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We present a calculus of mobile processes without prefix or summation, called the solos

calculus. Using two different encodings, we show that the solos calculus can express both

action prefix and guarded summation. One encoding gives a strong correspondence but

uses a match operator; the other yields a slightly weaker correspondence but uses no

additional operators. We also show that the expressive power of the solos calculus is still

retained by the sub-calculus where actions carry at most two names. On the contrary,

expressiveness is lost in the solos calculus without match and with actions carrying at

most one name.

1. Introduction

The fusion calculus was introduced by Parrow and Victor (Parrow and Victor, 1998a;
Victor and Parrow, 1998; Parrow and Victor, 1998b) as a simplification and extension of
the π-calculus (Milner et al., 1992). The simplification is easy to see: the fusion calculus
has only one binding operator where the π-calculus has two; in the fusion calculus, input
and output are completely symmetric unlike in the π-calculus; and the fusion calculus
has only one sensible bisimulation congruence where the π-calculus has three (Parrow
and Victor, 1998a). The extension is that the effects of communication need not be local
to the recipient process. Furthermore the fusion calculus contains the π-calculus as a
proper sub-calculus and thus inherits all its expressive power.

In recent years the asynchronous π-calculus (Honda and Tokoro, 1991; Boudol, 1992)
has gained interest; here the asymmetry between input and output is further increased
by dropping continuations from output prefixes. The resulting calculus has significant
expressive power, and is also motivated by practical implementation in distributed sys-
tems.

In the fusion calculus it would be unfortunate to break the symmetry between input
and output in order to develop an asynchronous subcalculus. Indeed, in this paper we
show that continuations may be removed both from inputs and outputs – hereafter called
solos – without loss of expressive power. More precisely, the fusion calculus of solos, or
solos calculus for short, where prefixes are replaced by solos and summation is removed,
is expressive enough to encode prefixes and guarded summation.
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We give two different encodings of the fusion calculus in the solos calculus. One pre-
serves strong barbed bisimulation but uses a match operator; the other yields weak
barbed bisimulation but uses no additional operators. Both preserve divergence. A more
precise account of our work follows.

In the fusion calculus, as well as in other mobile calculi, the purpose of a prefixing α . P

is to freeze the continuation agent P until the action α has been consumed in a reduction.
In other words, every reduction involving P causally depends on the reduction involving
the prefix α. A second form of causal dependency is that inherent in the match operator:
[x = y]P freezes the agent P until x and y are the same. In the fusion calculus, this can
be caused by a fusion effect produced in another, parallel, agent. This construction is
used in our first encoding.

Apart from these explicit causal dependencies, mobile calculi possess another, implicit
form of causal dependency, which relies on the scope (or restriction) operator (causal
dependencies in π-calculus have been studied in several works, such as (Boreale and
Sangiorgi, 1998; Degano and Priami, 1995)). Consider for instance the following agent:

(v)(u v | v y) .

In this agent, the solo v y by no means may react before the solo u v because the subject
name v is bound. When u v reacts, the scope of v is extended, possibly enabling a reaction
with v y. In our second encoding, we employ this type of causal dependency.

A similar mechanism is used in the encoding of π-calculus into asynchronous π-calculus,
where continuations of output prefixes are dropped (Honda and Tokoro, 1991; Boudol,
1992). In particular, π-calculus outputs are translated into outputs carrying local names,
in parallel with the continuation prefixed by an input on the local name. However, the
asynchronous π-calculus cannot be further simplified by also dropping continuations of
input prefixes. The reason is that in π-calculus the communication mechanism is asym-
metric, because names carried by the output replace the names carried by the input. Thus
the information flow is unidirectional and only affects the continuation of the inputs.
Therefore the communication mechanism becomes meaningless once input continuations
are also removed.

A key of our encodings is the use of catalyst agents of the type (z)u zz, which inputs
the same name twice. If some agent in parallel composition with (z)u zz sends any two
names on u, they will be fused and made indistinguishable everywhere. In one of our
encodings such a fusion effect enables an agent guarded by a match construction testing
two names for equality; in the other it removes the restriction of a private communication
channel, thereby enabling the channel.

An important factor for writing catalyst agents is that the calculus admits solos which
carry two names – the dyadic solos calculus. We demonstrate that the polyadic solos
calculus, where solos can carry arbitrarily many objects, may be encoded into the dyadic
one. We also show that the expressiveness of the polyadic solos calculus without match
is strictly greater than that of monadic solos.

Related work. Parrow shows in (Parrow, 2000) that in the π-calculus without match,
any agent can be encoded as a concert of trios, i.e., a parallel composition of possibly
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replicated prefixes α1 . α2 . α3 up to weak open equivalence (Sangiorgi, 1996). He also
shows that duos, i.e., prefixes nested to depth 2, are not sufficient. In this paper we show
that for the fusion calculus, solos suffice, i.e., we do not need prefixes at all.

Nestmann and Pierce show in (Nestmann and Pierce, 1996) that input-guarded choice∑
i ui(x̃i) . Pi can be encoded in the asynchronous π-calculus without choice, up to cou-

pled bisimulation (Parrow and Sjödin, 1992), and in (Nestmann, 1997) Nestmann gives
encodings of separate and mixed guarded choice. While these encodings involve increas-
ingly complex communication protocols, our encodings of separate choice are simpler and
work up to stronger equivalences.

In (Palamidessi, 1997) Palamidessi shows that there cannot exist an encoding of mixed
choice into the asynchronous π-calculus which is uniform and preserves a reasonable se-
mantics. A uniform encoding is compositional, meaning that [[P | Q]] = [[P ]] | [[Q]], and
respects injective renaming of free names. A reasonable semantics distinguishes two pro-
cesses P and Q if the actions in some computation of P are different from those in any
computation of Q; in particular it is sensitive to divergence. Nestmann (Nestmann, 1997)
argues that these criteria are too strong for practical purposes, and that by allowing a
top-level context (but keeping the inner encoding compositional), or relaxing reasonable-
ness, many practically motivated encodings turn out to be “good”. Indeed even more
theoretically motivated encodings often use top-level contexts, including our second en-
coding in this paper – it does, however, respect injective renamings. Our first encoding
does not need top-level encoding, but is in fact uniform and reasonable in Palamidessi’s
sense.

Yoshida in (Yoshida, 1998) presents separation results between subcalculi of the asyn-
chronous π-calculus (without match and choice) by means of concurrent combinators, and
shows the non-existence of encodings between such subcalculi. Here a concept of stan-
dard encoding is used, which means that the encoding is homomorphic, respects injective
substitutions, and preserves weak observations and reductions. In addition to this the
encodings are required to be message-preserving, i.e., [[ux]] ≈ ux. While our first encod-
ing is standard by this definition, neither one is message-preserving. Yoshida works with
monadic calculi, where the requirement may be quite sensible, but in a polyadic setting
this requirement seems very strong, especially when only considering encoded contexts.
Yoshida also proves that the reflexive π-calculus, a variant of the π-calculus similar to the
monadic solos calculus, does not contain a synchronizer agent such as a(x) . b(y) . c y, and
is therefore less expressive than the monadic asynchronous π-calculus. In this paper we
show that in the polyadic solos calculus such an agent can indeed be encoded, although
our encodings are not message-preserving, but rather adds a “protocol header” to the
data being sent and received.

Recently, Gardner and Wischik have introduced a calculus with explicit fusions of
names (Gardner and Wischik, 2000). This calculus is similar to the fusion calculus, but
with a local reduction rule. The similarity is strengthened by a fully-abstract translation
relating the fusion calculus and the one with explicit fusions. In view of this translation,
our expressiveness results, in particular the encodings without the match operator and
the result about the monadic sub-calculus, should be easily adapted to the calculus with
explicit fusions. In the χ-calculus, a monadic variant of the fusion calculus independently
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developed in (Fu, 1997), our results cannot be applied, since the χ-calculus is monadic
and thus (as we show in Section 5) not expressive enough.

In the action calculus framework, Honda in (Honda, 2000) introduced a monadic es-
sential π-calculus, similar to our solos calculus, but does not study the relation to the
calculus with prefix operator. In his calculus the interaction ab | ac results in a wire or
open substitution [b = c], with similarities to the explicit fusions of Gardner and Wischik.

Structure of the paper. The following section introduces our language, its model and
the equivalences we use in the rest of the paper. In Section 3, we detail the encodings
of prefixes and the proofs of the main results. In Section 4, we extend our results to
replication. In Section 5, we study the dyadic solos calculus and the encoding of polyadic
solos; we also show that the expressiveness of dyadic solos is strictly greater than the
monadic ones. In Section 6, we present encodings of the choice operator. We conclude in
Section 7. Additional proofs and examples appear in the appendices.

