
To appear in the Proceedings of TACS2001, Sendai, October 28–31, 2001.

Copyright c© 2001 Springer-Verlag.

Solo Diagrams

Cosimo Laneve∗ Joachim Parrow† Björn Victor‡

July 2001

Abstract

We address the problems of implementing the replication operator
efficiently in the solos calculus—a calculus of mobile processes without
prefix. This calculus is expressive enough to admit an encoding of the
whole fusion calculus and thus the π-calculus. We show that nested
occurrences of replication can be avoided, that the size of replicated
terms can be limited to three particles, and that the usual unfolding
semantics of replication can be replaced by three simple reduction
rules. To illustrate the results and show how the calculus can be
efficiently implemented we present a graphic representation of agents
in the solos calculus, adapting ideas from interaction diagrams and
pi-nets.

1 Introduction

The π-calculus [MPW92] has proved remarkably successful in modelling di-
verse computational phenomena, and it is natural to ask how much of it
is really necessary in order to attain the expressive power. This has led to
several interesting and expressive subcalculi. For example, in the more eas-
ily implemented asynchronous subcalculus [Bou92, HT91] the output prefix
u v . P is replaced by the output particle u v. In the fusion calculus [PV98]
the reduction of an input and output results in a fusion of names rather than
a substitution. In that calculus both input and output prefix can be replaced
by their corresponding particles, in other words, there is no need for explicit
representation of temporal precedence. These particles are called solos and
take the general forms u x̃ for input and u x̃ for output, where x̃ is a sequence

∗Dept. of Computer Science, University of Bologna, Italy. laneve@CS.UniBO.IT
†Royal Institute of Technology, Kista, Sweden. joachim@it.kth.se
‡Dept. of Computer Systems, Uppsala University, Sweden. victor@DoCS.UU.SE

1

of names. This solos calculus additionally includes only parallel composition
P | Q, scoping (x)P and replication ! P , giving a very lean formalism. We
refer the reader to [LV99] for further explanation of the expressive power of
solos.

The replication operator ! P is often used in place of recursive definitions,
since it has nice algebraic properties. For example, if the number of recursive
definitions is finite, recursion can be coded in terms of replication [Mil93].

Replication can be defined in terms of unguarded recursion: ! P
def
= P | ! P .

This definition is, however, hard to implement—when should the unfolding
stop? How many (possibly nested) replications need be expanded in or-
der to infer a reduction? For the π-calculus Sangiorgi has shown [San98]
that replication of general agents is not necessary, but it can be replaced
by the guarded variant ! α . P . This corresponds to using guarded recursion

(! α . P
def
= α . (P | ! α . P)). In languages based on the asynchronous commu-

nication such as Pict [PT00] or Join [FG96], it is relatively easy to see that
it suffices to have input-guarded replication of the form ! x(y) . P .

These guarded variants of replication cannot be used in the solos calculus,
where there are no prefix-guarded terms present, but only solos. However,

we can replace the unguarded unfolding of ! P
def
= P | ! P with three reduction

rules which pinpoint when a reduction involving a replicated agent can be
inferred. We show that the new formulation of the semantics coincides with
the standard one. This result rests on a flattening law, which allows us to
remove nested replications.

Another problem with implementing replication is that the term being
unfolded may be arbitrarily large, making interaction with a replicated term
computationally expensive. We address this problem by presenting a de-
composition law allowing us to limit the size of replicated terms to three
solos.

The resulting formalism is thus very slender, and provides a simple canon-
ical form for agents: (x̃)(P | ∏

i∈I ! (ỹi)Qi) where P and Qi are compositions
of solos, and ỹi is a subset of the names in Qi. We argue that this calculus
can be easily and efficiently implemented, and illustrate both this fact and
the general results using a new graphical formalism for the solos calculus,
the solo diagrams.

The underlying idea is quite simple. To draw an agent, pick one node for
each name, and label the node with the name. Outputs u x̃ become multi-
edges from the nodes labelled x̃ to the node labelled u, and conversely for
inputs. Parallel composition is just graph union and scope restriction erases
the label of nodes. Reductions between inputs and outputs are possible when
two types of edges meet at the same node, and results in the corresponding

2

object nodes being fused or merged together, preserving any additional edges
connecting them. As an example, Figure 1 shows a simple agent and reduc-
tion. Note that the two kinds of edges are distinguished by the shape of the
arrow which has either a head or a tail.

In the first three figures, dotted lines indicate which solos correspond to
which edges. These lines are not technically part of the diagrams.

−→
y

z

y

z

(xuv)(x yz | x vu | u v) −→ z y

Figure 1: A simple diagram reduction and its correponding term reduction.

As a further example, Figure 2 illustrates an agent with a nondeterminis-
tic behaviour: depending on which output solo is scheduled for the reduction,
the agent produces two alternative graphs.

a

b

a

b

a

b

↗
↘

(xu)(x y | x z | xu | u ab)

z

y

y

z

y

z

Figure 2: The reductions of the diagram corresponding to
(xu)(x y | x z | xu | u ab)

Replication is modelled by boxes. These are drawn as rectangles sur-
rounding the replicated graph, and are regarded as copying-machines for
edges and nodes therein: when an edge of a box is involved in a reduction,
all the content of the box is first copied. An example is shown in Figure 3.
Here, the rightmost edge of the right-hand diagram is the remainder of the
copy of the box after the reduction.

