert(current-tcb, scb.queue);
dispatch();
load-context();

end else
Enable-interrupt

41

Implementation of Semaphores: V-operation

V(scb):
Disable-interrupt;
If not-empty(scb.queue) then

tcb := get-first(scb.queue);
tcb.state := ready;
insert(tcb, ready-queue);
save-context();
schedule(); /* dispatch invoked*/
load-context();

end then
else scb.counter ++1;
end else

Enable-interrupt

42

Advantages with semaphores

Simple (to implement and use)
Exists in most (all?) operating systems
It can be used to implement other
synchronization tools

Monitors, protected data type, bounded buffers,
mailbox etc

8

43

Exercise/Questions

Implement Mailbox by semaphore
Send(mbox, receiver, msg)
Get-msg(mbox,receiver,msg)

How to implement hand-shaking communication?
V(S1)P(S2)
V(S2)P(S1)

Solve the read-write problem
(e.g max 10 readers, and at most 1 writer at a time)

44

Disadvantages (problems) with semaphores

Deadlocks
Loss of mutual exclusion
Blocking tasks with higher priorities (e.g. FIFO)
Priority inversion !

45

Priority inversion problem

Assume 3 tasks: A, B, C with priorities Ap<Bp<Cp
Assume semaphore: S shared by A and C
The following may happen:

A gets S by P(S)
C wants S by P(S) and blocked
B is released and preempts A
Now B can run for a long long period
A is blocked by B, and C is blocked by A
So C is blocked by B

The above senario is called ’priority inversion’
It can be much worse if there are more tasks with priorities in
between Bp and Cp, that may block C as B does!

46

Solution?

Task A with low priority holds S that task C with highest
priority is waiting.
Tast A can not be forced to give up S, but A can be
preempted by B because B has higher priority and can run
without S

So the problem is that ’A can be preempted by B’

Solution 1: no preemption (an easy fix) within CS sections
Solution 2: high A’s priority when it gets a semaphore shared
with a task with higher priority! So that A can run until it
release S and then gets back its own priority

47

Resource Access Protocols

Highest Priority Inheritance
Non preemption protocol (NPP)

Basic Priority Inheritance Protocol (BIP)
POSIX (RT OS standard) mutexes

Priority Ceiling Protocols (PCP)
Immedate Priority Inheritance

Highest Locker’s priority Protocol (HLP)
Ada95 (protected object) and POSIX mutexes

48

Basic functions of RT OS

Task mangement
Interrupt handling
Memory management
Exception handling
Task synchronization

Task scheduling
Time management

9

49

Task states

Ready

Blocked

Runnig
Dispatch

preemption

waitsignal

TerminateActivate

Idling
delaytimeout

50

Scheduling algorithms

Sort the READY queue acording to
Priorities (HPF)
Execution times (SCF)
Deadlines (EDF)
Arrival times (FIFO)

Classes of scheduling algorithms
Preemptive vs non preemptive
Off-line vs on-line
Static vs dynamic
Event-driven vs time-driven

51

Task Scheduling

Scheduler is responsible for time-sharing of CPU among tasks.
A variety of scheduling algorithms have been explored and implemented.
The general trade-off: the simplicity and the optimality.

Challenges for an RTOS
Different performance criteria

GPOS: maximum average throughput,
RTOS: deterministic behavior (also small memory usage, low power consumption ...)

A theoretically optimal schedule does not exist
Hard to get complete knowledge – task requirements and hard properties
the requirements can be dynamic (i.e., time varying) – adaptive scheduling

How to garuantee Timing Constraints?

52

Schedulability

A schedule is an ordered list of tasks (to be executed) and a
schedule is feasible if it meets all the deadlines
A queue (or set) of tasks is schedulable if there exists a
schedule such that no task may fail to meet its deadline

scheduling
New tasks

Preemption

Dispatching
Running Termination

How do we know all possible queues (situations) are schedulable?
we need task models (next lecture)

53

Priority-based scheduling in RTOS

static priority
A task is given a priority at the time it is created, and it keeps this
priority during the whole lifetime.
The scheduler is very simple, because it looks at all wait queues at
each priority level, and starts the task with the highest priority to
run.

dynamic priority
The scheduler becomes more complex because it has to calculate
task’s priority on-line, based on dynamically changing parameters.
Earliest-deadline-first (EDF) --- A task with a closer deadline gets a
higher scheduling priority.
Rate-monotonic scheduling

A task gets a higher priority if it has to run more frequently.
This is a common approach in case that all tasks are periodic. So, a
task that has to run every n milliseconds gets a higher priority than a
task that runs every m milliseconds when n<m.