Acknowledgement. We thank Luca Aceto, Uwe Nestmann, Joachim Parrow, GianLuigi
Zavattaro and the anonymous referees for valuable comments and remarks.

2. The Solos Calculus

In this section we first present a subcalculus of the fusion calculus where we use solos of
the form u x̃ in place of general prefixes of the form u x̃ . P , and leave out summation.
We present the syntax and semantics, review the barbed equivalences and congruences,
and introduce an auxiliary barbed expansion preorder.

2.1. Syntax

We assume an infinite set N of names ranged over by u, v, . . . , z. Names represent com-
munication channels, which are also the values being transmitted in communications. We
write x̃ for a (possibly empty) finite sequence x1 · · ·xn of names, and we write |x̃| for its
length. Name substitutions, noted {ỹ/x̃} and ranged over by σ, are total functions on N
such that u 6= σ(u) for finitely many names u. We use dom(σ) = {u : σ(u) 6= u} and
ran(σ) = {σ(u) : σ(u) 6= u}. As usual, P{ỹ/x̃} means the simultaneous substitution of
names x̃ in P with names ỹ.

We write {x̃ = ỹ} for the smallest equivalence relation on N relating each xi with yi,
and say that a substitution σ agrees with the equivalence ϕ if for every x, y, x ϕ y if and
only if σ(x) = σ(y).

Definition 1. The solos, ranged over by α, and the agents, ranged over by P, Q, . . ., are
defined by
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α ::= u x̃ (input)
u x̃ (output)

P ::= 0 (inaction)
α (solo)
Q | R (composition)
(x)Q (scope)
[x = y]Q (match)

In solos, the name u is the subject of the solo, and the names x̃ are the objects. We write
a to stand for either u or u, thus ax̃ is the general form of a solo. Note that in contrast
with input prefixes in the π-calculus, the input solo here does not bind its objects.

A composition allows two solos to interact. We often abbreviate the composition of Pi

for i ∈ I, where I is a finite set, with
∏

i∈I Pi.
The scope (x)Q limits the scope of x to Q; the name x is said to be bound in (x)Q. This

is the only binding operator in solos calculus. We write (x̃)P for (x1) · · · (xn)P , n ≥ 0.
The free names in P , denoted fn(P ), are the names in P with a non-bound occurrence.

A match [x = y]Q acts like Q if x and y are the same name. We use M, N to stand for a
match operator, and write match sequence for a sequence of match operators, ranged over
by M̃ , Ñ . We also write M̃ ⇔ Ñ if the conjunction of all matches in M̃ logically implies
all elements in Ñ and vice versa. We write labelled nodes M for the names occurring in
M .

2.2. Reduction semantics

Following Milner’s presentation of π-calculus semantics (Milner, 1993), we first define a
structural congruence which equates all agents we will never want to distinguish for any
semantic reason, and then use this when giving the operational semantics.

Definition 2. The structural congruence, ≡, between agents is the least congruence
containing alpha equivalence and satisfying the abelian monoid laws for composition
(associativity, commutativity and 0 as identity), and the scope laws

(x)0 ≡ 0, (x)(y)P ≡ (y)(x)P, [x = x]P ≡ P

(x)MP ≡ M(x)P, if x 6∈ labelled nodes M

P | (z)Q ≡ (z)(P | Q), if z 6∈ fn(P )

The reduction relation of the solos calculus is the least relation satisfying the rules in
Table 1, where structurally equivalent agents are considered the same.

The side-condition of the main reduction rule states that z̃ contains all but one rep-
resentative of each equivalence class of {x̃ = ỹ}, and that the substitution maps each
equivalence class on that representative. For instance, the reduction

(x)(ux | u y | R) −→ R{y/x}
makes the equivalence class {x = y}, and the substitution {y/x} maps x to y. We
notice that the above rule may be applied provided the scope of substituted names
is localized to the term to be reduced. For this reason, the rule also garbage-collects
substituted names, since they do not occur anymore in their scope. As a particular case,
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(z̃)
(
M̃u x̃ | Ñu ỹ | R) −→ Rσ

P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

(x)P −→ (x)P ′
P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′

Side conditions in the first rule:
|x̃| = |ỹ|, M̃ ⇔ Ñ ⇔ true,

σ agrees with {x̃ = ỹ}, ran(σ) ∩ z̃ = ∅, and dom(σ) = z̃.

Table 1. Reduction rules for the solos calculus.

u x | ux | R −→ R without a scope operator, since the equivalence relation {x = x} has
only singular equivalence classes, so the resulting substitution is the identity relation.

The separation of binding from input makes it possible to write agents such as the
catalysts mentioned in the introduction. When (x)uxx is put into a context where an
output u yz occurs with its objects sufficiently bound (i.e., either y or z is bound), they
are fused together:

(x)uxx | (y)(u yz | R) ≡ (xy)(uxx | u yz | R) −→ R{z/x, z/y} = R{z/y}

assuming x 6∈ fn(R).
The effects of a reduction may spread all over the term, according to the placement of

bindings with respect to the interacting solos. In particular, effects may be bi-directional,
like in

(x)(a xy | P ) | (z)(awz | Q) −→ P{w/x} | Q{y/z} .

We conclude with a remark about the reduction semantics.

Remark 3. The behaviour of an agent is invariant to the replacement of all solos u x̃

with u x̃, and u x̃ with u x̃ (changing the polarity of solos) because the effects of reductions
are fusions of names, rather than substitutions.

2.3. Behavioural Equivalence

We will use the standard idea of barbed bisimulation developed by Milner and Sangiorgi
(Milner and Sangiorgi, 1992a) in the setting of CCS, further investigated in a π-calculus
setting (Sangiorgi, 1993), and later used in many other calculi as an intuitive observa-
tional equivalence. The idea is that two agents are considered equivalent if their reductions
match and they are indistinguishable under global observations.

Definition 4. The observation relation is the least relation satisfying the rules below.
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x ỹ ↓ x

x ỹ ↓ x

[x = x]P ↓ y if P ↓ y

(P | Q) ↓ x if P ↓ x or Q ↓ x

(x)P ↓ y if P ↓ y and x 6= y

We say that P has a barb on x if P ↓ x.

Definition 5. A strong barbed bisimulation is a symmetric binary relation S between
agents such that P S Q implies:
1 If P −→ P ′ then Q −→ Q′ and P ′ S Q′.
2 If P ↓ x for some x, then Q ↓ x.
P is strong barbed bisimilar to Q, written P

�∼ Q, if P S Q for some strong barbed
bisimulation S. Strong barbed congruence, written ∼, is the largest barbed bisimulation
which is also a congruence.

To define the weak barbed bisimulation and congruence, we change Q −→ Q′ to
Q −→∗ Q′ and Q ↓ x to Q −→∗↓ x (written Q ⇓ x) in Definition 5.

Definition 6. A weak barbed bisimulation is a symmetric binary relation S between
agents such that P S Q implies:
1 If P −→ P ′ then Q −→∗ Q′ and P ′ S Q′.
2 If P ↓ x for some x, then Q ⇓ x.

P is weak barbed bisimilar to Q, written P
�≈ Q, if P S Q for some weak barbed bisim-

ulation S. Weak barbed congruence, written ≈, is the largest weak barbed bisimulation
which is also a congruence.

Our definitions of strong and weak barbed congruence differ from (Victor and Parrow,
1998). There, ∼ and ≈ are defined as the largest congruences which are contained in �∼
and

�≈, respectively. These definitions do not yield equivalences which are bisimulations.
Therefore co-inductive reasoning cannot be used and proofs are usually more difficult.
Indeed, in π-calculus and join calculus the two relations coincide, but their equivalence
has still not been proved for the fusion calculus. We refer to (Fournet and Gonthier,
1998) and the references therein for a detailed analysis of this issue.

The following proposition collects a couple of immediate consequences of definitions.

Proposition 7.

1 P ≡ Q implies P ∼ Q.
2 P ∼ Q implies P ≈ Q.
3 (up-to structural congruence) Let S be a relation that satisfies all the bisimulation

clauses of Definition 5 (respectively, Definition 6), after replacing the requirement
“P ′ S Q′” with “P ′ ≡ S ≡ Q′”. Then S ⊆ ∼ (respectively, S ⊆ ≈).