We continue by presenting the solos calculus; in Section 3 we introduce the
graphical formalism. In Section 4 we formally relate this to the solos calculus;
in particular, the usual structural congruence in the solos calculus is shown

3

x
x

z z

! (yw)(y w | x yz) | (uv)(xuv | u v) ! (yw)(y w | x yz) | (uw′)(u z | uw′)

−→

−→

Figure 3: The reduction of a diagram with a box, and its corresponding term
reduction.)

to coincide with diagram isomorphism, and the solo diagram reductions are
shown to yield the same reductions as the standard unfolding approach. In
Section 5 we consider a generalisation to graphs with multiply labelled nodes,
giving a finer semantics. The paper concludes with a discussion of related
work.

2 The Solos Calculus

Syntax. We assume an infinite setN of names ranged over by u, v, x, z, · · ·.
Names represent communication channels, which are also the values trans-
mitted. We write x̃ for a (possibly empty) finite sequence x1 · · · xn of names.

The solos α are inputs u x̃ and outputs u x̃. The names x̃ are the objects
of the solo, and the name u is the subject.

The agents P,Q, R, · · · are defined by

P ::= 0
∣∣∣ α

∣∣∣ P | P
∣∣∣ (x)P

∣∣∣ ! P

(Inaction) (Solo) (Composition) (Scope) (Replication)

The name x is said to be bound in (x)P . We write (x̃)P for (x1) · · · (xn)P ,
n ≥ 0, and often

∏
i∈I Pi for the composition of all Pi for i ∈ I, where I is

a finite set. The free names in P , denoted fn(P), are the names in P with
a non-bound occurrence. The (choice-free) fusion calculus [PV98] consists of
the above agents and those formed using the prefix operator, namely agents
of the form α . P .

Operational semantics. We begin by defining a structural congruence
which equates all agents we will never want to distinguish for any semantic
reason, and then use this when giving the operational semantics.

4

(z̃)(u x̃ | u ỹ | P) −→ Pσ

P −→ P ′

P | Q −→ P ′ | Q
P −→ P ′

(x)P −→ (x)P ′
P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′

Side conditions in the first rule:
|x̃| = |ỹ|, σ agrees with {x̃ = ỹ}, ran(σ) ∩ z̃ = ∅, and dom(σ) = z̃.

Figure 4: Reduction rules for the calculus of solos.

Definition 1 The structural congruence, ≡, between agents is the least con-
gruence satisfying the abelian monoid laws for Composition, alpha-renaming,
and the laws for scope and replication

(x)0 ≡ 0, (x)(y)P ≡ (y)(x)P,
P | (z)Q ≡ (z)(P | Q), if z 6∈ fn(P)

! P ≡ P | ! P

The reduction relation of the calculus of solos is the least relation satis-
fying the rules in Figure 4. Here and in the following σ will range over name
substitutions, and we use dom(σ) = {u : σ(u) 6= u} and ran(σ) = {σ(u) :
σ(u) 6= u}. We write {x̃ = ỹ} for the smallest total equivalence relation on
N relating each xi with yi, and say that σ agrees with the equivalence ϕ if
∀x, y : x ϕ y ⇔ σ(x) = σ(y). We say that two names are fused by a reduction
if they are made equal by the resulting substitution. The side condition of
Figure 4 bans reductions that fuse two different free names. For instance,
the agent x y | x z is irreducible. See Section 5 and [PV98] for alternative
semantics allowing such reductions.

Equivalence. To define an extensional semantics, we use the standard no-
tion of barbed bisimulation developed in [MS92].

Definition 2 The observation relation is the least relation satisfying the
rules below.

x ỹ ↓ x (P | Q) ↓ x if P ↓ x or Q ↓ x
x ỹ ↓ x (z)P ↓ x if P ↓ x and x 6= z

Definition 3 A weak barbed bisimulation is a symmetric binary relation S
between agents such that P S Q implies:

5

1. If P −→ P ′ then Q −→∗ Q′ and P ′ S Q′.

2. If P ↓ x for some x, then Q −→∗↓ x.

P is barbed bisimilar to Q, written P
�≈ Q, if P S Q for some weak barbed

bisimulation S. P is barbed congruent to Q, written P ≈ Q, if for all

contexts C[·], C[P]
�≈ C[Q].

The solos calculus, although simple, is expressive enough. The next the-
orem recalls a result in [LV99].

Theorem 4 There exists an encoding [[·]] of the fusion calculus into the

calculus of solos such that [[P]] ≈ [[Q]] implies P ≈ Q, and P
�≈ Q implies

[[P]]
�≈ [[Q]].

This result only gives full abstraction up-to encoded contexts, i.e., C[P]
�≈

C[Q] iff [[C[P]]]
�≈ [[C[Q]]] for any fusion calculus context C[·].

