
1

1

Course Outline

Introduction
Characteristics of RTS

Real Time Programming Language
Language support, e.g. Ada tasking

Real Time Operating Systems (RTOS)
System support: scheduling, resource handling

Design and Analysis of RT Application Software
Modeling and analysis

Reliability and Fault-Tolerance
Fault tolerant, failure recovery, exception handling

Distributed real time systems
Real Time Communication: TTCAN

2

Overall Structure of RT Systems

Hardware (CPU, I/O device etc)
a clock!

A real time OS (function as standard OS, with predictable
behavior and well-defined functionality)

A collection of RT tasks/processes (share resourses,
communicate/synchronize with each other and the
environment)

3

Components of RT Systems

Actuators

Sensors

Physical World

e.g.
Cars,
trains

Real Time OS

Real Time Software

Task Task
Task

Comm. Network
Other Computers

4

Characteristics of a RTS

Large and complex — vary from a few hundred lines
of assembler or C to 20 million lines of Ada estimated
for the Space Station Freedom
Concurrent control of separate system components
— devices operate in parallel in the real-world; better
to model this parallelism by concurrent entities in the
program
Facilities to interact with special purpose hardware —
need to be able to program devices in a reliable and
abstract way
Mixture of Hardware/Software: some modules
implemented in hardware, even whole systems, SoC

5

Characteristics of a RTS (ctn.)

Extreme reliability and safety — embedded
systems typically control the environment in
which they operate; failure to control can
result in loss of life, damage to environment
or economic loss
Guaranteed response times — we need to be
able to predict with confidence the worst case
response times for systems; efficiency is
important but predictability is essential

6

Terminology

Continuous interaction with the environment:
Reactive Systems

Must react to the environment in time:
Time-sensitive systems

Embedded in electronic and/or mechanical devices, complex
systems:

Embedded systems
A failaure may cause the loss of lifes ...:

Safety-critical systems/fault-tolerant systems

2

7

Terminology (ctn.)

It often deals with continuous variables e.g.
temperature, speed, etc (hybrid systems, dynamics
systems)
RT system may consist of many processes running on

single processor (concurrent/multi-task systems)
tightly-coupled processors (parallel systems),
multicores, MPSoC
loosely-coupled processors connected by a
network (distributed systems)

8

Real-time Programming Languages

Assembly languages
Sequential programming languages — e.g. Pascal, C.

Both normally require operating system support.
High-level concurrent languages e.g. Concurrent
Pascal, Ada, Modula-2, Java.

No/less operating system support!
We will consider:

Ada 95 and C

9

Real-Time Languages and OS’s

Hardware

Operating

System

User Programs/application

General-purpose computer systems

Hardware

Including Operating

System Components

Control programs/application

Typical Embedded Configuration

10

Classification of RTS’s

Hard real-time — systems where it is absolutely imperative that
responses occur within the required deadline. E.g. Flight control
systems.

Soft real-time — systems where deadlines are important but which
will still function correctly if deadlines are occasionally missed. E.g.
Data acquisition system.

Firm real-time — systems which are soft real-time but in which
there is no benefit from late delivery of service.

Real real-time — systems which are hard real-time and in which the
response times are very short. E.g. Missile guidance system.

11

A single system may have all hard, soft and real real-time subsystems
In reality many systems will have a cost function associated with
missing each deadline.

12

Example: a Car Controller

Activities of a car control system. Let
1. C= worst case execution time
2. T= (sampling) period
3. D= deadline

Speed measurment: C=4ms, T=20ms, D=5ms
ABS control: C=10ms,T=40ms, D=40ms
Fuel injection: C=40ms, T=80ms,D=80ms
Other software with soft deadlines e.g audio, air condition etc

Construct a controller meeting all the deadlines!

3

13

Programming the car controller (1)

Soft RT Processes

Loop
read temperature
el hiss, stereo
....

End loop

Process Fuel
Loop
read data, compute, inject ...
sleep(0.08)
End loop

Process ABS
Loop
Read sensor, compute, react
sleep(0.04)

End loop

Process Speed:
Loop
read sensor,compute,display...
sleep (0.02) /*period*/
End loop

14

Any problem?

We forgot the execution times !

e.g. Process speed:

20ms = execution time + sleep(X)

15

Programming the car controller (2)

Soft RT Processes

Loop
read temperature
elevator, stereo
....

End loop

Process Fuel
Loop
next:=get-time + 0.08
read data, compute, inject ...
sleep until next

End loop

Process ABS
Loop
next:=get-time + 0.04
Read sensor, compute, react

sleep until next
End loop

Process Speed:
Loop
next := get-time + 0.02
read sensor,compute,display...
sleep until next

End loop

16

What is the problem now?

We don’t know if the deadlines are met!

We need to know the execution times
We need to do schedulability analysis
We need to construct a schedule
We need to implement/buy an RT operating system

Run-time system (in programming language design)

17

Programming the car controller (3)

A feasible Schedule!

0 4
14

20

24

404454

60

64

76
speed

ABS

speed

Fuel-2

speed
ABS

FUEL-3

FUEL-1

speed

FUEL-4

Soft RT tasks

80

18

Main desirable properties of RT Systems(1)

Timeliness: not only outputs but also times they are
produced
Predictability: able to predict the future
consequences of current actions
Testability: easy to test if the system can meet all the
deadlines
Cost optimality: e.g. Energy consumption, memory
blocks etc

4

19

Main desirable properties of RT Systems (2)

Maintainability: modular structure to ease system
modification
Robustness: must not collapse when subject to peak
load, exception, manage all possible scenarios
Fault tolerance: hardware and software failures
should not cause the system to crash - function
down-grading

20

Predictability: the most important one

The system behaviour is known before it is
put into operation!
e.g. Response times, deadlock freedom etc

Difficult (impossible?) to achieve!

21

This is not so easy, why?
RT OS:

System calls: difficult to know the worst execution times
(theoretically impossible, halting problem)
Cache (hit ratio, never exact), pipelines ...
DMA stealing CPU memory cycle (when CPU running a hard
task)
Interrupt handling may introduce unbounded delays
Priority inversion (low-prority tasks blocking high-prior taskts)
Memory management (static allocation may not be enough,
dynamic data structures e.g. Queue), no virtual memory
Communication delays in a distributed environment

22

This is not so easy, why?
RT Tasks:

Difficult to calculate the worst case execution time for
tasks (theoretically impossible, halting problem)

Avoid dynamic data structures
Avoid recursion
Bounded loops e.g. For-loops only

Complex synchronization patterns between tasks:
potential deadlocks (formal verification)

23

Problems to solve ...

Missing deadlines (!)
Deadlocks/livelocks
Uncontrolled exception (ARIAN 5)
Clock jitter (the golf war, Scud missile)

57micro sec/min, 343ms/100 hours
687 meters

Priority inversion (the Mars project)
Uncontrolled code size, cost, ...
Wrong timeout periods
Non-determinism and/or Race condition
Overloaded