Proposition 8. Weak barbed congruence is substitution closed, i.e., if P ≈ Q then
Pσ ≈ Qσ for any substitution σ.
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Proof. We first prove the proposition for substitutions σ such that dom(σ)∩ran(σ) = ∅.
To this aim, we observe that the relation

{(C[P{ỹ/x̃}], C[(x̃)(P | (z)(z ỹ | z x̃))]) | for every C[ ], P, x̃, ỹ, x̃ ∩ ỹ = ∅, z 6∈ x̃, ỹ}
is a weak barbed congruence up-to structural congruence. Therefore, from P ≈ Q we
derive (x̃)(P | (z)(z ỹ | z x̃)) ≈ (x̃)(Q | (z)(z ỹ | z x̃)), and by transitivity P{ỹ/x̃} ≈
Q{ỹ/x̃}.

Next, we observe that any substitution σ may be decomposed into ρ ◦ γ, such that
both dom(ρ) ∩ ran(ρ) = ∅ and dom(γ) ∩ ran(γ) = ∅. In particular, ρ maps dom(σ) into
names which do not occur into dom(σ) ∪ ran(σ) and γ is injective and maps ran(ρ) into
ran(σ). Therefore we may conclude Pσ ≈ Qσ by (Pρ)γ ≈ (Qρ)γ.

We will also make use of an expansion relation (Milner and Sangiorgi, 1992b), an

asymmetric form of weak barbed bisimulation where P . Q means that P
�≈ Q in a

way such that P does no more reductions than Q. In the following we write P −̂→P ′ if
P −→ P ′ or P ≡ P ′.

Definition 9. A weak barbed expansion is a binary relation S between agents such that
P S Q implies:

1 If P −→ P ′ then Q −→+ Q′ and P ′ S Q′.
2 If Q −→ Q′ then P −̂→P ′ and P ′ S Q′.
3 If P ↓ x for some x then Q ⇓ x.
4 If Q ↓ x for some x then P ↓ x.

Q expands P , written P . Q, if P S Q for some weak barbed expansion S. We also write
Q & P instead of P . Q.

3. Encodings of Prefixes

In this section and the following we display the expressiveness of the solos calculus by
means of encodings. We first encode the general prefix operator of the fusion calculus
using solos. Two such encodings are presented: one using match operators, resulting in
a strong operational correspondence with the encoded terms; and one using only solos,
scope and parallel composition, yielding a weaker correspondence.

We now add the prefix operator to the calculus by allowing processes of the form α . P .
We add two observation rules:

x ỹ . P ↓ x x ỹ . P ↓ x

and the following reduction rule:

(z̃)
(
M̃u x̃ . P | Ñu ỹ .Q | R) −→ (P | Q | R)σ

if |x̃| = |ỹ|, M̃ ⇔ Ñ ⇔ true, σ agrees with {x̃ = ỹ}, ran(σ) ∩ z̃ = ∅ and dom(σ) = z̃.
We call the resulting calculus the fusion calculus (with prefix), fpre. In this calculus we
regard a solo ax̃ as shorthand for the prefix ax̃ .0.
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[[u x̃ . P ]]
def
= (zw)(u x̃zww | [z = w][[P ]])

[[u x̃ . P ]]
def
= (zw)(u x̃wwz | [z = w][[P ]])

[[[x = y]P ]]
def
= [x = y][[P ]]

[[P | Q]]
def
= [[P ]] | [[Q]]

[[(x)P ]]
def
= (x)[[P ]]

Table 2. Encoding of prefixes using match. z and w are fresh.

3.1. Encoding using match

The encoding of prefixes using match, shown in Table 2, utilizes the fusion power of two
interacting solos in combination with the causal dependency of a match continuation on
its guard. The encoding of an input prefix u x̃ . P creates two fresh names z and w. The
continuation P of the prefix is guarded by a match operator checking for equality between
z and w; being fresh, these are initially different from each other, so P cannot reduce.
The input prefix action u x̃ is encoded by a solo with the same subject and polarity, but
with three additional objects zww appended to x̃. An output prefix u ỹ . Q is encoded
symmetrically, but with the order of the additional objects changed to wwz. When such
input and output solos interact, the result is a fusion of the names z and w on each side
of the interaction, thus triggering the continuations P and Q. Increasing polyadicity of
names to encode the temporal ordering of prefixes was also used by Parrow in (Parrow,
1995).

To get acquainted with the encoding of Table 2 we detail the interaction of the encoding
of two parallel agents:

[[(x)(ux . P | u y . Q)]]
def
= (x)( (zw)(uxzww | [z = w][[P ]])

| (zw)(u ywwz | [z = w][[Q]]))
≡ (xz1z2w1w2)( u xz1w1w1 | [z1 = w1][[P ]]

| u yw2w2z2 | [z2 = w2][[Q]])
−→ (z1)(([z1 = w1][[P ]] | [z2 = w2][[Q]]){y/x, z1/w1, z1/w2, z1/z2})
≡ ([[P | Q]]){y/x}
= [[(P | Q){y/x}]]

which corresponds exactly to the result of the encoded prefix agents interacting.
This operational correspondence is formalized in the following lemmas:

Lemma 10. For P an agent of fpre, P ∼ [[P ]].

Proof. It suffices to demonstrate the items below, which follow by structural induction
on P or [[P ]], or by reduction induction on P −→ P ′ or [[P ]] −→ Q. We also use ≡⊆∼,
by Proposition 7.

1 if P ≡ P ′ then [[P ]] ≡ [[P ′]];
2 if P −→ P ′ then [[P ]] −→ [[P ′]];
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3 if P ↓ x then [[P ]] ↓ x;
4 if [[P ]] −→ Q, then P −→ P ′ such that Q ≡ [[P ′]];
5 if [[P ]] ↓ x for some x, then P ↓ x.

The encoding [[ · ]] is adequate with respect to strong barbed congruence, i.e., if [[P ]] ∼
[[Q]] then P ∼ Q. This correspondence follows immediately by the following lemma about
strong barbed bisimulation.

Lemma 11. For P,Q two agents of fpre, P
�∼ Q iff [[P ]] �∼ [[Q]].

Proof. By Lemma 10, showing that {([[P ]], [[Q]]) : P
�∼ Q} and {(P,Q) : [[P ]] �∼ [[Q]]}

are barbed bisimulations.

Theorem 12. For P, Q two agents of fpre, [[P ]] ∼ [[Q]] implies P ∼ Q.

The completeness of [[ · ]] with respect to strong barbed congruence, i.e., P ∼ Q implies
[[P ]] ∼ [[Q]], does not hold, since an arbitrary agent can interact with the solo encod-
ing of a prefix action without fusing the appropriate names. For instance, (x)(ux. x) ∼
(x)(ux | x), while [[(x)(ux. x)]] 6∼ [[(x)(u x | x)]] because the context u abcd | [ ] separates
them.

A result similar to Theorem 12 also holds for ≈. In fact, since ∼⊆≈, Lemma 10 may
be weakened by replacing ∼ with ≈. Therefore a lemma corresponding to Lemma 11,
where ∼ is replaced by ≈, may be demonstrated. This yields:

Theorem 13. For P, Q two agents of fpre, [[P ]] ≈ [[Q]] implies P ≈ Q.

3.2. Encoding without match

While the encoding above has very pleasant properties, it may for reasons of minimality
be desirable to do without the match operator.

In this section we show that the symmetric form of communication of the solos calculus,
together with the implicit form of causal dependency described in the introduction, are
expressive enough to encode the prefix operator. The encoding is presented in Table 3.
The causal dependency used in this encoding is that of a bound subject which cannot
interact until the scope has been lifted by a fusion effect. To this aim, the subject of
a prefix is encoded by a fresh scoped name w. The whole encoding has a parameter v,
and an interaction over this parameter can fuse the fresh name to the original subject,
removing the scope of w and eventually enabling a reaction. In order to achieve this we
introduce catalyst agents Uv ≡ (z)v zzv and we add an initial catalyst in the top level
encoding [(·)].

An example illustrating the encoding follows:

[((x)(ux . P | u y .Q))]
def
= (vx)

(
(v′)((w)(w xvv′ | (y)(v uwy | Uy)) | [[P ]]v′)
| (v′)((w)(w yv′v | (y)(v uwy | Uy)) | [[Q]]v′)
| Uv

)
(1)
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Uv ≡ (z)v zzv

[[u x̃ . P ]]v
def
= (v′)((w)(w x̃vv′ | (y)(v uwy | Uy)) | [[P ]]v′)

[[u x̃ . P ]]v
def
= (v′)((w)(w x̃v′v | (y)(v uwy | Uy)) | [[P ]]v′)

[[[x = y]P ]]v
def
= [x = y][[P ]]v

[[(x)P ]]v
def
= (x)[[P ]]v

[[P | Q]]v
def
= [[P ]]v | [[Q]]v

[(P )]
def
= (v)([[P ]]v | Uv)

Table 3. Encoding of prefixes without using match. v, w and v′ are fresh.