2.1 The implementation of the replication operator

Although the standard definition of the replication operator is algebraically
elegant, an unconstrained implementation of the equality ! P ≡ P | ! P would
quickly give an “out-of-memory error”. This problem is well-known in im-
plementations of mobile calculi. In Pict, for instance, the authors implement
the so-called replicated input [PT00]. We cannot use the same machinery be-
cause the solos calculus has no prefix operator. Instead, we use a definition
of the replication operator which is closer to a realistic implementation.

We begin by showing that nested replication may be flattened into non-
nested replications [LV01]:

Theorem 5 (Flattening)

! (x̃)(P | ! Q) ≈ (y)(! (x̃)(P | y z̃) | ! (w̃)(y w̃ | Q{w̃/z̃}))

where z̃ = fn(Q) and y and w̃ are fresh.

Corollary 6 For all P there exists a Q such that it does not contain nested
replications, and P ≈ Q. Proof: By structural induction on P . The only
interesting case is where P is on the form matching the left-hand side of the
equality in Theorem 5.

6

(z̃)(P | u ỹ | ! (w̃)(u x̃ | Q)) −→r (w̃)(P | Q | ! (w̃)(u x̃ | Q))σ

(z̃)(P | ! (ṽ)(u ỹ | Q) | ! (w̃)(u x̃ | R))
−→r (ṽw̃)(P | Q | R | ! (ṽ)(u ỹ | Q) | ! (w̃)(u x̃ | R))σ

(z̃)(P | ! (w̃)(u ỹ | u x̃ | Q)) −→r (w̃)(P | Q | ! (w̃)(u ỹ | u x̃ | Q))σ

Side conditions
In every rule: |x̃| = |ỹ|, σ agrees with {x̃ = ỹ}, and dom(σ) ∩ ran(σ) = ∅
In the first rule: u and u may be interchanged, u 6∈ w̃, w̃ ∩ fn(P) = ∅, and

z̃ ⊆ dom(σ) ⊆ z̃ ∪ w̃
In the second rule: u 6∈ ṽ ∪ w̃, (ṽ ∪ w̃) ∩ fn(P) = ṽ ∩ fn(R) = w̃ ∩ fn(Q) = ∅, and

z̃ ⊆ dom(σ) ⊆ z̃ ∪ ṽ ∪ w̃
In the third rule: z̃ ⊆ dom(σ) ⊆ z̃ ∪ w̃

Figure 5: Reduction rules for replication.

In view of this corollary there is no substantial loss of generality to only
consider non-nested replication. Therefore we from now on adopt the restric-
tion that in ! Q, the agent Q may not contain replications. This has several
advantages. For example there is an attractive kind of canonical form:

Proposition 7 Every agent P is structurally equivalent to an agent of the
form (x̃)(Q | (

∏
i∈I ! (x̃i)Qi)), where Q, Qi are compositions of solos, x̃i ⊆

fn(Qi) and x̃ ⊆ fn(Q | (∏i∈I ! (x̃i)Qi)).

Notwithstanding these simplifications, the implementation difficulties com-
ing from the equality ! P ≡ P | ! P are almost unchanged. Therefore we give
an alternative semantics of the replication operator, which has the same for-
mal power as the standard replication but is more easily implemented.

Let ≡r be the structural congruence introduced earlier in this section,
without the rule ! P ≡ P | ! P . Let −→r be the −→ reduction rule, where
≡r replaces ≡ in the last rule, and with the three rules in Figure 5. These
reduction rules account for interactions between two solos when (1) exactly
one is replicated, (2) both are under different replications, and (3) both are
under the same replication. Note that the outermost sequence of scopes in
the right-hand-side of the rules may contain redundant scopes; these can
be removed by structural congruence. The scopes of z̃ are removed since
ran(σ) ∩ z̃ = ∅ just like in Figure 4.

The rules in Figure 5 implement a lazy usage of replications: a replicated
process is duplicated only if it is used in a reduction. Their correctness with

7

respect to the standard replication operator strongly relies on considering
non-nested replications:

Proposition 8 If P has only non-nested replications, then P −→ Q if and
only if P −→r R and Q ≡ R.

This proposition states that if an agent moves according to −→, possi-
bly by unfolding replications, then it moves according to −→r without any
unfolding of replication at all (and the other way around). If the agent had
a nested replication, for instance ! ! P , the correspondence between −→ and
−→r fails, because −→r-reduction is only defined for non-nested replication.
The correspondence between −→ and −→r is proved by induction on the
depth of the proofs of −→ and −→r. Each time a replica is used in −→ then
one of the reductions in Figure 5 may be used instead; and, vice versa, when
one reduction of Figure 5 is used in −→r, then its effects may be simulated
by means of the replication law and the basic reduction of −→.

3 Solo Diagrams

We now introduce a graphical formalism for solos, the solo diagrams. Dia-
grams are built out of an infinite set U of nodes, ranged over by a, b,

Definition 9 An edge is a tuple in U . There are two kinds of edges: input
edges 〈a, a1, · · · , ak〉i and output edges 〈a, a1, · · · , ak〉o.

