
SWARD: Semantic Web Abridged Relational Databases

Johan Petrini and Tore Risch
Department of Information Technology

Uppsala University, Sweden
{Johan.Petrini,Tore.Risch}@it.uu.se

Abstract

We have developed a system that can process queries
to RDF views of large relational databases. This
provides very flexible views of wrapped databases that
can be queried using either RDQL or SQL. Query
processing over such views is challenging because
their naive implementation becomes very complex. This
makes it critical to optimize not only data access time
but also the time to perform the query optimization
itself. We have developed query processing techniques
based on partial evaluation of query expressions as a
way to enable execution of real-world queries to RDF
views of relational databases.

1. Introduction

RDF repository systems [2][4][20] offer storage of
RDF data and the ability to search RDF data using a
query language. However, as most information still
resides in relational databases, it is desirable that this
information is also exposed to the semantic web
through RDF.

The SWARD (Semantic Web Abridged Relational
Databases) system provides RDF views of data stored
in existing relational databases. General queries are
supported over these views. Since RDF views include
both schema data and table content data, queries to
these views are very flexible and, unlike SQL queries
to relational tables, queries can mix meta-data and
table access. For example, a query can easily be
expressed that given the name of a department finds all
its properties except its internal identifier.

RDF data is usually defined in terms of an
ontology. For example, GovML [19] defines an
ontology for eGoverment data.

SWARD presents RDF triples derived from a
relational database as a single relation of triples, called
the universal property view, UPV. The UPV is
internally defined as a union of a content view that
represents relational table contents and a schema view
that represents the relational schema. The content view

is defined as the union of property views, each
representing one exported column in the relational
database. The UPV is automatically generated, given
that the user specifies for a given relational database
and ontology a property mapping table that declares
how exported relational columns correspond to
properties of the used ontology. The user also specifies
a class mapping table that declares RDF-Schema class
URIs corresponding to exported relational tables.

As real-world relational databases often have many
columns, queries to the UPV require efficient
processing of queries over large unions of many
property views. The reason is that RDF queries
generate many self-joins to the UPV and the UPV is
defined as a large disjunction. Traditional query
processing does not scale at all w.r.t. query
optimization time (time spent in rewrites and cost-
based optimization); i.e. even rather simple queries to
UPVs over relatively small databases cannot be
executed efficiently with a conventional commercial
database engine [14].

It is particularly important that RDF queries
accessing database tables, content queries, scale. These
are the kinds of queries that are normally used in
relational databases. We have developed methods for
scalable processing of conjunctive content queries to
UPVs of relational databases [13] [14]. There are also
queries that access only relational schema properties
e.g. the name of a relational column. Such queries are
called schema queries. A third kind of queries, hybrid
queries join schema and content queries. The methods
developed for scalable processing of conjunctive
content queries are also applicable to schema and
hybrid queries.

As internal query language SWARD uses
ObjectLog [11]. It is an object-oriented internal query
representation based on Datalog that is very suitable
for RDF query transformations. ObjectLog extends
Datalog with OIDs, disjunctive expressions and foreign
predicates. OIDs are needed to represent typed literals
and for distinguishing between URIs and literals. For
simplicity, in this paper we represent URIs and literals

as strings and we assume that no string representation
of a resource can be both a URI and a literal. Hence no
OIDs are needed in the examples.

As user query languages we support initially RDQL
[15] and a subset of SQL. We will also support SparQL
[18] [3]. Our approach applies to other proposed
semantic web query languages (e.g. [9] [17]) as well.

2. Related Work

RDF repository systems [2][4][20] often use relational
databases internally. Such a relational database is fully
managed by the repository system and the schema of
the relational database is internal. If one wants to make
RDF queries to an existing relational database using
such a repository, it requires downloading the database
into the repository. This clearly does not scale.

Rather than storing RDF data in dedicated RDF-
repositories our work wraps an existing relational
database so that it can be used in RDF queries without
downloading database tables to a repository. Instead
the data necessary for answering a particular query are
represented as RDF triples streamed through SWARD.