−→ (vxv′1v
′
2)( uxvv′1 | [[P ]]v′1 | Uv

| (w)(w yv′2v(y)(v uwy | Uy)) | [[Q]]v′2)
(2)

−→ (vxv′1v
′
2)(uxvv′1 | [[P ]]v′1 | u yv′2v | [[Q]]v′2 | Uv) (3)

−→ (v)([[P ]]v | [[Q]]v | Uv){y/x}
def
= (v)([[P | Q]]v{y/x} | Uv)

= [((P | Q){y/x})] (4)

Initially the solos corresponding to the prefix actions cannot interact, since their sub-
jects are locally scoped. Expanding the definitions we can see at (1) that the catalyst
(z)v zzv can interact with one of the terms v uwy, thereby changing the subject of the
prefix solo, removing the scope. The initial catalyst is consumed when it interacts with
the term v uwy, but this interaction also changes the subterm Uy into a new catalyst
Uv. This can be used at (2) to remove the scope of the other prefix solo, enabling the
interaction between the two prefixes at (3) and producing another new catalyst. Observe
that as a side effect of this latter interaction, the continuations [[P ]]v′1 and [[Q]]v′2 are now
enabled since v′1 and v′2 are fused with v. We end up with the desired result (4).

Before proving our main result about [(·)] we require a few basic properties of this
mapping. We first point out a basic algebraic property of the encoding [[ · ]]v.

Proposition 14. For P an agent of fpre, σ a substitution, and v 6∈ fv(P ) ∪ dom(σ) ∪
ran(σ), [[Pσ]]v = [[P ]]vσ.

The following lemma shows the tight correspondence between reductions and observa-
tions of P and those of [(P )]. The proof is detailed in Appendix A.

Lemma 15. For P an agent of fpre, P . [(P )].

The correspondence established by Lemma 15 is weaker than Lemma 10 for Table 2
(. instead of ∼). This is because in order to set the proper causal dependencies, every
reduction in P ∈ fpre amounts to a sequence of (three) reductions in [(P )]. Nevertheless,
the encoding [(·)] is adequate with respect to weak barbed congruence. To prove this, we
need the lemma below.
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Lemma 16. For P,Q two agents of fpre, P
�≈ Q iff [(P )]

�≈ [(Q)].

Proof. We use the fact that {(P, Q) : P & �≈. Q} and {(P,Q) : P . �≈& Q} are both

weak barbed bisimulations. Therefore, by Lemma 15, we derive that P . [(P )]
�≈ [(Q)] & Q

and [(P )] & P
�≈ Q . [(Q)] are weak barbed bisimulations.

Theorem 17. For P, Q two agents of fpre, [(P )] ≈ [(Q)] implies P ≈ Q.

3.3. Other translations

We also considered other translations, which improve the encoding of Table 3 in terms
of the number of book-keeping reductions or in terms of channel sorts.

The following translation requires that channels carry only one extra object instead of
two, with the added cost of a further book-keeping interaction for every original interac-
tion. We only show the translation rules for prefixes since the others are the same:

[[u x̃ . P ]]v
def
= (wz)(w x̃z | (v′)(z v′v | [[P ]]v′) | (y)(v uwy | Uy))

[[u x̃ . P ]]v
def
= (wz)(w x̃z | (v′)(z vv′ | [[P ]]v′) | (y)(v uwy | Uy))

Once replication has been added (see Section 4), we can also get rid of the catalyst agents
inside the encodings of prefixes of [[ · ]]v. Instead we use a replicated catalyst at top level.
Catalysts now need only two objects:

[[u x̃ . P ]]v
def
= (wv′)(w x̃vv′ | [[P ]]v′ | v uw)

[[u x̃ . P ]]v
def
= (wv′)(w x̃v′v | [[P ]]v′ | v uw)

[(P )]
def
= (v)([[P ]]v | ! (z)v zz)

The processes in Table 3 in any case evaluate the catalyst agents to prepare the term
for the initial reductions. These moves are useless if the original term does not reduce.
Our last translation allows to remove the initial book-keeping reductions (again we only
illustrate the rules for prefixes):

((u x̃ . P ))
def
= (z)(u x̃z | (vv′)(z vv′ | [[P ]]v′ | v zzv))

((u x̃ . P ))
def
= (z)(u x̃z | (v)(z vv | [[P ]]v))

In contrast with [(·)], the function (( · )) does not introduce any initial catalyst agent and
does not rename the subjects of unguarded solos. Solos in continuations are managed as
in Table 3.

4. Replication and Recursion

We can add replication to the fpre calculus by introducing the operator ! P and the
structural law ! P ≡ P | !P . Extending our first encoding using match (Table 2) with
[[!P ]] =! [[P ]], Lemmas 10, 11 and Theorem 12 still hold. As an immediate consequence of
Lemma 10, we can further strengthen these results by proving preservation of divergence
properties.
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Theorem 18. For P an agent of fpre with replication, P diverges iff [[P ]] diverges.

Extending the second encoding (Table 3) in the same way does not preserve divergence,
since [(!u .0)] could reduce indefinitely even though the original term cannot reduce.
This is due to the book-keeping reductions which are needed to implement prefixing.
However, if we replace replication with guarded recursion, introduced by the structural
law A(ỹ) ≡ P{ỹ/x̃} if A(x̃)

def
= P and |x̃| = |ỹ|, where x̃ are pairwise distinct, and

the requirement that process variables only occur under a prefix, then Lemmas 15, 16
and Theorem 17 still hold. In particular, also Propositions 30, 31, and 32 may easily be
generalized.

Theorem 19. For P an agent of fpre with guarded recursion, P diverges iff [(P )] diverges.

Proof. If P diverges, the divergence of [(P )] is an immediate consequence of Lemma 15.
For the vice versa, let (v)(Uv | [(P )]v) diverge. Then, by Lemma 33 (in Appendix A), P

diverges too.

Remarkably, the above extension of the solos calculus with replication may be reduced,
without losing expressiveness. The next theorem determines how nested replications may
be flattened into non-nested replications. As a consequence of the flattening theorem
below, we can reduce to consider agents with non-nested replications. This simplifies the
theory of the solos calculus, as well as the practice (Laneve et al., 2001). For instance,
we have a simple form of canonical representatives of agents:

Remark 20. Every agent in the solos calculus with non-nested replications is struc-
turally congruent to an agent of shape (x̃)(P | ∏

i∈I ! (ỹi)Qi), where P and Qi, i ∈ I, are
parallel composition of solos.

In the π-calculus, Parrow’s concerts of trios construction (Parrow, 2000) provides
a similar flattening: there, the canonical form is the same but with P and Qi being
sequences of prefixes α1 . α2 . α3. Again, no nested replication is needed.

Theorem 21. (Flattening)

! (x̃)(P | !Q) ≈ (y)(! (x̃)(P | y z̃y) | ! (z̃v)(y z̃v | v z̃v | Q))

where z̃ = fn(Q) and y, v are fresh names.

Proof. Let

RP,Q = ! (x̃)(P | ! Q)
R′P,Q = (y)(! (x̃)(P | y z̃y) | ! (z̃v)(y z̃v | v z̃v | Q))

Let S be a relation containing the pairs (C[Rσ], C[R′σ]), for every context C[·] and every
substitution σ, such that:

— R = RP,Q | ∏
i∈1..n(! Q{w̃i/z̃} | ∏

j∈1..mi
Qi{w̃i/z̃});

— R′ = R′P,Q | ∏
i∈1..n(y)

(
y w̃iy | ! (z̃v)(y z̃v | v z̃v | Q) | ∏

j∈1..mi
(z̃v)(y z̃v | v z̃v | Qi)

)

for every m, n, C[ ], Qi, where z̃i = fn(Qi), and y, v, w̃i are fresh names.
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The relation S is clearly a congruence. To demonstrate S is a weak barbed bisimulation
up-to structural congruence, we distinguish among the reductions that may occur on each
component of the pair, and in each case we simulate them on the other component. There
are three cases, according to whether the reduction is inside the hole of the context, inside
the context, or involves both the context and the process in the hole. We detail the last
case; the former two are easy.