Indexes o, i are omitted when the kind of an edge is irrelevant. Given an
edge 〈a, a1, · · · , ak〉, k is its arity, a is the subject node, and ai are the object
nodes. Let nodes[·] be the function taking a multiset of edges and returning
the set of nodes therein.

Graphically, we draw output and input edges as follows:

output edge 〈a, a1, · · · , ak〉o input edge 〈a, a1, · · · , ak〉i

We keep implicit the name of the nodes in the drawings: names are only used
to identify or separate nodes. 0-arity edges are drawn as:

output and input edges with 0 arity

8

We also introduce boxes:

Definition 10 A box B is a pair 〈G, S〉 where G is a graph (a finite multiset
of edges) and S ⊆ nodes[G]. S is called the internal nodes of B and nodes[G]\
S the principal nodes of B.

Boxes are ranged over by B,B′, . . ., and M ranges over finite multisets of

boxes. We extend nodes[·] to boxes by stating that nodes[〈G, S〉] def
= nodes[G],

and define principals[〈G, S〉] = nodes[〈G, S〉] \ S. For multisets we extend
these functions pointwise.

Boxes are drawn as rectangles where principal nodes are on the perimeter
and internal nodes and all edges are inside. The intuition is that everything
inside the box, i.e., all edges and internal nodes, can be replicated. Principal
nodes cannot be replicated and can be thought of as the interface between
the box and the rest of the diagram. As an example, we illustrate a box with
two edges and three nodes. Two nodes are principal, one x-labelled and one
unlabelled; the third node is internal.

x

Definition 11 A solo diagram, in brief SD, is a triple (G, M, `) where G is
a finite multiset of edges, M is a finite multiset of boxes, and ` is a partial
injective function from nodes[G]∪principals[M] to N , such that internal nodes
of every box in M do not occur outside the box.

The labelling ` is partially injective to enforce different nodes having
different labels. Nodes in dom(`) are labelled nodes, corresponding to free
names; the others represent bound names. In the figures, labels will be explic-
itly written beside the node they mark. The condition in the definition of solo
diagram says that internal nodes are not visible outside the box, i.e., they can-
not occur in edges elsewhere. For instance, ({〈a, a′′〉i}, {〈{〈a, a′〉i}, {a}〉}, ∅)
is not an SD because the internal node a occurs outside the box. Note that
internal nodes must also be unlabelled since the domain of ` only contains
the principal nodes. Note also that an SD cannot contain isolated nodes.

In Definition 11, G represents the solos of an agent that are not replicated,
while each box in M corresponds to one term under a replication operator.

9

The edges within the box are the solos under that operator, the internal
nodes of the box are the Scope operators under it. Principal nodes may be
labelled or unlabelled; unlabelled principal nodes are under a Scope that does
not sit under a replication. Both G and M are multisets rather than sets, in
order to model agents such as (x | x) or ! x | ! x . In the following,] denotes
multiset union.

The SDs come with four rewriting rule, whose formal definition is the
following, where we use σ as a substitution on nodes and Gσ (and Mσ,
respectively) to mean the graph obtained by replacing a by σ(a) in all edges
in G (and M, respectively).

Definition 12 The reduction relation −→ of SDs consists of the following
schema, where G1 and G2 are arbitrary graphs, M′ an arbitrary finite multiset
of boxes. Let α = 〈a, a′1, · · · , a′k〉o, β = 〈a, a1, · · · , ak〉i or vice versa with
reversed i/o polarity.

1. edge-edge reduction: (G] {α, β}, M, `) −→ (Gσ, Mσ, `′).

2. edge-box reduction:
Let G = {α}] G1,

M = 〈{β}] G2, S〉]M′,
Then (G , M , `) −→ ((G1] G2ρ)σ , Mσ , `′)
where ρ is a renaming of nodes in S into fresh nodes.

3. box-box reduction:
Let B1 = 〈{α}] G1, S1〉,

B2 = 〈{β}] G2, S2〉, and M = {B1, B2}]M′

Then (G , M , `) −→ ((G] G1ρ] G2ρ)σ , Mσ , `′)
where ρ is a renaming from S1 ∪ S2 to fresh nodes.

4. internal box reduction:
Let M = 〈{α, β}]G1, S〉]M′. Then (G , M , `) −→ ((G]G1ρ)σ , Mσ , `′)
where ρ is a renaming from S into fresh nodes.

where, for every reduction (G, M, `) −→ (G′σ, M′σ, `′), ran(σ) ∩ dom(σ) = ∅,
dom(σ) ∩ dom(`) = ∅ and σ agrees with {a′i = ai : 1 ≤ i ≤ k}. Moreover, `′

restricts ` to nodes[G′σ] ∪ nodes[M′σ].

As in the solos calculus, the edge-edge reduction may fuse either two
unlabelled nodes or one labelled node and an unlabelled one. This follows
from the constraint that dom(σ) ∩ dom(`) = ∅: a labelled node cannot be
substituted. The edge-edge reduction is illustrated in Figure 1 for a simple
agent.

