
1

1

Combined Scheduling of
Periodic and Non-Periodic Tasks

(hard and soft tasks)

2

Problem to solve

Hard-deadline tasks may be
Periodic or
Sporadic (with a known minimum arrival time)
Aperiodic/Event-driven – e.g. ABS-break

Soft-deadline tasks (and/or non RT) may be
Various types (mostly aperiodic/event-driven)

We want to shedule the mixed task set so that
All hard tasks meet their deadlines
All soft tasks get average response times as low as possible

We also want to estimate the worst-case response
times for non-periodic tasks if possible

3

Combined Scheduling

Creating a periodic server Ts=(Cs, Ps) for processing aperiodic
workload. Create one or more server tasks.

Aperiodic tasks are scheduled in the periodic server’s time slots. This
policy could be based on deadline, arrival time, or computation time.

Algorithms – all algorithms behave the same manner when there are enough
aperiodic tasks to execute

- Polling Server (bandwidth non-preserving)
- Deferrable Server (bandwidth preserving)
- Priority Exchange Server (bandwidth preserving)
- Sporadic Server (bandwidth preserving)

4

Background Scheduling Algorithm

No server is created.

Aperiodic tasks are executed when there is no periodic task to execute.
Simple, but no guarantee on aperiodic schedulability

Periodic tasks

CPU

Aperiodic tasks

RMS

FIFO/EDF…

High priority Queue

Low priority Queue

5

Normal RMS schedule: Notice the holes

Task set: Ti = (ci, pi)

T1 = (2,6) and T2 = (4,10)

Schedulability check:

2/6 + 4/10 = 0.33 + 0.40 = 0.73 ≤ UB(2) = 0. 82

T1
1 T1

2

0 2 6 8 10

T2
1 T2

2

0 2 6 10

T1

T2

Hole

Background
scheduling: basic

idea --
Scheduling

aperiodic tasks in
holes like this

6

Background Scheduling: Example
T1

1 T1
2

0 2 6 8 10

T2
1 T2

2

0 2 6

T1

T2
10

T1
3

12
T2

2

T1
4

14 16 18

18Hole1
2 units

Hole2
2 units

0 2 6 10 12 14 16 18

Aperiodic
tasks 1 2

A1

1 unit

A2

Periodic tasks
CPU

Aperiodic tasks

RMS

FIFO
High priority Queue

Low priority Queue

2

7

Background scheduling works well, but

How to estimate the worst case response times for
aperiodic tasks if they have hard deadlines?

We need Periodic servers

How to improve the average response times for
aperiodic tasks in case they have soft deadlines?

Sporadic tasks with small Tmin and low rate (low CPU
utilization): RM analysis will be too pessimistic
Periodic tasks with low CPU utilization: this fact may be used
to improve response times for soft-tasks
Hard deadlines are not necessarily met as early as possible

8

Eample

Hard task: (C,D,T)
Task H =(3,9,10)
Task L =(4,14,15)

One soft task: (C,D)
Task S=(3,5)

Assume that they all arrive at time 0
If H and L are executed first as they have hard deadlines, S
will miss its deadline 5
If S is executed first, and then H, L, all deadlines will be met

9

Dual Priority Scheduling

Idea: there is no benifit in early completion of hard tasks. Use
three ready queues:

HIGH, MIDDLE and LOW Corresponding priorities
Run Time Behaviour:

Hard tasks LOW HIGH Running
Soft tasks MIDDLE

A hard task will be placed in the LOW queue initially and after a
delay say X (priority promotion delay), it is promoted and put in the
HIGH queue
All soft tasks are put in the MIDDLE queue
Run tasks in the queues according to the priorities: H,M,L

how to calculate the promotion delay X ?

10

Calculate the promotion delay

Remember

Ri= Bi + Ci + ∑j ∈ HP(i) Ri/Tj*Cj

Thus

Xi = Di - Ri

(this may not work, why? How to calculate Xi+1?)

11

Polling Server (PS)

Idea:
Consider that all hard tasks are periodic
Create a periodic task (a periodic server) with period Ts and
capacity Cs (the allowed computing time in each period)
Schedule the server as a periodic task (Cs, Ts)

Run time behaviour:
Once the server is active, it serves all pending (buffered) aperiodic
requests within its capacity Cs according to other algorithms e.g
FCFS, SJF etc
If no aperiodic requests, the capacity is lost: if a request arrives
after the server has been suspended, it must wait until the next
polling period

Assume one-server for one aperiodic task, how to calculate the
Worst-case response time?

12

Deferrable server (PS preserving capacity)
[Lehoczky and Sha et al, 87,95]

It is similar to Polling server
The only difference is that the capacity of DS will be
preserved if no pending requests upon the activation
of the server. The capacity is maintained until the
end of the server

within the period, an aperiodic request will be served; thus
improving average response time

Assume one-server for one aperiodic task, how to
calculate the Worst-case response time?

3

13

Priority Exchange (interesting!)

Similar to PS and DS, PE has a periodic server (usually with high
priority) for serving aperiodic tasks. The difference is in the way
how the capacity of the server is preserved
Run Time Behaviour:

If the PE server is currently the task with highest priority but there
is no aperiodic request pending, then

the periodic task with next highest priority runs and
the server is assigned with the periodic task’s lower priority

Thus the capacity of the server is not lost but preserved with a
lower priority (the exchange continues until new aperiodic requests
arrive)

Assume one-server for one aperiodic task, how to calculate the
Worst-case response time?

14

Other solutions

Slack stealing server (similar to Dual priority sch.)
Steal the slack Si(t)=Di –t –Ci(t) for aperiodic tasks

Si(t) is the slack time for task i at time t
Ci(t) is the remaining computing time for task i at time t

Sproadic server (similar to PS)
The server replenishes its capacity only after it has been
consumed by aperiodic task execution (’consumed’ implies
more arrivals of sporadic tasks)

15

So far, we should know

How to schedule aperiodic task sets
Optimal scheduling algorithms
Precedence constraints

How to schedule periodic task sets
Schedulability tests
Calculation of worst-case response times

How to schedule mixed task sets
Improve response times for soft tasks
Calculation of worst-case response times

