
Published in J. Wiederman, P. van Emde Boas and M. Nielsen, eds, Proceedings of

ICALP’99, volume 1644 of LNCS, pp 513–523. c© Springer-Verlag 1999.

Solos in Concert

Cosimo Laneve∗ Björn Victor†

April 1999

Abstract
We present a calculus of mobile processes without prefix or summa-
tion, and using two different encodings we show that it can express
both action prefix and guarded summation. One encoding gives a
strong correspondence but uses a match operator; the other yields a
slightly weaker correspondence but uses no additional operators.

1 Introduction

The fusion calculus was introduced by Parrow and Victor [14, 18, 15] as a
simplification and extension of the π-calculus [5]. The simplification is easy
to see: there is only one binding operator where π has two; input and output
are completely symmetric which they are not in π; and it has only one sensible
bisimulation congruence where π has three. The extension is that the effects
of communication need not be local to the recipient process. Furthermore
the fusion calculus contains the π-calculus as a proper subcalculus and thus
inherits all its expressive power.

In recent years the asynchronous π-calculus [2, 4] has gained interest; here
the asymmetry between input and output is further increased by dropping
continuations from output prefixes. The resulting calculus has significant
expressive power, and is also motivated by practical implementation in dis-
tributed systems.

In the fusion calculus it would be unfortunate to break the symmetry
between input and output in order to develop an asynchronous subcalculus.
Indeed, in this paper we show that continuations may be removed both from
inputs and outputs – hereafter called solos – without loss of expressive power.
More precisely, the fusion calculus of solos, where prefixes are replaced by

∗Dept. of Computer Science, University of Bologna, Italy.
†Dept. of Computer Systems, Uppsala University, Sweden.

1

solos and summation is removed, is expressive enough to encode prefixes and
guarded summation.

We give two different encodings. One preserves strong barbed bisimula-
tion but uses a match operator; the other yields weak barbed bisimulation
but uses no additional operators. Both preserve divergence.

A key of our encodings in this paper is the use of catalyst agents of the
type (z)u zz, which inputs the same name twice. If some agent in parallel
composition with (z)u zz sends any two names on u, they will be fused and
made indistinguishable everywhere. In one of our encodings such a fusion
effect enables an agent guarded by a match construction testing two names
for equality; in the other it removes the restriction of a private communication
channel, thereby enabling the communication. The fusion effect performed
by the reduction relation of the fusion calculus plays a crucial role in these
encodings – the same machinery cannot be used in the π-calculus.

Another important factor is that the calculus is polyadic: an input or
output can carry arbitrarily many objects. In the strictly monadic calculus
we strongly conjecture that the expressiveness of prefixes is strictly greater
than that of solos.

Related work: Parrow shows in [12] that in the π-calculus without match,
any agent can be encoded as a concert of trios, i.e., a parallel composition of
possibly replicated prefixes α1 . α2 . α3 up to weak open equivalence [17]. He
also shows that duos, i.e., prefixes nested to depth 2, are not sufficient. In
this paper we show that for the fusion calculus, it suffices with solos, i.e., we
do not need prefixes at all.

Nestmann and Pierce show in [9] that input-guarded choice
∑

i ui(x̃i) . Pi

can be encoded in the asynchronous π-calculus without choice, up to cou-
pled bisimulation [13], and in [8] Nestmann gives encodings of separate and
mixed guarded choice. While these encodings involve increasingly complex
communication protocols, our encodings of separate choice are simpler and
work up to stronger equivalences.