10

Figures 6, 7 and 8 describe the reductions involving boxes. As said above
we regard boxes as copying-machines for edges and internal nodes: when an
interaction involves an edge of the box, all the contents of the box are instan-
tiated at once. In particular, internal nodes are duplicated and renamed into
fresh new nodes. Principal nodes, whether labelled or not, are not duplicated
and will remain shared with the rest of the diagram. In Figure 6, we describe
a box-instantiation due to the interaction on the principal node x. The over-
all effect is the appearance of the edge 〈y, z〉o on the right hand side, together
with the box on the left hand side. Figure 7 shows a box-instantiation due
to an interaction between edges in different boxes. This rule produces a copy
of the contents of the two boxes, where the two interacting edges have been
consumed. The rewriting in Figure 8 describes the box-instantiation due to
a reduction internal to the box. The effect of this reduction is the fusion of
two nodes, which turn out to be the arguments of an input on the principal
node x. As a consequence, the instance of the box contents consists of the
edge 〈x, n, n〉i only, where n ∈ U is fresh and unlabelled.

We conclude with few remarks about the SD reductions:

1. The definition of SD implicitly carries out a garbage collection of dis-
connected nodes.

2. The labelling function of an SD always decreases during the computa-
tion. In other words, no free name is ever created by internal reductions.

3. Very small parts of the graph are involved in the reduction. Apart
from the removal of the interacting edges α and β, the residuals of the
involved boxes are copied after renaming internal nodes, and in the
next subsection we will see how this copying can be minimized. This
lends to a simple and slender implementation of the graphs.

3.1 A Local Implementation of Boxes

Boxes are difficult to implement because they require code-duplication that
may involve arbitrarily many edges. This imposes a synchronization among
edges and hinders a completely local view of the computation. It is therefore
interesting that we can restrict such code-duplications to a small constant
number of edges. In this respect, we are mainly inspired by local implemen-
tations of linear logic boxes [GAL92] and Parrow’s trios [Par00].

In our solos calculus, boxes may be decomposed to boxes of three edges,
without affecting the expressiveness:

11

zy

x

zy

x

−→

Figure 6: The edge-box reduction x yz | ! (uv)(xuv | u v) −→
y z | ! (uv)(x uv | u v)

xx

−→

Figure 7: The box-box reduction (z)(! (u)z uu | ! (uv)(z uv | x uv)) −→
(z)(! (u)z uu | ! (uv)(z uv | xuv)) | (u)xuu

−→

x x

Figure 8: The internal box reduction ! (uvw)(xuv | w v | w u) −→
(v′)x v′v′ | ! (uvw)(xuv | w v | w u)

12

Theorem 13 (Decomposition)

! (ũ)(
n∏

i=1

αi) ≈ (zi
1≤i≤n)

n∏
i=1

! (ũ)(zi ũ | αi | zi+1 ũ)

where αi are solos, zi, 1 ≤ i ≤ n are pairwise distinct fresh names and zn+1 =
z1.

In Figure 9 we draw a diagram showing the basic units for implementing any
SD-box.

x

zi

· · ·

y

zi+2

w v

· · ·

Figure 9: The decomposition of ! (u1u2u3)(· · · | x yu1u2 | w u3u2v | · · ·).

The computational cost of the restriction in Theorem 13 is to perform a
number of fusions which is linear with respect to the size of the original box.
These fusions are used to unify the choice of bound names ũ.

We remark that if we systematically apply Theorem 13 to all boxes con-
taining at least 2 edges, then the last reduction rule in Definition 12 (internal
box reduction) becomes redundant.

3.2 The Connection with Proof Nets

In this section we briefly discuss the connection between our SDs and linear
logic proof nets [Gir87] (this topic will be detailed in the full paper). The
reader without some background in linear logic may safely skip this section.

We begin with Multiplicative Proof Nets, which are graphs with four
kinds of edges: axioms, cuts, par operators, and tensor operators. This subset
of Proof Nets may be put in correspondence with SDs without boxes: par
and tensor operators correspond to input and output edges, respectively (or,
equivalently, the other way around), axiom and cut edges are interpreted
by fusing the nodes they connect. This interpretation lifts to the dynamics:
cut-elimination is exactly the edge-edge reduction in SDs. Graphically, Proof
Net cut-elimination is illustrated by the following reduction

13

−→
yx z w x y z w

℘ ⊗

where, in the net on the left hand side, ℘ is the par operator, ⊗ is the
tensor, and the edge in the bottom is the cut operator. We observe that this
reduction is mimicked by the SD rewriting

wx

zy
x y z w

−→

The converse connection is complicated because solo diagrams are more
expressive than Proof Nets. Nevertheless, it is possible to show that well-
sorted SDs (see [LV01]) with nodes occurring at most two times in the graph
correspond to a superset of Proof Nets (the proof structures—a collection of
nets that may possibly be unsound [Gir87]).