There are three subcases. The first one is when the interacting solos belong to the
context and to the agent in the hole, respectively. Let C[·] = C ′[(ũ)(T | u′ ũ′′ | [·])] and
let C[R] S C[R′]. There are four possibilities:

1 P = u′ ṽ′′ | P ′. Then

C[R] −→≡ C ′[(ṽ′)(Tσ | P ′σ | [R1σ])]
C[R′] −→≡ C ′[(ṽ′)(Tσ | P ′σ | [R′1σ])]

where σ agrees with {ũ′′ = ṽ′′}. Let C ′′[·] = C ′[(ṽ′)(Tσ | P ′σ | [·])]. Notice that
C ′′[R1σ] S C ′′[R′1σ].

2 Q = u′ ṽ′′ | Q′{w̃i/z̃}. Then

C[R] −→≡ C ′[(ṽ′)(Tσ | Pσ | Q′σ | [R1σ])]
C[R′] −→∗≡ C ′[(ṽ′)(Tσ | P ′σ | Q′σ | [(R′1 | y w̃iy | ! (z̃v)(y z̃v | v z̃v | Q))σ])]

where σ agrees with {ũ′′ = ṽ′′}. Let C ′′[·] = C ′[(ṽ′)(Tσ | P ′σ | Q′σ | [·])]. Notice that
C ′′[R1σ] S C ′′[(R′1 | y w̃iy | ! (z̃v)(y z̃v | v z̃v | Q))σ].

3 Q{w̃i/z̃} = u′ ṽ′′ | Q′{w̃i/z̃}. Similar to cases 1 and 2.
4 Qi{w̃i/z̃} = u′ ṽ′′ | Q′i{w̃i/z̃}. Similar to cases 1 and 2.

The second subcase is when the interacting solos are both in the context. Then the
reduction may modify the agent in the hole according to a substitution. The conclusion
is immediate because S is closed up-to substitutions of agents in the hole.

The third subcase is when the interacting solos are both in the agent in the hole. It
is not difficult to verify that the derivatives of the agents in the holes still have shape
R and R′ and the context is possibly augmented with a residual of the reduction, as in
cases 1 and 2 above.

5. The dyadic solos calculus

The solos calculus is polyadic, i.e., names carry tuples of values. Polyadicity is crucial in
the translations of Tables 2 and 3 to encode the causal dependencies of prefixes. In this
section we show that the dyadic sub-calculus, where solos carry at most two values, is as
expressive as the full polyadic calculus. This fact is already known in asynchronous π-
calculus (Boudol, 1992), and here we rephrase the arguments in the solos calculus. (In the
original π-calculus the monadic sub-calculus is sufficient (Milner, 1993).) In addition, we
demonstrate that some expressiveness is lost when solos are monadic. All these results
concern the so-called well-sorted solos calculus, whose theory is detailed in the next
section.
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5.1. A sorting discipline for the solos calculus

The solos calculus may be equipped with a recursive sorting discipline on names that
avoids arity mismatch, in the style of (Milner, 1993). To this aim, let x be a generic
sort-variable, and τ be a sort defined by the following grammar:

τ ::= 〈〉 | x | 〈τ̃〉 | rec x. τ

A name u has sort 〈τ1, · · · , τk〉 if it can carry k objects of sort τ1, · · · , τk, respectively. The
sort rec x. τ models recursive sorts. For example, if u has sort rec x. 〈x〉, it means that a
message as u u is well-sorted. As usual, the operator rec x. - is a binder, which induces
the standard notions of bound and free sort-variables. When we write rec x. τ , we always
assume that x belongs to the free sort-variables in τ and x occurs inside brackets 〈·〉. Let
τ be infinite if
1 τ = rec x. τ ′;
2 or τ = 〈τ1, · · · , τk〉 and τi is infinite, for some i ∈ 1..k.
The sort τ is called finite if it is not infinite. We associate a weight to channels with
finite sorts, namely the maximum number of nested brackets 〈·〉 in the sort. Formally let
weight(x) = n if the sort of x is finite and the maximum number of nested brackets 〈·〉
in the sort is n, and weight(x) = 0 otherwise, For example, a channel with sort 〈〈〈〉〉, 〈〉〉
has weight 3, while a channel with sort 〈rec x. 〈x〉, 〈〉〉 has weight 0 because its sort is
infinite.

An agent is well-sorted when
1 names have unique sorts,
2 subjects of solos always carry objects of the right sort, and
3 matching concerns names of the same sort.
The well-sorted solos calculus is the sub-calculus where all agents are well-sorted.

Two preliminary propositions gather basic properties of reductions in the well-sorted
calculus.

Proposition 22. In the well-sorted solos calculus:
1 reductions fuse names of the same sort;
2 a reduction fuses names of infinite sorts if and only if the subjects of the reduction

have infinite sort;
3 a reduction between solos with subjects of weight n fuses names whose sorts are finite

and have weight strictly less than n, and vice versa.

It is possible to associate an integer to every well-sorted process P , which denotes the
maximal weight of channels in P . Let mweight[P ] be the function defined inductively as
follows:

mweight[0] = 0
mweight[a u1 · · ·uk] = max{weight(a),weight(u1), · · ·weight(uk)}

mweight[P | Q] = max{mweight[P ], mweight[Q]}
mweight[(x)P ] = mweight[P ]

mweight[[x = y]P ] = max{mweight[P ],weight(x),weight(y)}
mweight[! P ] = mweight[P ]
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It is routine to check that reductions do not increase the value of mweight[·].
Proposition 23. For every well-sorted process P , P −→∗ P ′ implies mweight[P ] ≥
mweight[P ′].

5.2. Reducing polyadicity to dyadicity

Let [[[ · ]]] be the translation from the solos calculus to the dyadic sub-calculus, which is
the identity everywhere except for solos which carry at least three values, i.e., n > 2:

[[[ux1 · · ·xn]]]
def
= (z)(ux1z | [[[z x2 · · ·xn]]])

[[[ux1 · · ·xn]]]
def
= (z)(ux1z | [[[z x2 · · ·xn]]])

Note that polyadic solos carrying objects x1 · · ·xn are encoded as sequences of dyadic
solos. Each solo emits exactly two objects, the first of which is one of the xi; the second
object is a bound name which is used in the encoding of the rest of the sequence (except
for the last solo). This second object is used as a subject in another solo, which cannot
take part in a reduction until after the first solo has. The definition of [[[ · ]]] immediately
entails the following lemma.

Lemma 24. If [[[P ]]] −→∗ P ′ then for some agent Q

1 P ′ ≡ (ũ)([[[Q]]] | ∏
i∈I(zi)([[[zi ỹi]]] | [[[zi x̃i]]]));

2 P ′ −→∗≡ (ũ)[[[Q]]]σ, where σ agrees with {ỹi = x̃i | i ∈ I}. This process (ũ)[[[Q]]]σ is
called the P ′-completion.

The correctness of the encoding is an immediate consequence of the following lemma.

Lemma 25. In the well-sorted solos calculus, P
�≈ Q if and only if [[[P ]]]

�≈ [[[Q]]].

Proof. (If direction) By definition of the encoding, we observe that

1 P ≡ Q implies [[[P ]]] ≡ [[[Q]]];
2 P −→ Q implies [[[P ]]] −→∗ [[[Q]]];
3 P ↓ x if and only if [[[P ]]] ↓ x.

Let S be a weak barbed bisimulation between [[[P ]]] and [[[Q]]]. The above three properties
immediately entail that S ′ = {(P ′, Q′) | [[[P ′]]] S [[[Q′]]]} is a weak barbed bisimulation.

(Only-if direction) Let S be a weak barbed bisimulation such that P S Q, and let
P and Q be the set of derivatives of [[[P ]]] and [[[Q]]], respectively, including [[[P ]]] and [[[Q]]].
Consider the relation in P ×Q

S ′ = {(P ′, Q′) | P ′′ S Q′′

and [[[P ′′]]] is a P ′-completion
and [[[Q′′]]] is a Q′-completion}

By definition [[[P ]]] S ′ [[[Q]]]. We demonstrate that S ′ is a weak barbed bisimulation
up-to structural congruence. We detail the case when the left component reduces; the
symmetric case is similar. Let P ′ S ′ Q′ and let P ′ −→ P ′′. By Lemma 24(1), P ′ ≡
(ũ)([[[P ′1]]] |

∏
i∈I(zi)([[[zi ỹi]]] | [[[zi x̃i]]])). Therefore there are two cases: either (a) P ′ −→
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P ′′ is due to a reduction inside [[[P ′1]]], or (b) P ′ −→ P ′′ is due to a reduction inside∏
i∈I(zi)([[[zi ỹi]]] | [[[zi x̃i]]]). Case (b) is immediate because P ′′ S ′ Q′, by definition of S ′ .