SWIM [6] and D2RQ [1] provide conversion
methods from relational databases to RDF, without
discussing how to optimize queries over RDF views of
relational databases.

The typed RDFS-based view specification language
RVL [12] is proposed for semantic web integration [6].
It can complement SWARD by allowing the definition
of RDF views on top of our UPVs.

The reference relation by [10] proposes a flexible
representation of a relational database as a four-column
table. This enables very general queries combining
schema and data. Our UPVs provide the same
flexibility and, in addition, support RDF mappings.

Optimizing disjunctive queries in general was
studied by, e.g., [5] without paying attention to query
optimization time and RDF.

To summarize, we are not aware of any other
system that offers querying facilities over large
disjunctive RDF views of relational databases. An
enabling technology we use to achieve this is a compile
time evaluation technique, partial evaluation [8], of
property view definitions to substantially reduce query
size [14].

3. Example

To illustrate our approach we use an example database
containing life event data stored in a back-end
relational database, named eGovern, accessed through
RDQL or SQL. The schema for eGovern is shown in
Figure 1. The database is queried in terms of the
GovML ontology [19].

The following SWARD statement automatically
generates the UPV for the exported tables:
ExportRDB(
‘JDBC:.;DatabaseName=eGovern’,’eGov’,
‘http://udbl.it.uu.se/schemas/eGovern’)

The first argument to ExportRDB is the JDBC
connection URL for the relational database, the second
is the name of the UPV, and the third is the ontology
used by the UPV.

Life-
event Eid Lang Descr Law Form

 ‘ABC1234H’ ‘EN’ ‘Getting
married’

‘FRC-
234’

‘http://www.
eGov.org/
marriage.html’

Figure 1: Example database.

In addition ExportRDB requires a user-defined
property mapping table (Table 1) stored in SWARD to
map 1:1 between exported columns from the relational
database and corresponding URIs representing
ontology properties, called property identifiers.1 Here
we show the mappings for the Lifeevent table.

Table 1: Property mapping table.

Table Column Ontology PropID
Lifeevent Eid dc: dc:Identifier

Lifeevent Lang govml: govml:Language

Lifeevent Descr govml: govml:Subject

Lifeevent Eid egov: dc:Identifier

Lifeevent Lang egov: govml:Language

Lifeevent Descr egov: govml:Subject

Lifeevent Law egov: egov:Law

Lifeevent Form egov: egov:Form

Neither dc: nor govml: include all properties
needed by the UPV eGov Therefore we develop our
own ontology egov: that extends dc: and govml: to
provide complete mappings for the Lifeevent table.

To enable representation of the schema view the
user must also provide a simple class mapping table,
cMap, (Table 2) that maps, for a given ontology,
relational table names to class identifiers. The schema
view part of the UPV specifies relational database
schema elements as RDF-Schema classes and
properties. Here we show the mappings for the
Lifeevent table.

1 govml: is namespace for the ontology
http://www.egov_project.org/GovMLSchema# , dc: is namespace for
the ontology http://purl.org/dc/elements/1.1/ and egov: for the
ontology http://udbl.it.uu.se/schemas/eGovern#

Table 2: Class mapping table.

Table Ontology ClassID
Lifeevent egov: egov:LifeEvent

Notice that the user has to specify only the class
and property mapping tables; both the content and
schema view are automatically inferred from these
tables.

With the above property and class mapping tables
the UPV named eGov will, given the single row in
table Lifeevent, produce a number of RDF triples
where some of them are shown in Table 3. Section 4
explains the rules for how the definition of eGov is
automatically generated from the property and class
mapping tables.

Table 3: Universal property view for part of
Lifeevent table (i.e. the Descr column).

eGov S P V

 dc:Identifier/
ABC1234H govml:Subject ‘Getting married’

 egov:LifeEvent rdf:type rdfs:Class

 govml:Subject rdf:type rdf:Property
govml:Subject rdfs:domain egov:LifeEvent

 govml:Subject rdfs:range rdfs:Literal

Here ‘dc:Identifer/ABC1234H’ is a system
generated URI that identifies a life event by
concatenating the property identifier for the key
column in table Lifeevent, ‘dc:Identifier’, with the key
value ‘ABC1234H’. The string ‘Getting married’ is the
value of the column Descr for that row.