When boxes come into the picture the above relationship is more tenuous.
The reason is that boxes are used differently. In Proof Nets, boxes may
be safely replaced by their content, thus disallowing the copying capability.
This operation is reasonable in a functional language like Proof Nets, where
resources, when plugged in some context agent, cannot be used by other
agents. In a concurrent scenario, where systems are open, resources may be
used by several agents who are not aware of each other. In such contexts an
agent cannot erase resources just because it does not need them anymore.
Resources may be garbage collected, provided they can never be accessed
again, a property which usually follows by some equivalence (such as barbed
congruence).

Another difference is that, in Proof Nets, a reduction inside a box does
not create copies of its contents, but instead modifies the original box. This
is plausible in Proof Nets, which are deterministic, and such simplifications
may shorten computations. In contrast these simplifications are conceptually
wrong in SDs because of the nondeterminism. Reductions inside a box can
also be seen as infinitely many computation steps (affecting all future copies
of the box contents), which from an operational viewpoint is unagreeable.

Notwithstanding these differences it may still be possible to relate the two
systems. There are suitable evaluation strategies of proof nets that may be
implemented in SDs, e.g. according to the techniques illustrated by Milner
in [Mil92].

14

4 Agents and Solo Diagrams

This section details the formal correspondence between the calculus of solos
and solo diagrams. We use the following notions and auxiliary functions:

• graph-isomorphism: (G, M, `) and (G′, M′, `′) are isomorphic if there is
a bijection f from nodes[G] ∪ nodes[M] to nodes[G′] ∪ nodes[M′] such
that

1. 〈a, a1, · · · , ak〉 ∈ G if and only if 〈f(a), f(a1), · · · , f(ak)〉 ∈ G′;

2. for every B ∈ M, the restriction of f to B is a bijection into nodes
of B′ ∈ M′ which preserves principal nodes;

3. `(a) = `′(f(a)).

In the following we shall never be interested in distinguishing isomor-
phic SDs.

• graph-composition: Let (G, M, `) and (G′, M′, `′) be two SDs such that

`(a) = `′(a′) if and only if a = a′. Then (G, M, `) | (G′, M′, `′)
def
=

(G] G′, M]M′, ` ∪ `′).

• graph-scope: (x)(G, M, `)
def
= (G, M, `′), where `′ is the function:

`′(a) =

{
`(a) if `(a) 6= x
undefined if `(a) = x

• box[(G , ∅ , `)] = (∅ , 〈G, S〉 , `), where S = nodes[G] \ dom(`).

We remark that graph-composition is a partial function. In order to compose
two arbitrary SDs, we consider diagrams isomorphic to them such that nodes
are equal if and only if they have the same label (“`(a) = `′(a′) if and only if
a = a′”). Scope is simply removing the node labelled x from the domain of
the labelling function.

We can now define the function graph[·] from agents to SDs such that
each solo corresponds to one edge.

Definition 14 Let graph[·] be the function from agents to SDs, defined in-
ductively as follows:

graph[0] = (∅, ∅, ∅)
graph[x0 x1 · · · xk] = ({〈a0, a1, · · · , ak〉i}, ∅, [ai 7→ xi]

i≤k) (xi = xj iff ai = aj)
graph[x0 x1 · · · xk] = ({〈a0, a1, · · · , ak〉o}, ∅, [ai 7→ xi]

i≤k) (xi = xj iff ai = aj)
graph[Q | R] = graph[Q] | graph[R]
graph[(x)Q] = (x)graph[Q]

graph[! Q] = box[graph[Q]]

15

Conversely, the function term[·] takes a graph and returns the corresponding
canonical agent.

Definition 15 Let term[·] be the function from SDs to agents defined as
follows.

term[(G, M, `)] = (z̃)
(∏

e∈G

term[e, ρ] |
∏

B∈M

term[B, ρ]
)

term[〈G, S〉, ρ] = !
(
ρ(S)

)(∏

e∈G

term[e, ρ]
)

term[〈a, a1, · · · , ak〉i, ρ] = (a a1 · · · ak)ρ

term[〈a, a1, · · · , ak〉o, ρ] = (a a1 · · · ak)ρ

where ρ is a bijection from nodes[G] ∪ nodes[M] into names that extends `,
and z̃ = (ran(ρ) \ ran(`)) \⋃

〈G,S〉∈M ρ(S).

It is easy to check that graph[·] and term[·] are well-defined functions.
Moreover, they are in a precise sense the inverses of each other.

Proposition 16 1. P ≡r term[graph[P]].

2. (G, M, `) and graph[term[(G, M, `)]] are isomorphic.

The graphical representation of agents identifies structurally congruent
terms. This is proved with suitable isomorphisms for every structural law.
The converse also holds: terms mapped onto isomorphic graphs are struc-
turally congruent.

Proposition 17 P ≡r Q iff graph[P] is isomorphic to graph[Q].

The correspondence between agents and SDs also lifts to the dynamics:
two agents reduce provided the corresponding SDs reduce, and vice versa.

Theorem 18 If P −→r Q then graph[P] −→ graph[Q]; if (G, M, `) −→
(G′, M′, `′) then term[(G, M, `)] −→r term[(G′, M′, `′)].

Proof: By induction on the depth of the proof of P −→r Q and by
properties of the mappings term[·] and graph[·].