In case (a), let

P ′′ ≡ (ũ)([[[P ′′1 ]]] | (z)([[[z ỹ]]] | [[[z x̃]]]) |
∏

i∈I

(zi)([[[zi ỹi]]] | [[[zi x̃i]]]))

and let P0 and Q0 be the P ′ and Q′-completions, respectively. In particular, notice that,
by Lemma 24(2), P0 ≡ (ũ)[[[P ′1]]]σ, where σ agrees with {x̃i = ỹi | i ∈ I}. Next, observe
that the reduction P ′ −→ P ′′ amounts to a reduction P0 −→ P ′0 such that P ′0 is the
P ′′-completion. Therefore, there is a Q′0 with Q0 −→∗ Q′

0 and P ′0 S Q′
0. We conclude by

remarking Q′ −→∗ Q0 −→∗ Q′0 and P ′′ S ′ [[[Q′0]]].

Clearly, the above theorem is false when agents are not well-sorted. For instance
(xy)(x zyy | x yy | y )

�≈ 0, while [[[(xy)(x zyy | x yy | y )]]] 6 �≈ [[[0]]].
Lemma 25 allows us to derive the adequacy of the encoding into the dyadic solos

calculus.

Theorem 26. In the well-sorted solos calculus, [[[P ]]] ≈ [[[Q]]] implies P ≈ Q.

5.3. Expressiveness of the monadic solos calculus

The question which naturally arises is whether there is an encoding of polyadic solos
into monadic ones, i.e., whether the monadic solos calculus, where names have nullary
or monadic sorts, is expressive enough. In the sub-calculus without the match operator,
we demonstrate that the monadic solos calculus is not as expressive as the polyadic one,
when the calculus is well-sorted. The proof technique is similar to the one used by Parrow
in (Parrow, 2000).

A preliminary lemma conveys a basic property for the inexpressiveness of the monadic
solos calculus.

Lemma 27. Let P be a well-sorted term in the monadic solos calculus, x ∈ fn(P ), and
weight(x) = n. Let P −→∗ P ′ be a minimal derivation such that P ′ ↓ x, i.e., no other
derivation producing a barb on x is shorter. Then every solo reduced in this derivation
has subject of finite sort, which is strictly greater than n.

Proof. By induction on the length of the derivation P −→∗ P ′. When the length is 0,
the lemma is obvious. Otherwise, let P −→ Q −→∗ P ′. By the induction hypothesis, all
solos reduced in Q −→∗ P ′ have subjects of finite sort, whose weight is strictly greater
than n. There are two subcases: either Q −→∗ P ′ has length 0, or is greater than 0. We
discuss the latter: the former subcase is simpler.

Let P ≡ (ũ)(z v | z w | Q1), where the two solos of the reduction P −→ Q have been
singled out. There are three cases:

i exactly one of the names v, w must occur at least once in solos reduced in Q −→∗ P ′;
ii at least one of the names v, w is x;
iii neither (i) nor (ii) is true, i.e., none of the names v, w occur in solos involved in

reductions of Q −→∗ P ′, and none is x.
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In case (i), since subjects of solos reduced in Q −→∗ P ′ have finite sort, then by
Proposition 22, v, w also have finite sorts with weight greater than n. Therefore z has
finite sort and weight greater than n, by the same proposition.

In case (ii), the lemma is an obvious consequence of Proposition 22.
To conclude we demonstrate that case (iii) is vacuous. Indeed, in this case, we show

that a term with an x-barb may be derived from P with a shorter derivation, which
contradicts the hypothesis that P −→ Q −→∗ P ′ is a minimal derivation. By Remark 20,
P ≡ (ũ)(z v | z w | Q′ | Q′′), where

1 Q′ collects replications and solos,
2 Q′′ is a parallel composition of solos, such that Q′′ may contain replicas of terms in

Q′ underneath “!”; these terms result from the structural law !R ≡ R | !R;

We further constrain Q′′ to collect a minimal set of solos such that every reduction in
Q −→∗ P ′ involves solos in Q′′, i.e., P −→ Q ≡ (ũ0)(Q′σ0 | Q′′σ0) and Q −→∗ P ′ is the
derivation:

(ũ0)(Q′σ0 | Q′′σ0) −→ (ũ1)(Q′σ0σ1 | Q1σ0σ1)
−→ (ũ2)(Q′σ0σ1σ2 | Q2σ0σ1σ2)
−→ · · ·
· · ·
−→ (ũk)(Q′σ0σ1σ2 · · ·σk | Qkσ0σ1σ2 · · ·σk) ≡ P ′

where Qkσ0σ1σ2 · · ·σk = (x y | Q′k) or Qkσ0σ1σ2 · · ·σk = (x y | Q′k), for some y and Q′
k,

and where Qiσ0 · · ·σi 6↓ x for each i < k.
Without loss of generality, let σ0 = {v/w}. Since in this case solos reduced in the

derivation never contain v, by Table 1 we may rewrite the above derivation as follows:

(ũ0)(z v | z w | Q′ | Q′′) −→ (ũ1)((z v | z w | Q′)σ1 | Q1σ0σ1)
−→ (ũ2)((z v | z w | Q′)σ1σ2 | Q2σ1σ2)
−→ · · ·
· · ·
−→ (ũk)((z v | z w | Q′)σ1σ2 · · ·σk | Qkσ1σ2 · · ·σk)

Finally, since ũ = ũ0w, the second inductive rule of Table 1 yields

P −→∗ (ũkw)((z v | z w | Q′)σ1σ2 · · ·σk | Qkσ1σ2 · · ·σk)

This derivation is shorter than P −→∗ P ′, and the final term has a barb on x. This is a
contradiction.

Let us consider an agent A such that,

either A −→∗≈ a or A −→∗≈ a | A,

namely A is “observationally” terminating by producing a composition of n solos a, for
every n, or may not terminate by always emitting a. This nondeterministic behavior may
be suitably implemented in the solos calculus by using internal reductions. For example,
the above agent A can be defined in the dyadic calculus as follows:

(xy)
(
x ay | ! (uv)(xuv | u | (w)(y w | y x | v w | w ay))

)
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We demonstrate that an agent which is weak barbed congruent to A above is not
definable in the well-sorted monadic calculus.

Theorem 28. There is no agent in the well-sorted monadic solos calculus without the
match operator which is weak barbed congruent to an agent A such that

either A −→∗≈ a or A −→∗≈ a | A,

Proof. By contradiction, we assume there exists such an agent, and let it be P . Since P

may produce an infinite number of a, there must be (at least) one subprocess underneath
a replication which produces these terms. We consider the case when there is exactly one
subprocess. The general case is similar. Therefore

P = (ũ)(P ′ | ! P ′′)
where P ′ is a composition of solos. Now observe that

1 ! P ′′ 6−→∗ a | Q. Informally, ! P ′′ cannot produce, without interacting with P ′, any
solo with free subject a. Otherwise it may produce an infinite amount of such solos,
and then it is not possible to derive a finite behaviour of P .

2 Without loss of generality, we assume that the minimal derivation of P yielding a
barb a involves solos coming from P ′ and P ′′. Formally, it has the following shape
(the roles of x and x , as well as v and w, may be interchanged):

(ũ)(P ′ | ! P ′′) −→∗ (reductions only involve solos in P ′)
(ũ′)(P ′1 | x v | !P ′′)σ

−→∗ (reductions only involve replicas of ! P ′′)
(ũ′′)(P ′1 | x v | x w | P ′′1 | ! P ′′)σ′

−→ (ũ′′ \ w)(P ′1 | P ′′1 | ! P ′′)σ′{v/w}
−→∗ a | Q

3 Let τ be the sort of x above. By Lemma 27, τ is finite. By Proposition 22, the term
P ′ must contain at least one solo with subject of sort τ .

4 Next we observe that the production of a finite or infinite number of solos a amounts
to produce a finite or infinite number of solos x v. Therefore we must repeat the same
argument, now for x v. Again, as in item 1, x v cannot be produced by reductions
inside P ′′, otherwise it is not possible to derive a finite behaviour of P . Thus, as in
2, without loss of generality, we assume that the minimal derivation of (ũ)(P ′ | !P ′′)
yielding x v involves solos coming from both P ′ and P ′′.

5 This minimal derivation may be written as follows (the roles of y and y , as well as
v′ and v′′, may be interchanged):

(ũ)(P ′ | ! P ′′) −→∗ (reductions only involve solos in P ′)
(ũ′)(P ′2 | y v′ | ! P ′′)σ

−→∗ (reductions only involve replicas of ! P ′′)
(ũ′′)(P ′2 | y v′ | y v′′ | P ′′2 | ! P ′′)σσ′

−→ (ũ′′ \ v′′)(P ′2 | P ′′2 | !P ′′)σσ′{v′/v′′}
−→ (ũ′′′)(P ′′′ | x v | ! P ′′)σ′′
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Let τ ′ be the sort of y. By Lemma 27, τ ′ has finite sort and its weight is strictly
greater than the weight of τ . Therefore x v and y v′ are different solos.