In [10] Palamidessi shows that there can not exist an encoding of mixed
choice into the asynchronous π-calculus which is uniform and preserves a
reasonable semantics. A uniform encoding is compositional, meaning that
[[P | Q]] = [[P]] | [[Q]], and respects injective renaming of free names. A rea-
sonable semantics distinguishes two processes P and Q if the actions in some
computation of P are different from those in any computation of Q; in par-
ticular it is sensitive to divergence. Nestmann [8] argues that these criteria
are too strong for practical purposes, and that by allowing a top-level context
(but keeping the inner encoding compositional), or relaxing reasonableness,

2

many practically motivated encodings turn out to be “good”. Indeed even
more theoretically motivated encodings often use top-level contexts, includ-
ing our second encoding in this paper; our first encoding does not need this,
but is in fact uniform and reasonable in Palamidessi’s sense.

Yoshida in [19] presents separation results between subcalculi of the asyn-
chronous π-calculus (without match and choice) by means of concurrent com-
binators, and shows the non-existence of encodings between such subcalculi.
Here a concept of standard encoding is used, which means that the encoding
is homomorphic, respects injective substitutions, and preserves weak obser-
vations and reductions. In addition to this the encodings are required to
be message-preserving, i.e., [[ux]] ≈ ux. While our first encoding is stan-
dard by this definition, neither one is message-preserving. Yoshida works
with monadic calculi, where the requirement may be quite sensible, but
in a polyadic setting this requirement seems very strong, especially when
only considering encoded contexts. Yoshida also proves that the reflexive
π-calculus, a variant of the π-calculus similar to the monadic fusion calculus
of solos, does not contain a synchronizer agent such as a(x) . b(y) . c y, and is
therefore less expressive than the monadic asynchronous π-calculus. In this
paper we show that in the polyadic fusion calculus of solos such an agent can
indeed be encoded, although our encodings are not message-preserving, but
rather adds a “protocol header” to the data being sent and received.

Acknowledgement: We thank Uwe Nestmann and Joachim Parrow for
valuable comments and remarks.

2 The Fusion Calculus of Solos

In this section we first present a subcalculus of the fusion calculus where
we use solos of the form u x̃ in place of general prefixes of the form u x̃ . P ,
and leave out summation. We present the syntax and semantics, review
the barbed equivalences and congruences, and introduce a barbed expansion
preorder.

2.1 Syntax and Semantics

We assume an infinite set N of names ranged over by u, v, . . . , z. Names
represent communication channels, which are also the values transmitted.
We write x̃ for a (possibly empty) finite sequence x1 · · ·xn of names.

Definition 1 The solos, ranged over by α, and the agents, ranged over by
P, Q, . . ., are defined by

3

α ::= u x̃ (Input)
u x̃ (Output)

P ::= 0 (Inaction)
α (Solo)
Q | R (Composition)
(x)Q (Scope)
[x = y]Q (Match)

In solos, the names x̃ are the objects of the solo, and the name u is the
subject. We write a to stand for either u or u, thus ax̃ is the general form of
a solo.

A Composition allows two solos to interact. The Scope (x)Q limits the
scope of x to Q; the name x is said to be bound in (x)P . We write (x̃)P for
(x1) · · · (xn)P , n ≥ 0. The free names in P , denoted fn(P), are the names in
P with a non-bound occurrence. As usual we will not distinguish between
alpha-variants of agents, i.e., agents differing only in the choice of bound
names.

A Match [x = y]Q acts like Q if x and y are the same name. We use M, N
to stand for a match operator, and write “match sequence” for a sequence
of match operators, ranged over by M̃ , Ñ . We also write M̃ ⇔ Ñ if the
conjunction of all matches in M̃ logically implies all elements in Ñ and vice
versa. We write n(M) for the names occurring in M .

2.2 Semantics

In the style of the Chemical Abstract Machine [1], we now define a structural
congruence which equates all agents we will never want to distinguish for any
semantic reason, and then use this when giving the operational semantics.