16

(u x̃ | u ỹ | P) {ex=ey}−−−→ P
P ϕ−→ P ′

P | Q ϕ−→ P ′ | Q
P ϕ−→ P ′, x 6∈ n(ϕ)

(x)P ϕ−→ (x)P ′
P ϕ−→ P ′, z ϕ x, z 6= x

(x)P ϕ\x−−→ P ′{z/x}
P ≡ Q Q ϕ−→ Q′ Q′ ≡ P ′

P ϕ−→ P ′

Side condition in the first rule: |x̃| = |ỹ| .

Figure 10: Fusion rules for the calculus of solos.

5 Multi-Labelled Solo Diagrams

The reduction relation of SDs so far corresponds exactly to the reduction
relation of the calculus of solos. In turn, this latter reduction corresponds
to the internal, unobservable transition of the fusion calculus, which in the
labelled transition semantics is the 1−→ relation, where 1 is the identity fusion
[PV98].

It may be interesting to extend the reduction relation to include the
general fusion actions of the labelled transition semantics, noted ϕ−→, where
ϕ is an equivalence relation on names such as {x̃ = ỹ}. Ignoring replication,
the rules for fusion actions in the calculus of solos are defined in Figure 10,
which relaxes the side conditions of the previous rules (Figure 4). We define
ϕ\z to mean ϕ ∩ (N − {z})2 ∪ {(z, z)}, i.e., the equivalence relation ϕ with
all references to z removed (except for the identity). For example, {x =
z, z = y}\z = {x = y}, and {x = y}\y = 1. We write n(ϕ) for the names in
non-singular equivalence classes of ϕ.

The corresponding SDs are defined by changing the labelling function to
be a total function U → Pf (N), where Pf (N) is the set of finite subsets of
N . Where ` previously was undefined, it now returns ∅; where it returned a
single name, it now returns a singleton.

Definition 19 A (basic) Multi-labelled solo diagram, in brief MSD, is a pair
(G, `), where G is a finite multiset of edges, and `, the labelling function, is a
function from nodes[G] to Pf (N) such that, for every a, a′ ∈ dom(`), a 6= a′

implies `(a) ∩ `(a′) = ∅.

In MSDs, the labelling function has the constraint that sets in the range
have empty intersection. Intuitively, these sets represent names that have
been fused, and the condition guarantees that the same name cannot occur
in different sets. This is a generalization of Definition 11 where the same

17

name cannot mark two different nodes. It may thus be easier to think of a
mapping from names to nodes: for each name the node (if any) is uniquely
defined. This is true in SDs as well as MSDs; the extension to MSD means
this mapping is not necessarily injective since different names can label the
same node.

Definition 20 The reduction relation −→ of MSDs is defined by the follow-
ing rule schema:

• edge-edge reduction: (G]{〈a, a1, · · · , ak〉o, 〈a, a′1, · · · , a′k〉i}, `) −→ (Gσ, `′)
where σ agrees with {ai = a′i : 1 ≤ i ≤ k}, ran(σ) ∩ dom(σ) = ∅
and ∀a : `′(a) =

⋃
σ(a′)=a `(a′)

As an example of MSD reduction, in Figure 11 we illustrate the dynamics of
an agent that is irreducible with the semantics of section 3.

−→
y zx {y, z}

Figure 11: The transition (x y | x z | z y) {y=z}−−−→ z y.

As the reader may suspect, MSDs are strongly related to agents. Given an
equivalence relation on names (representing the fusions that have occurred so
far), we can define a mapping from agents to MSDs, and given the equivalence
relation induced by `, we can define a mapping from MSDs to agents. This
relationship lifts to the dynamics: every reduction in MSD corresponds to a
fusion action in the calculus of solos with the semantics of Figure 10, and
vice versa. Finally, basic MSDs can be extended with boxes, in the style of
section 3.

6 Related Work

The direct ancestor of our solo diagrams are Parrow’s Interaction Diagrams [Par95],
which were presented as a graphical form of the π-calculus. Interaction Dia-
grams are more complex, due to the asymmetries of π-calculus. Three types
of nodes are used, corresponding to parameters, input bound names, and
other names, respectively. To encode input prefixing, Parrow uses a method
similar to that of [LV99], increasing the polyadicity to express causal depen-
dency. Parrow’s replication box is considered as a regeneration mechanism

18

that can generate an unbounded number of copies of itself. In this respect,
it is a straight implementation of the law ! P ≡ P | ! P .

π-nets [Mil94] were introduced by Milner as a graphical form of the action
calculus PIC, where the π-calculus can be encoded. π-nets are also very
similar to our solo diagrams, except for the treatment of boxes/replication,
where an additional link arrow is introduced, and for prefixing, which uses
a box inhibiting reductions inside the box until its box arc (representing the
guard) has been consumed.

In retrospect it is interesting to see that the purely graphical parts of both
Interaction Diagrams and π-nets have all the power of our solo diagrams, but
Parrow and Milner, respectively, constrain how they may be constructed and
thereby avoid constructing the solo diagrams and possibly the calculus of
solos.