The example RDQL content query to the UPV in
Figure 2 returns all life event forms about marriage.

SELECT ?val2
FROM <http://udbl.it.uu.se/upv/egov/>
WHERE
 (?s,<govml:Subject>,?val1),
 (?s,<egov:Form>,?val2)
AND ?val1 =~ ‘%married%’

Figure 2: Example RDQL query.
Before querying a UPV from RDQL the user must

specify a URI acting as an alias for the UPV name.
Here the UPV, eGov, is accessible from RDQL by the
URI http://udbl.it.uu.se/upv/egov/. The WHERE clause
specifies a selection condition over the RDF triples in
the UPV. The selections are specified using the
notation (s,p,v) where s (subject), p (property), and v
(value) are constants or variables. Filters can also be
defined.

The result from the query is the tuple2:

2 We use the (..) notation for tuples.

(‘http://www.eGov.org/marriage.html’)

The example query can also be expressed in SQL
as in Figure 3. Notice that SQL requires many self
joins making it less natural for querying RDF than the
corresponding RDQL query. The reason is SQL's
reliance on tuple calculus, while RDQL is based on
domain calculus (se [7] for a short description).
SWARD supports both query languages, though.

SELECT t2.val
FROM eGov AS t1, eGov AS t2
WHERE
 t1.p = ‘govml:Subject’ AND
 t1.s = t2.s AND
 t2.p = ‘egov:Form’ AND
 t1.val LIKE ‘%married%’

Figure 3: Example SQL query.
The FROM clause in the SQL query specifies an

identifier for the UPV to query.

4. Universal property views

A query to a UPV is first translated to ObjectLog by
the parser. In our example the query to the UPV eGov
is translated to the ObjectLog expression in Figure 4.

1. {val2 |
2. eGov(s,’govml:Subject’,val1) AND
3. eGov(s,’egov:Form’,val2) AND
3. like(val1,’%marriage%’)}

Figure 4: ObjectLog expression of example
RDQL query.

The query processor uses the UPV definition to
translate the query into an algebra expression
containing one or several calls to SQL in the back-end
relational database. The UPV U of a relational database
for a given ontology is defined as the union of two
subviews, one representing the schema of the relational
database, the schema view S, and one representing its
contents, the content view C, i.e. U=S ∪ C. U is
generated by ExportRDB and has the definition
U(s,p,v) :- S(s,p,v) OR C(s,p,v)

In our example U is named eGov, S is SeGov and C is
CeGov. Three views are sufficient to map any relational
database table, given an ontology, to an RDF-Schema.
It holds that:
S(s,p,v) :- Classes(s,p,v) OR
 Domains(s,p,v) OR
 Ranges(s,p,v)

The class view, Classes(s,p,v), defines the class and
property identifiers, representing relational tables and
columns respectively, as RDF-Schema classes and
properties. The domain view, Domains(s,p,v) specifies
for every property identifier mapped to a column the

class identifier of its table. The range view,
Ranges(s,p,v) specifies the type of a relational column
as an RDF-Schema class identifier.

The content view C of a relational database for an
ontology is defined as a union of internal property
views PVa generated for each exported column a in the
database, i.e. C=

a
∪ PVa. Figure 5 shows the generated

definition of UPV eGov for our example with CeGov
view expanded on lines 3-7. Notice that real-world
relational databases contain many columns so the
disjunctive expression will be large. The schema view
is called on line 2.

1. eGov(s, p, v):-

2. SeGov(s, p, v) OR
3. Eid(s, p, v) OR
4. Lang(s, p, v) OR
5. Descr(s, p, v) OR
6. Law(s, p, v) OR
7. Form(s, p, v)

Figure 5: Universal property view definition for
Lifeevent table.

Figure 6 shows the definition of the property view
Descr(s, p, v).