Definition 2 The structural congruence, ≡, between agents is the least con-
gruence satisfying the abelian monoid laws for Composition (associativity,
commutativity and 0 as identity), and the scope laws

(x)0 ≡ 0, (x)(y)P ≡ (y)(x)P, [x = x]P ≡ P
(x)MP ≡ M(x)P, if x 6∈ n(M)

P | (z)Q ≡ (z)(P | Q), if z 6∈ fn(P)

We write {x̃ = ỹ} for the smallest total equivalence relation on N relating
each xi with yi, and say that a substitution σ agrees with the equivalence ϕ
if ∀x, y : xϕ y ⇔ σ(x) = σ(y).

The reduction relation of the fusion calculus is the least relation satisfying
the rules in Table 1, where structurally equivalent agents are considered the
same. Here and in the following we use dom(σ) = {u : σ(u) 6= u} and
ran(σ) = {σ(u) : σ(u) 6= u}.

For examples and motivations we refer the reader to [14, 18, 15].

4

(z̃)(M̃u x̃ | Ñu ỹ | R) −→ Rσ

if |x̃| = |ỹ|, M̃ ⇔ Ñ ⇔ true,
σ agrees with {x̃ = ỹ}, ran(σ) ∩ z̃ = ∅,
and dom(σ) = z̃

P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

(x)P −→ (x)P ′

P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′

Table 1: Reduction rules for the fusion calculus of solos.

2.3 Equivalence and Preorder

We will use the standard idea of barbed bisimulation developed by Milner
and Sangiorgi [6] in the setting of CCS, further investigated in a π-calculus
setting by Sangiorgi [16], and later used in many other calculi as an intuitive
observational equivalence. The idea is that two agents are considered equiv-
alent if their reductions match and they are indistinguishable under global
observations.

Definition 3 The observation relation is the least relation satisfying the
rules below.

x ỹ ↓ x [x = x]P ↓ y if P ↓ y
x ỹ ↓ x (P | Q) ↓ x if P ↓ x or Q ↓ x

(x)P ↓ y if P ↓ y and x 6= y

Definition 4 A strong barbed bisimulation is a symmetric binary relation
S between agents such that P S Q implies:

1. If P −→ P ′ then Q −→ Q′ and P ′ S Q′.

2. If P ↓ x for some x, then Q ↓ x.

P is strong barbed bisimilar to Q, written P
�∼ Q, if P S Q for some strong

barbed bisimulation S.

To define the weak barbed bisimulation and congruence, we change Q −→
Q′ to Q −→∗ Q′ and Q ↓ x to Q −→∗↓ x (written Q ⇓ x) in Definition 4.

Definition 5 A weak barbed bisimulation is a symmetric binary relation S
between agents such that P S Q implies:

1. If P −→ P ′ then Q −→∗ Q′ and P ′ S Q′.

5

2. If P ↓ x for some x, then Q ⇓ x.

P is weak barbed bisimilar to Q, written P
�≈ Q, if P S Q for some weak

barbed bisimulation S.

We will also make use of an expansion relation [7], an asymmetric form

of weak barbed bisimulation where P . Q means that P
�≈ Q in a way such

that P does no more reductions than Q. In the following we write P −̂→P ′

if P −→ P ′ or P ≡ P ′.
Definition 6 A weak barbed expansion is a binary relation S between agents
such that P S Q implies:

1. If P −→ P ′ then Q −→+ Q′ and P ′ S Q′.

2. If Q −→ Q′ then P −̂→P ′ and P ′ S Q′.

3. If P ↓ x for some x then Q ⇓ x.

4. If Q ↓ x for some x then P ↓ x.

Q expands P , written P . Q, if P S Q for some weak barbed expansion S.
We often write Q & P instead of P . Q.

3 Encodings of Prefixes

In this section and the following we display the expressiveness of the fu-
sion calculus of solos by means of encodings. We first encode the general
prefix operator of the fusion calculus using solos. Two such encodings are
presented: one using match operators, resulting in a strong operational cor-
respondence with the encoded terms; and one using only solos, scope and
parallel composition, yielding a weaker correspondence.