In [Fu98], Fu investigated the communication mechanism of mobile cal-
culi in terms of cut-elimination in multiplicative proof nets, and inspired by
Interaction Diagrams introduced reaction graphs to this end. (This investi-
gation led to the χ-calculus [Fu97].) Reaction graphs have some elements in
common with solo diagrams, e.g. symmetry of input and output edges. Only
a limited form of guarded replication box is handled: no labelled nodes are
allowed inside, neither reaction between boxes, nor nested boxes are treated.
Fu only uses monadic edges, and thus cannot encode prefixing without these
guarded boxes.

Bellin and Scott also give a detailed interpretation of proofs in terms of
π-calculus processes [BS94]. Overall, their interpretations use prefixes. As a
consequence, reductions that do not occur at the bottom of the proofs are
not mirrored.

Yoshida in [Yos95] discusses the relationship between processes and a
general framework for proof nets, the so-called Interaction Nets [Laf90]. The
analogy mostly concerns the modes of connecting edges in the two systems
(by using polarities and principal/auxiliary ports) and of defining interactions
(as connections between principal ports). A behavioural analysis is missing.

References

[Bou92] G. Boudol. Asynchrony and the π-calculus (note). Rapport de
Recherche 1702, INRIA Sophia-Antipolis, May 1992.

[BS94] G. Bellin and P. Scott. On the π-calculus and linear logic. Theo-
retical Computer Science, 135:11–65, 1994.

19

[FG96] C. Fournet and G. Gonthier. The reflexive chemical abstract ma-
chine and the join-calculus. In Proc. of POPL ’96, pages 372–385.
ACM, Jan. 1996.

[Fu97] Y. Fu. A proof-theoretical approach to communication. In
P. Degano, R. Gorrieri and A. Marchetti-Spaccamela, eds, Proc.
of ICALP ’97, volume 1256 of LNCS, pages 325–335. Springer,
1997.

[Fu98] Y. Fu. Reaction graph. Journal of Computer Science and Tech-
nology, Science Press, China, 13(6):510–530, 1998.

[GAL92] G. Gonthier, M. Abadi and J.-J. Lévy. The geometry of optimal
lambda reduction. In Proc. of POPL ’92, pages 15–26. ACM Press,
1992.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50,
1987.

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous
communication. In P. America, ed, Proc. of ECOOP ’91, volume
512 of LNCS, pages 133–147. Springer, July 1991.

[Laf90] Y. Lafont. Interaction nets. In Proc. of POPL ’90, pages 95–108.
ACM Press, 1990.

[LV99] C. Laneve and B. Victor. Solos in concert. In J. Wiederman, P. van
Emde Boas and M. Nielsen, eds, Proc. of ICALP ’99, volume 1644
of LNCS, pages 513–523. Springer, July 1999.

[LV01] C. Laneve and B. Victor. Solos in concert. Full version of [LV99],
submitted for journal publication, February 2001.

[Mil92] R. Milner. Functions as processes. Journal of Mathematical Struc-
tures in Computer Science, 2(2):119–141, 1992.

[Mil93] R. Milner. The polyadic π-calculus: A tutorial. In F. L. Bauer,
W. Brauer and H. Schwichtenberg, eds, Logic and Algebra of Spec-
ification, volume 94 of Series F. NATO ASI, Springer, 1993.

[Mil94] R. Milner. Pi-nets: A graphical form of π-calculus. In D. San-
nella, ed, Proc. of ESOP ’94, volume 788 of LNCS, pages 26–42.
Springer, 1994.

20

[MPW92] R. Milner, J. Parrow and D. Walker. A calculus of mobile pro-
cesses, part I/II. Information and Computation, 100:1–77, Sept.
1992.

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich,
ed, Proc. of ICALP ’92, volume 623 of LNCS, pages 685–695.
Springer, 1992.

[Par95] J. Parrow. Interaction diagrams. Nordic Journal of Computing,
2:407–443, 1995.

[Par00] J. Parrow. Trios in concert. In G. Plotkin, C. Stirling and M. Tofte,
eds, Proof, Language and Interaction: Essays in Honour of Robin
Milner, Foundations of Computing. MIT Press, May 2000.

[PT00] B. C. Pierce and D. N. Turner. Pict: A programming language
based on the pi-calculus. In G. Plotkin, C. Stirling and M. Tofte,
eds, Proof, Language and Interaction: Essays in Honour of Robin
Milner, Foundations of Computing. MIT Press, May 2000.

[PV98] J. Parrow and B. Victor. The fusion calculus: Expressiveness
and symmetry in mobile processes. In Proc. of LICS ’98, pages
176–185. IEEE, Computer Society Press, July 1998.

[San98] D. Sangiorgi. On the bisimulation proof method. Mathematical
Structures in Computer Science, 8(5):447–479, 1998.

[Yos95] N. Yoshida. Graph notation for concurrent combinators. In T. Ito
and A. Yonezawa, eds, Proc. of TPPP ’94, volume 907 of LNCS,
pages 393–412. Springer, 1995.

21