6 The production of a finite or infinite number of solos x v amounts to produce a finite
or infinite number of solos y v′. Therefore we must repeat the same argument, now
for y v′.

The conclusion is that P ′ and a number of replicas of ! P ′′ must contain an infinite
number of different solos with subjects of different finite sorts. This is impossible, by
Proposition 23.

6. Encoding Choice

In this section we present encodings of the choice operator; P + Q allows P or Q to
take part in reduction, and discards the other branch when doing so. Here we add the
mismatch operator [x 6= y]P , which can act like P if x and y are different. We extend the
ranges of M, N, M̃ and Ñ and the definition of M̃ ⇔ Ñ appropriately, add the reduction
rule

P −→ P ′, x 6= y

[x 6= y]P −→ P ′

and the observation rule [x 6= z]P ↓ y if P ↓ y and x 6= z. We also extend our previous
encodings homomorphically for the mismatch operator.

Restricting the general choice operator P +Q to guarded choice,
∑

I αi . Pi, and further
requiring that all αi in a guarded choice have the same polarity (all inputs or all outputs),
we can extend the encoding of Table 2 by replacing the encoding of prefixes by the
following, where z and w are fresh:

[[∑

I

ui x̃i . Pi

]]
def
= (zw)

∏

I

[z 6= w](ui x̃izww | [z = w][[Pi]])

[[∑

I

ui x̃i . Pi

]]
def
= (zw)

∏

I

[z 6= w](ui x̃iwwz | [z = w][[Pi]])

The mismatch operator is used in a “test-and-set” construction which tests two names
z and w for inequality, and if they are not equal, atomically makes them so. Only one
branch of the choice can succeed in doing this. The interaction between an input and an
output prefix now not only enables the continuations of the prefixes, but also disables
the other branches of the choice. Lemma 10 and 11 and Theorems 12 and 18 still hold
for this extended encoding.

The encoding of Table 3 can also be extended in a similar way, replacing the encodings
of prefixes (v and v′ are fresh):

[[ ∑

I

ui x̃i . Pi

]]
v

def
= (v′)

∏

I

[v 6= v′](w)(w x̃ivv′ | [[Pi]]v′ | (y)(v uiwy | Uy))

[[ ∑

I

ui x̃i . Pi

]]
v

def
= (v′)

∏

I

[v 6= v′](w)(w x̃iv
′v | [[Pi]]v′ | (y)(v uiwy | Uy))
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Appendix B illustrates this encoding by an example. Lemmas 15 and 11 and Theo-
rem 17 as well as Theorem 19 hold also for this encoding.

As seen above, the mismatch operator is very powerful in the solos calculus. While
mismatch distributes over prefixes in the π-calculus, it does not in the fusion calculus
(or its encoding into the solos calculus). This makes it powerful enough for the test-and-
set construction used in the encoding above; however, such a construction is difficult to
implement in a distributed setting, since all component systems must agree at one point in
time that the names are distinct. Therefore, the mismatch operation can be implemented,
but at the cost of synchronizing all the processes underneath the mismatch, which may
be in different locations. For a tightly coupled system, the cost is lower, and indeed most
multiprocessor systems implement some sort of test-and-set instruction.

7. Conclusions

In this paper we have shown that the expressive power of the fusion calculus is still
retained by the sub-calculus without action prefix and summation – the solos calculus.
In addition, the expressive power does not change by restriction to dyadic solos, while
expressiveness strictly decreases in the monadic calculus without match. The results of
this paper are collected in the table below.

Encodings Results

fusion calculus
↓

solos calculus

[[·]] encodes prefixes with matches and is adequate
- wrt ∼ (Theorem 12) and
- wrt ≈ (Theorem 13)

[(·)] encodes prefixes without matches and is adequate
- wrt ≈ (Theorem 17)

polyadic solos calculus
↓

dyadic solos calculus

[[[·]]] is adequate in the well-sorted calculus
- wrt ≈ (Theorem 26)

dyadic solos calculus
6↓

monadic solos calculus

No encoding is possible in the well-sorted calculus
without match (Theorem 28)

Some open questions still remain. For instance we conjecture that the encoding of the
polyadic calculus into the dyadic one is also complete. Merro has studied similar encodings
for the asynchronous π-calculus (Merro, 2000). However his proof technique uses labelled
bisimulation and the correspondence of this equivalence with weak barbed congruence,
and this correspondence has still not been proved in the fusion calculus. Furthermore, we
conjecture that the unsorted monadic solos calculus has strictly lower expressive power
than the fusion calculus. Finally, we also leave open the question whether there is a
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compositional encoding (in the sense of (Palamidessi, 1997)) of the fusion calculus into
the solos calculus without the match operator.

The simplicity of the solos calculus and the results in this paper suggest its use as a test
suite for experimenting with implementations, theories and models of mobile program-
ming languages. In this respect, the paper (Laneve et al., 2001), describing a graphical
formalism for solos, is a first contribution towards an implementation. Concerning dis-
tributed implementations, a promising formalism seems to be the solos calculus with
explicit fusions, in the style of (Gardner and Wischik, 2000).
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Appendix A. Proofs of Section 3

We begin by defining a standard form of derivatives of [(P )].

Definition 29. An agent Q belongs to the [[P ]]v-family (v 6∈ fv(P )) if

1 P ≡ (z̃)
(∏

i∈I ui x̃i.Ri |
∏

j∈J uj x̃j .Rj | R
)
, and

2 Q ≡ (z̃)
(∏

i∈I(vi)(ui x̃ivvi | [[Ri]]vi
) | ∏

j∈J(vj)(uj x̃jvjv | [[Rj ]]vj
) | [[R]]v

)

where, for every k ∈ I ∪ J ,

1 v, vk are different,
2 {v, vk} ∩ (fv(Rk) ∪ {uk, x̃k}) = ∅.

The next proposition guarantees that derivatives of [(P )] are actually [(·)]-reducts.

Proposition 30. Let Q ∈ [[P ]]v-family. If P −→ P ′ then (v)(Uv | Q) −→+≡ (v)(Uv | Q′)
and Q′ ∈ [[P ′]]v-family.
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Proof. Since P ≡ (z̃)
(∏

i∈I ui x̃i.Ri |
∏

j∈J uj x̃j .Rj | R
)
, the transition P −→ P ′ is

due to two sub-processes which fall in one of the three cases below:

1 the sub-processes are uh x̃h.Rh and uk x̃k.Rk, for some h, k;
2 exactly one of the two subprocesses is uh x̃h.Rh or uh x̃h.Rh, for some h ∈ I ∪ J ;
3 the two subprocesses belong to R.

We demonstrate the three subcases separately.

1 The transition P −→ P ′ may be rewritten as follows:

P ≡ (z̃)(uh x̃h.Rh | uk x̃k.Rk |
∏

i∈I\h ui x̃i.Ri |
∏

j∈J\k uj x̃j .Rj | R)
−→ (z̃′)(Rh | Rk |

∏
i∈I\h ui x̃i.Ri |

∏
j∈J\k uj x̃j .Rj | R)σ

≡ (z̃′)(
∏

i∈I\h(ui x̃i.Ri)σ |
∏

j∈J\k(uj x̃j .Rj)σ | Rσ | Rhσ | Rkσ)
≡ P ′

where dom(σ) ⊆ (x̃h ∪ x̃k) and ran(σ) = z̃ \ z̃′. On the other side we have:

(v)(Uv | Q) ≡ (v)(Uv | (z̃)
(
(vh)(uh x̃hvvh | [[Rh]]vh

) | (vk)(uk x̃kvkv | [[Rk]]vk
)

| ∏
i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi

)

| ∏
j∈J\k(vj)(uj x̃jvjv | [[Rj ]]vj

) | [[R]]v
)
)

−→ (v)(Uv | (z̃′)
(
[[Rh]]vh

| [[Rk]]vk

| ∏
i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi

)

| ∏
j∈J\k(vj)(uj x̃jvjv | [[Rj ]]vj

)

| [[R]]v
)
σ{v/vh}{v/vk})

≡ (v)(Uv | (z̃′)
(∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi
)

| ∏
j∈J\k(vj)(uj x̃jvjv | [[Rj ]]vj

)

| [[R]]v | [[Rh]]v | [[Rk]]v
)
σ)

= (v)(Uv | (z̃′)
(∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi
)σ

| ∏
j∈J\k(vj)(uj x̃jvjv | [[Rj ]]vj

)σ

| [[Rσ]]v | [[Rhσ]]v | [[Rkσ]]v
)
)

≡ (v)(Uv | Q′)

where the last-but-one step is due to Proposition 14. It is immediate that Q′ ∈ [[P ′]]v-
family.