We now add the prefix operator to the calculus by allowing processes of
the form α . P . We add two observation rules:

x ỹ . P ↓ x x ỹ . P ↓ x

and the following reduction rule:

(z̃)(M̃u x̃ . P | Ñu ỹ . Q | R) −→ (P | Q | R)σ

if |x̃| = |ỹ|, M̃ ⇔ Ñ ⇔ true, σ agrees with {x̃ = ỹ}, ran(σ) ∩ z̃ = ∅ and
dom(σ) = z̃. We call the resulting calculus the fusion calculus with prefix,
fpre. In this calculus we regard a solo ax̃ as shorthand for the prefix ax̃ .0.

6

[[u x̃ . P]]
def
= (zw)(u x̃zww | [z = w][[P]])

[[u x̃ . P]]
def
= (zw)(u x̃wwz | [z = w][[P]])

[[[x = y]P]]
def
= [x = y][[P]]

[[P | Q]]
def
= [[P]] | [[Q]]

[[(x)P]]
def
= (x)[[P]]

Table 2: Encoding of prefixes using match. z and w are fresh.

3.1 Encoding using Match

The encoding of prefixes using match, shown in Table 2, utilizes the fusion
power of two interacting solos. The encoding of an input prefix u x̃ . P creates
two fresh names z and w. The continuation P of the prefix is guarded
by a match operator checking for equality between z and w; being fresh,
these are initially different from each other, so P cannot reduce. The input
prefix action u x̃ is encoded by a solo with the same subject and polarity,
but with three additional objects zww appended to x̃. An output prefix
u ỹ . Q is encoded symmetrically, but with the order of the additional objects
changed to wwz. When such input and output solos interact, the result is a
fusion of the names z and w on each side of the interaction, thus triggering
the continuations P and Q. Increasing polyadicity of names to encode the
temporal ordering of prefixes was also used by Parrow in [11].

To get acquainted with the encoding of Table 2 we detail the interactions
of the encoding of two parallel agents:

[[(x)(ux . P | u y . Q)]]
def
= (x)((zw)(uxzww | [z = w][[P]])

| (zw)(u ywwz | [z = w][[Q]]))
≡ (xz1z2w1w2)(uxz1w1w1 | [z1 = w1][[P]]

| u yw2w2z2 | [z2 = w2][[Q]])
−→ (z1)(([z1 = w1][[P]] | [z2 = w2][[Q]]){y/x, z1/w1, z1/w2, z1/z2})
≡ ([[P | Q]]){y/x}
= [[(P | Q){y/x}]]

which corresponds exactly to the result of the encoded prefix agents inter-
acting.

This operational correspondence is formalized in the following lemmas:

Lemma 7 For P an agent of fpre,

1. if P ≡ P ′ then [[P]] ≡ [[P ′]];

7

Uv ≡ (z)v zzv

[[u x̃ . P]]v
def
= (wv′)(w x̃vv′ | [[P]]v′ | (y)(v uwy | Uy))

[[u x̃ . P]]v
def
= (wv′)(w x̃v′v | [[P]]v′ | (y)(v uwy | Uy))

[[[x = y]P]]v
def
= [x = y][[P]]v

[[(x)P]]v
def
= (x)[[P]]v

[[P | Q]]v
def
= [[P]]v | [[Q]]v

[(P)]
def
= (v)([[P]]v | Uv)

Table 3: Encoding of prefixes without using match. v, w and v′ are
fresh.

2. if P −→ P ′ then [[P]] −→ [[P ′]];

3. if P ↓ x then [[P]] ↓ x.

Lemma 8 For P an agent of fpre,

1. if [[P]] −→ Q, then P −→ P ′ such that Q ≡ [[P ′]];

2. if [[P]] ↓ x for some x, then P ↓ x.

We have full abstraction up to barbed bisimulation:

Theorem 9 For P, Q two agents of fpre, P
�∼ Q iff [[P]]

�∼ [[Q]].