1. Descr(s, p, v):-
2. lifeevent(eid, lang, v, law, form) AND
3. Map(‘Lifeevent’,’Eid’,’egov:’,kpid)AND
4. rowid(kpid,eid,s) AND
5. pMap(‘Lifeevent’,’Descr’,’egov:’,p)

Figure 6: Property view for Descr column.
Line 2 accesses the relational table Lifeevent. Line

3 accesses the property mapping table to get the
property identifier kpid, given table Lifeevent, column
Eid, and the ontology egov:. The foreign predicate
rowid in line 4 takes as arguments the property
identifier kpid for the key column in Lifeevent and a
key eid. It generates a unique table row identifier by
string concatenation, e.g. ‘dc:Identifier/ABC124H’.
Line 5 retrieves the property identifier for column
Descr.

Notice that the expression in Figure 4 contains only
two references to the UPV, eGov, (lines (2-3)).
However, most real-world queries will contain many
self-joins and this will make the expanded expression
huge. A challenge is therefore to investigate query
processing strategies to handle this complexity.

5. Overview of SWARD query processing

Figure 7 illustrates the SWARD system Applications
access SWARD through its query interface. When a
user executes a query it is first transformed by the
parser into an ObjectLog expression, e.g. the
expression in Figure 4.

The steps parteval1 and parteval2 in rewriter
perform partial evaluation, i.e. compile time
evaluation of query expressions used in property view
definitions to substantially reduce the size of the query
[14]. For example, in Figure 6 lines 3 and 5 could be
eliminated by partial evaluation as the query processor
looks up the pMap table, which reduces view Descr
with two clauses. Similar reductions by partial
evaluation substantially improve query processing time
[14]. The view expander substitutes each reference to
the UPV in the query with its definition. In our
example this first produces the expression illustrated
by Figure 8. Then the schema and content views are
expanded.

Relational database

View expander

Parteval1

Normalizer

Parteval2

SQL generator
JDBC

Rewriter

Parser

Query interface

Relational database

View expander

Parteval1

Normalizer

Parteval2

SQL generator
JDBC

Rewriter

Parser

Query interface

Figure 7: System architecture.
The normalizer transforms the simplified query to

disjunctive normal form (i.e., a union of conjunctive
subqueries). Normalization improves query execution
by combining in the same conjunctive subqueries
predicates from the query and predicates from property
view definitions. However, in this case, normalization
produces unreasonable large expressions. Minimizing
the query before normalization is thus very important
Therefore the view expanded expression is first
simplified by parteval1.

1.{val2 |

2.(SeGov(s,’govml:Subject’,val1) OR

3. CeGov (s,’govml:Subject’,val1)) AND

4.(SeGov (s,’egov:Form’,val2) OR

5. CeGov (s,’egov:Form’,val2)) AND
3.like(val1,’%marriage%’)}

Figure 8: Example query after expanding the
universal property view.

After normalization the SQL generator finally
translates each simplified conjunctive subquery into an
algebra expression. The algebra expression contains
calls to SQL statements sent via JDBC to the relational
database for cost-based optimization and execution.
The only SQL statement submitted to the back-end
relational database in our example is actually [14]:
SELECT form
FROM lifeevent
WHERE descr LIKE '%married%'

The algebra expression further contains some calls
to rowid to manage the construction of row identifiers.
The algebra expression is finally interpreted.

6. Summary and conclusions

SWARD allows scalable access to large relational
databases [13] [14]. Both schema and content, of a
relational database, is viewed as a large disjunctive
universal property view (UPV) defined using
automatically generated expressions in a Datalog
dialect called ObjectLog [11].

The UPV is automatically generated, given that the
user specifies for a given relational database and
ontology a property mapping table that declares how
exported relational columns correspond to property
identifiers of the used ontology and a class mapping
table that declares how relational tables correspond to
class identifiers of the used ontology.

RDF queries expressed in RDQL or SQL are
translated into ObjectLog queries over the UPV. The
UPV is internally defined in ObjectLog as a
disjunction of property views, each representing one
exported column in the relational database, and a
schema view representing the relational meta-data. The
SWARD rewriter simplifies and transforms the
ObjectLog expressions into algebra expressions
containing SQL calls to the back-end repository.