54

Basic functions of RT OS

Task mangement
Interrupt handling
Memory management
Exception handling
Task synchronization
Task scheduling

Time management

10

55

Time mangement

A high resolution hardware timer is programmed to
interrupt the processor at fixed rate – Time interrupt
Each time interrupt is called a system tick (time
resolution):

Normally, the tick can vary in microseconds (depend on hardware)
The tick may (not necessarily) be selected by the user
All time parameters for tasks should be the multiple of the tick
Note: the tick may be chosen according to the given task parameters
System time = 32 bits

One tick = 1ms: your system can run 50 days
One tick = 20ms: your system can run 1000 days = 2.5 years
One tick = 50ms: your system can run 2500 days= 7 years

56

Time interrupt routine

Save the context of the task in execution
Increment the system time by 1, if current time > system
lifetime, generate a timing error
Update timers (reduce each counter by 1)

A queue of timers
Activation of periodic tasks in idling state
Schedule again - call the scheduler
Other functions e.g.

(Remove all tasks terminated -- deallocate data structures e.g TCBs)
(Check if any deadline misses for hard tasks, monitoring)

load context for the first task in ready queue

57

Basic functions of RT OS

Task mangement !
Interrupt handling !
Memory management !
Exception handling !
Task synchronization !
Task scheduling !
Time management !

58

Features of current RTOS: SUMMARY

Multi-tasking
Priority-based scheduling

Application tasks should be programmed to suit ...

Ability to quickly respond to external interrupts
Basic mechanisms for process communication and
synchronization
Small kernal and fast context switch
Support of a real time clock as an internal time
reference

59

Existing RTOS: 4 categories

Priority based kernel for embbeded applications e.g. OSE, VxWorks,
QNX, VRTX32, pSOS Many of them are commercial kernels

Applications should be designed and programmed to suite priority-based
scheduling e.g deadlines as priority etc

Real Time Extensions of existing time-sharing OS e.g. Real time Linux,
Real time NT, real time Mach etc by e.g locking RT tasks in main
memory, assigning highest priorities etc

Research RT Kernels e.g. MARS (Vienna univ), Spring (univ of
Massachusetts) ...

Run-time systems for RT programmingn languages e.g. Ada, Erlang,
Real-Time Java ...

60

RT Linux: an example

RT-Linux is an operating system, in which a small real-time
kernel co-exists with standard Linux kernel:

– The real-time kernel sits between standard Linux kernel and the
h/w. The standard Linux Kernel sees this RT layer as actual h/w.
– The real-time kernel intercepts all hardware interrupts.

Only for those RTLinux-related interrupts, the appropriate ISR is run.
All other interrupts are held and passed to the standard Linux kernel as
software interrupts when the standard Linux kernel runs.

– The real-time kernel assigns the lowest priority to the standard
Linux kernel. Thus the realtime tasks will be executed in real-time
– user can create realtime tasks and achieve correct timing for
them by deciding on scheduling algorithms, priorities, execution
freq, etc.
– Realtime tasks are privileged (that is, they have direct access to
hardware), and they do NOT use virtual memory.

11

61

RT Linux

62

Scheduling

Linux contains a dynamic scheduler
RT-Linux allows different schedulers

EDF (Earliest Deadline First)
Rate-monotonic scheduler
Fixed-prioritiy scheduler

63

Time Resolution

RT tasks may be scheduled in microseconds
Running RT Linux-V3.0 Kernel 2.2.19 on the
486 allows stable hard real-time operation:

17 nanoseconds timer resolution.
6 microseconds interrupt response time (measured
on interrupts on the parallel port).

High resolution timing functions give
nanosecond resolution (limited by the
hardware only)

64

Linux v.s. RTLinux

Linux Non-real-time Features
– Linux scheduling algorithms are not designed for real-time tasks

But provide good average performance or throughput
– Unpredictable delay

Uninterruptible system calls, the use of interrupt disabling, virtual
memory support (context switch may take hundreds of microsecond).

– Linux Timer resolution is coarse, 10ms
– Linux Kernel is Non-preemptible.

RTLinux Real-time Features
– Support real-time scheduling: guarantee hard deadlines
– Predictable delay (by its small size and limited operations)
– Finer time resolution
– Pre-emptible kernel
– No virtual memory support