Proof: By Lemmas 7 and 8, showing that {([[P]], [[Q]]) : P
�∼ Q} and

{(P, Q) : [[P]]
�∼ [[Q]]} are barbed bisimulations.

3.2 Encoding without Match

While the encoding above has very pleasant properties, it may for reasons of
minimality be desirable to cope without the match operator. A new encoding
is presented in Table 3.

In Table 2 the subject of a prefix is encoded through a solo with the same
subject. In Table 3 the subject of a prefix is instead encoded by a fresh scoped
name w. Consequently it has no reactions. Instead the whole encoding has a
parameter v, and an interaction over this parameter can fuse the fresh name
to the original subject, removing the scope of w and eventually enabling a
reaction. In order to achieve this we introduce catalyst agents Uv ≡ (z)v zzv
and we add an initial catalyst in the top level encoding [(·)].

8

An example illustrating the encoding follows:

[((x)(ux . P | u y . Q))]
def
= (vx)((wv′)(w xvv′ | [[P]]v′ | (y)(v uwy | Uy))

| (wv′)(w yv′v | [[Q]]v′ | (y)(v uwy | Uy))
| (z)v zzv)

(1)

−→ (vxwv′1v
′
2)(uxvv′1 | [[P]]v′1

| (z)v zzv

| w yv′2v | [[Q]]v′2
| (y)(v uwy | Uy))

(2)

−→ (vxv′1v
′
2)(uxvv′1 | [[P]]v′1

| u yv′2v | [[Q]]v′2
| Uv) (3)

−→ (v)([[P]]v | [[Q]]v | Uv){y/x}
def
= (v)([[P | Q]]v{y/x} | Uv)

= [((P | Q){y/x})] (4)

Initially the solos corresponding to the prefix actions can not interact,
since their subjects are locally scoped. Expanding the definitions we can see
at (1) that the catalyst (z)v zzv can interact with one of the terms v uwy,
thereby changing the subject of the prefix solo, removing the scope. The
initial catalyst is consumed when it interacts with the term v uwy, but this
interaction also changes the subterm Uy into a new catalyst Uv. This can be
used at (2) to remove the scope of the other prefix solo, enabling the inter-
action between the two prefixes at (3) and producing another new catalyst.
Observe that as a side effect of this latter interaction, the continuations [[P]]v′1
and [[Q]]v′2

are now enabled since v′1 and v′2 are fused with v. We end up with

the desired result (4).
The operational and observational correspondences of the encoding are

expressed by the following lemmas.

Lemma 10 For P an agent of fpre,

1. P ≡ Q implies [(P)] ≡ [(Q)];

2. P −→ Q implies [(P)] −→+ [(Q)];

3. P ↓ x implies [(P)] ⇓ x.

Lemma 11 For P an agent of fpre,

1. if [(P)] −→ Q, then P −̂→P ′ such that Q & [(P ′)];

2. if [(P)] −→∗ Q, then P −→∗ P ′ such that Q & [(P ′)];

3. if [(P)]−̂→ ↓ x for some x, then P ↓ x;

9

4. if [(P)] ⇓ x for some x, then P ⇓ x.

Proof:

1. By induction on the depth of the derivation.

2. By induction on the number of reductions in the left hand side, using
(1).

3. By induction on the depth of the derivation.

4. By induction on the number of reductions in the left hand side, using
(3).

The results of the previous encoding are weakened because of the weaker
form of operational correspondence.

Theorem 12 For P,Q two agents of fpre, P
�≈ Q iff [(P)]

�≈ [(Q)].

Proof: Using the fact that {(P,Q) : P & �≈. Q} and {(P,Q) : P . �≈& Q}
are both weak barbed bisimulations, it is easy to show that {([(P)], [(Q)]) :

P
�≈ Q} and {(P,Q) : [(P)]

�≈ [(Q)]} are weak barbed bisimulations. We then
use Lemmas 10 and 11 to complete the proof.