2 We assume h ∈ I; the case h ∈ J being similar. Let R ≡ (z̃′)(u x̃.R′ | R′′); the
transition P −→ P ′ may be rewritten as follows:

P ≡ (z̃z̃′)(uh x̃h.Rh | u x̃.R′ | ∏
i∈I\h ui x̃i.Ri |

∏
j∈J uj x̃j .Rj | R′′)

−→ (z̃′′)(Rh | R′ |
∏

i∈I\h ui x̃i.Ri |
∏

j∈J uj x̃j .Rj | R′′)σ
≡ (z̃′′)(

∏
i∈I\h(ui x̃i.Ri)σ |

∏
j∈J(uj x̃j .Rj)σ | Rσ | R′σ | R′′σ)

≡ P ′
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where dom(σ) ⊆ (x̃h ∪ x̃) and ran(σ) = (z̃ ∪ z̃′) \ z̃′′. On the other side we have:

(v)(Uv | Q) ≡ (v)(Uv | (z̃z̃′)
(
(vh)(uh x̃hvvh | [[Rh]]vh

) | [[u x̃.R′]]v
| ∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi
)

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj ]]vj

) | [[R′′]]v
)
)

−→ (v)(Uv | (z̃z̃′)
(
(vh)(uh x̃hvvh | [[Rh]]vh

) | (v′)(u x̃v′v | [[R′]]v′)
| ∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi
)

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj ]]vj

)

| [[R′′]]v
)
)

−→ (v)(Uv | (z̃′′)
(
[[Rh]]vh

| [[R′]]v′∏
i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi

)

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj ]]vj

)

| [[R′′]]v
)
σ{v/vi}{v/v′})

≡ (v)(Uv | (z̃′)
(∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi
)

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj ]]vj

)

| [[R′′]]v | [[Rh]]v | [[R′]]v
)
σ)

= (v)(Uv | (z̃′)
(∏

i∈I\h(vi)(ui x̃ivvi | [[Ri]]vi
)σ

| ∏
j∈J(vj)(uj x̃jvjv | [[Rj ]]vj

)σ

| [[R′′σ]]v | [[Rhσ]]v | [[R′σ]]v
)
)

≡ (v)(Uv | Q′)
where, as before, the last-but-one step is due to Proposition 14. It is immediate that
Q′ ∈ [[P ′]]v-family.

3 Similar to the previous cases.

Proposition 31. Let Q ∈ [[P ]]v-family. If (v)(Uv | Q) −→ Q′ then Q′ ≡ (v)(Uv | Q′′)
and P −̂→P ′, such that Q′′ ∈ [[P ′]]v-family.

Proof. Since Q ≡ (z̃)
(∏

i∈I(vi)(ui x̃ivvi | [[Ri]]vi
) | ∏

j∈J(vj)(uj x̃jvjv | [[Rj ]]vj
) | [[R]]v

)
,

there are two cases, according to

1 the reduction is due to a pair uh x̃hvvh, uk x̃kvkv, for some h ∈ I, k ∈ J ;
2 the reduction is due to the agent Uv and a sub-agent of [[R]]v.

The proof is similar to Proposition 30. We notice that, in the second case, P does not
perform any reduction.

Proposition 32. Let Q ∈ [[P ]]v-family. Then

1 if P ↓ x, for some x, then (v)(Uv | Q) ⇓ x;
2 if (v)(Uv | Q) ↓ x, for some x, the P ↓ x.
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Proof. Both cases are straightforward consequences the of definition of [[P ]]v and [[P ]]v-
family.

We are now in a position to demonstrate Lemma 15. For legibility, we restate the
lemma.
Lemma 15. For P an agent of fpre, P . [(P )].

Proof. By Propositions 30, 31, and 32, the relation

{(P, Q) | Q ≡ (v)(Uv | Q′) and Q′ ∈ [[P ]]v-family and v 6∈ fv(P )}
is a weak barbed expansion containing the pairs (P, [(P )]).

Next, we consider the solos calculus where replication is replaced by guarded recursion,
as discussed in Section 4. The following lemma relates the divergence of an agent with
guarded recursion to the divergence of its encoding [(·)].
Lemma 33. Let P be an agent of fpre with guarded recursion. For every Q ∈ [[P ]]v-
family, if (v)(Uv | Q) diverges then P diverges, too.

Proof. We notice that the agent (v)(Uv | [[Q]]v) performs a finite number of differ-
ent reductions involving the catalyst agent Uv because recursion is guarded. Therefore,
if (v)(Uv | Q) diverges, there is a finite prefix of the divergent derivation of shape
(v)(Uv | Q) −→∗≡ (v)(Uv | Q′) −→≡ (v)(Uv | Q′′), where Q,Q′ ∈ [[P ]]v-family and the
last reduction does not involve the catalyst agent. Then, by Proposition 31, there is P ′

such that P −→ P ′, and Q′′ ∈ [[P ′]]v-family. We conclude by observing that (v)(Uv | Q′′)
also diverges.

Appendix B. Example reduction of choice encoding

In this appendix we illustrate the second encoding of the choice operator (page 20) by
an example.

[( (x1x2)
(
(ux1 . P1 + ux2 . P2) | (u y1 . Q1 + u y2 . Q2)

)
)]

def
= (vx1x2)

(
Uv | (v′)( [v 6= v′](w)(w x1vv′ | [[P1]]v′ | (y)(v uwy | Uy))

| [v 6= v′](w)(w x2vv′ | [[P2]]v′ | (y)(v uwy | Uy)))
| (v′)( [v 6= v′](w)(w y1v

′v | [[Q1]]v′ | (y)(v uwy | Uy))
| [v 6= v′](w)(w y2v

′v | [[Q2]]v′ | (y)(v uwy | Uy)))
)

−→ (vx1x2)
(
Uv | (v′)( [v 6= v′](ux1vv′ | [[P1]]v′)

| [v 6= v′](w)(w x2vv′ | [[P2]]v′ | (y)(v uwy | Uy)))
| (v′)( [v 6= v′](w)(w y1v

′v | [[Q1]]v′ | (y)(v uwy | Uy))
| [v 6= v′](w)(w y2v

′v | [[Q2]]v′ | (y)(v uwy | Uy)))
)

−→ (vx1x2)
(
Uv | (v′)( [v 6= v′](ux1vv′ | [[P1]]v′)

| [v 6= v′](w)(w x2vv′ | [[P2]]v′ | (y)(v uwy | Uy)))
| (v′)( [v 6= v′](u y1v

′v | [[Q1]]v′)
| [v 6= v′](w)(w y2v

′v | [[Q2]]v′ | (y)(v uwy | Uy)))
)
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In these initial reductions, for legibility we always move the new catalyst created by
Uy{v/y} to top level. Already after these reductions, an interaction between two of the
summands can take place. To make it more interesting, we let all summands interact
with the catalyst:

−→−→ (vx1x2)
(
Uv | (v′)( [v 6= v′](ux1vv′ | [[P1]]v′)

| [v 6= v′](ux2vv′ | [[P2]]v′))
| (v′)( [v 6= v′](u y1v

′v | [[Q1]]v′)
| [v 6= v′](u y2v

′v | [[Q2]]v′))
)

(5)

Here, any of the two summands of each parallel component of the original agent can
interact with any of the summands of the other component. (Note that all mismatch
conditions are false, since v′ is fresh in both components.) We arbitrarily choose the first
summand of each:

−→ (vx2)
(
Uv | ( [[P1]]v

| [v 6= v](ux2vv | [[P2]]v))
| ( [[Q1]]v
| [v 6= v](u y2vv | [[Q2]]v))

){y1/x1}
Since [v 6= v]P ∼ 0 for all v and P we can remove the components corresponding to the
discarded summands, and then we can also garbage collect the binding of x2:

∼ (v)
(
Uv | [[P1]]v | [[Q1]]v

){y1/x1}
def
= [(P1 | Q1)]{y1/x1}

This is exactly the result we were expecting.
Note that this encoding does not work for mixed guarded choice, where the prefixes

in a summation can be both inputs and outputs. This is easy to see from the agent in
(5) above, where, if the original summation terms were of mixed polarity, their encoding
would at this point allow interaction between the terms of each choice.