3.3 Replication and Recursion

We can add replication to the fpre calculus by the structural law ! P ≡ P | ! P .
Extending our first encoding using match (Table 2) with [[! P]] =! [[P]], Lem-
mas 7, 8 and Theorem 9 still hold. We can further strengthen these results
by proving preservation of divergence properties.

Theorem 13 For P an agent of fpre with replication, P diverges iff [[P]]
diverges.

Extending the second encoding (Table 3) in the same way does not pre-
serve divergence, since [(! u .0)] could reduce indefinitely even though the orig-
inal term can not reduce. However, if we replace replication with guarded

recursion, introduced by the structural law A(ỹ) ≡ P{ỹ/x̃} if A(x̃)
def
= P

and |x̃| = |ỹ|, and the requirement that process variables only occur under a
prefix, then Lemmas 10 and 11 and Theorem 12 still hold, and furthermore:

Theorem 14 For P an agent of fpre with guarded recursion, P diverges iff
[(P)] diverges.

10

3.4 Other translations

There is a simpler translation which requires that channels carry just one
message more instead of two, with the added cost of a further book-keeping
interaction for every original interaction. We only show the translation rules
for prefixes since the others are the same:

[[u x̃ . P]]v
def
= (wz)(w x̃z | (v′)(z v′v | [[P]]v′) | (y)(v uwy | Uy))

[[u x̃ . P]]v
def
= (wz)(w x̃z | (v′)(z vv′ | [[P]]v′) | (y)(v uwy | Uy))

Once replication has been added, we can also get rid of the catalyst agents
inside the encodings of prefixes of [[·]]v. Instead we use a replicated catalyst
at top level. Catalysts now need only two objects:

[[u x̃ . P]]v
def
= (wv′)(w x̃vv′ | [[P]]v′ | v uw)

[[u x̃ . P]]v
def
= (wv′)(w x̃v′v | [[P]]v′ | v uw)

[(P)]
def
= (v)([[P]]v | ! (z)v zz)

We can also get rid of the initial book-keeping reductions that enable un-
guarded prefixes in the encoding of Table 3, as well as the initial catalyst
agent of [(·)], by considering the following auxiliary function (again we only
illustrate the rules for prefixes):

((u x̃ . P))
def
= (z)(u x̃z | (vv′)(z vv′ | [[P]]v′ | v zzv))

((u x̃ . P))
def
= (z)(u x̃z | (v)(z vv | [[P]]v))

4 Encoding Choice

In this section we present encodings of the choice operator; P + Q allows P
or Q to take part in reduction, and discards the other branch when doing so.
Here we add the mismatch operator [x 6= y]P , which can act like P if x and

y are different. We extend the ranges of M,N, M̃ and Ñ and the definition
of M̃ ⇔ Ñ appropriately, add the reduction rule

P −→ P ′, x 6= y

[x 6= y]P −→ P ′

and the observation rule [x 6= z]P ↓ y if P ↓ y and x 6= z. We also extend
our previous encodings homomorphically for the mismatch operator.

Restricting the general choice operator P+Q to guarded choice,
∑

I αi . Pi,
and further requiring that all αi in a guarded choice have the same polarity

11

(all inputs or all outputs), we can extend the encoding of Table 2 by replacing
the encoding of prefixes by the following, where z and w are fresh:

[[∑
I

ui x̃i . Pi

]]
def
= (zw)

∏
I

[z 6= w](ui x̃izww | [z = w][[Pi]])

[[∑
I

ui x̃i . Pi

]]
def
= (zw)

∏
I

[z 6= w](ui x̃iwwz | [z = w][[Pi]])

The mismatch operator is used in a “test-and-set” construction which
tests two names z and w for inequality, and if they are not equal, atomically
makes them so. Only one branch of the choice can succeed in doing this.
The interaction between an input and an output prefix now not only enables
the continuations of the prefixes, but also disables the other branches of the
choice.

Lemmas 7, 8 and Theorems 9 and 13 still hold for this extended encoding

(Lemma 7(2) and 8(1) respectively weakened from −→ and ≡ to −→ �∼ and
�∼ in their consequences).

The encoding of Table 3 can also be extended in a similar way, replacing
the encodings of prefixes (v and v′ are fresh):

[[∑
I

ui x̃i . Pi

]]
v

def
= (v′)

∏
I

[v 6= v′](w)(w x̃ivv′ | [[Pi]]v′ | (y)(v uiwy | Uy))

[[∑
I

ui x̃i . Pi

]]
v

def
= (v′)

∏
I

[v 6= v′](w)(w x̃iv
′v | [[Pi]]v′ | (y)(v uiwy | Uy))

Lemmas 10 and 11 and Theorem 12 as well as Theorem 14 hold also for
this encoding (Lemma 10(2) weakened from−→ to−→ �≈ in the consequence).

References

[1] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96:217–248, 1992.

[2] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702,
INRIA Sophia-Antipolis, May 1992.

[3] R. Cleaveland, editor. Proc. of CONCUR ’92, volume 630 of LNCS. Springer, 1992.

[4] K. Honda and M. Tokoro. On asynchronous communication semantics. In M. Tokoro,
O. Nierstrasz, and P. Wegner, editors, Object-Based Concurrent Computing 1991,
volume 612 of LNCS, pages 21–51. Springer, 1992.

12

[5] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Journal of Information and Computation, 100:1–77, Sept. 1992.

[6] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor, Proc. of
ICALP ’92, volume 623 of LNCS, pages 685–695. Springer, 1992.

[7] R. Milner and D. Sangiorgi. The problem of “weak bisimulation up-to”. In Cleaveland
[3].

[8] U. Nestmann. What is a ‘good’ encoding of guarded choice? In C. Palamidessi and
J. Parrow, editors, Proc. of EXPRESS ’97, volume 7 of ENTCS. Elsevier Science
Publishers, 1997. Revised version accepted (1998) for Journal of Information and
Computation.

[9] U. Nestmann and B. C. Pierce. Decoding choice encodings. In U. Montanari and
V. Sassone, editors, Proc. of CONCUR ’96, volume 1119 of LNCS, pages 179–194.
Springer, 1996.

[10] C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. In Proc. of POPL ’97, pages 256–265. ACM, Jan. 1997.

[11] J. Parrow. Interaction diagrams. Nordic Journal of Computing, 2:407–443, 1995.

[12] J. Parrow. Trios in concert. In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof,
Language and Interaction: Essays in Honour of Robin Milner, 1998. To appear.

[13] J. Parrow and P. Sjödin. Multiway synchronization verified with coupled bisimulation.
In Cleaveland [3], pages 518–533.

[14] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile
processes. In Proc. of LICS ’98. IEEE, Computer Society Press, June 1998.

[15] J. Parrow and B. Victor. The tau-laws of fusion. In D. Sangiorgi and R. de Simone,
editors, Proceedings of CONCUR ’98, volume 1466 of LNCS, pages 99–114. Springer,
Sept. 1998.

[16] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, LFCS, University of Edinburgh, 1993.

[17] D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica, 33:69–97,
1996.

[18] B. Victor and J. Parrow. Concurrent constraints in the fusion calculus. In K. G.
Larsen, S. Skyum, and G. Winskel, editors, Proc. of ICALP ’98, volume 1443 of
LNCS, pages 455–469. Springer, July 1998.

[19] N. Yoshida. Minimality and separation results on asynchronous mobile processes:
Representability theorem by concurrent combinators. Technical Report 5/98, School
of Cognitive and Computing Sciences, University of Sussex, UK, Sept. 1998. An
extended abstract appeared in Proc. of CONCUR’98, LNCS 1466.

13