Future work includes investigating query
transformation techniques for mediation of data from
different sources [16] accessible through web services.
Mediators are actually view definitions combining and
reconciling data from different sources.

References
1. C.Bizer, A.Seaborne: D2RQ -Treating Non-RDF

Databases as Virtual RDF Graphs (Poster). 3rd
International Semantic Web Conference (ISWC2004),
2004, Hiroshima, Japan.

2. J. Broekstra, A. Kampman and F. van Harmelen:
Sesame: A generic Architecture for Storing and
Querying RDF and RDF Schema. Proc.1st International
Semantic Web Conference (ISWC'02), Sardinia, Italy.
2002.

3. Y.Cao: Processing SparQL Queries in an Object-
Oriented Mediator, Uppsala Master’s Theses in
Computer Science 306,
http://user.it.uu.se/~udbl/Theses/YuCaoMSc.pdf.

4. E.I.Chong, S.Das, G.Eadon and J,Srinivasan: An
Efficient SQL-based RDF Querying Scheme, Proc. 31st
Intl. Conf. on Very Large Databases, VLDB2005,
pp1216-1227, Trondheim, Norway, 2005

5. J.Claußen, A.Kemper, G.Moerkotte, K.Peithner, and
M.Steinbrunn: Optimization and Evaluation of
Disjunctive Queries. IEEE Trans. Knowl. Data Eng.
12(2): 238-260 (2000)

6. V.Christophides, G.Karvounarakis, A.Magkanaraki,
D.Plexousakis, and V.Tannen: The ICS-FORTH
Semantic Web Integration Middleware (SWIM), IEEE
Data Engineering Bulletine, 26(4), Dec. 2003.

7. R.Elmasri, S.B.Navathe: Fundamentals of Database
Systems. Addison-Wesley, 5th edition, 2007.

8. N. D. Jones. An Introduction to Partial Evaluation. ACM
Computing Surveys, 28(3), 1996.

9. G. Karvounarakis, S. Alexaki, V. Christophides, D.
Plexousakis and M. Scholl: RQL: A Declarative Query
Language for RDF, Proc. International World Wide
Web Conference (WWW’02), Honolulu, Hawaii, USA.
2002.

10. W.Litwin, M.Ketabchi, R.Krishnamurthy: First Order
Normal Form for Relational Databases and Multi
Databases, SIGMOD Records, 20(4), December 1991.

11. W. Litwin, and T. Risch, Main Memory Oriented
Optimization of OO Queries using Typed Datalog with
Foreign Predicates, IEEE Transactions on Knowledge
and Data Engineering , 4(6), 1992, pp. 517-528.

12. A.Magkanaraki, V.Tannen, V.Christophides, and
D.Plexousakis: Viewing the Semantic Web Through
RVL Lenses, 2nd International Semantic Web
Conference (ISWC'03), 2003, Sanibel Island, Florida,
USA.

13. J.Petrini and T.Risch: Processing queries over RDF
views of wrapped relational databases, in Proc. 1st
International Workshop on Wrapper Techniques for
Legacy Systems, WRAP 2004, Delft, Holland,
November 2004,
http://user.it.uu.se/~udbl/publ/WRAP04.pdf.

14. J.Petrini and T.Risch: Scalable RDF Views of Relational
Databases through Partial Evaluation, Technical
Report 2006-016, Dept. of Information Technology,
Uppsala University, Sweden, March 2006,
http://www.it.uu.se/research/publications/reports/2006-
016/

15. A.Seaborne: RDQL - A Query Language for RDF, W3C
Member Submission,
http://www.w3.org/Submission/2004/SUBM-RDQL-
20040109/, 2004.

16. T.Risch, V.Josifovski, and T.Katchaounov, Functional
Data Integration in a Distributed Mediator System, in
P.Gray, L.Kerschberg, P.King, and A.Poulovassilis
(eds.): Functional Approach to Data Management -
Modeling, Analyzing and Integrating Heterogeneous
Data, ISBN 3-540-00375-4,Springer, 2003, pp 211-238.

17. SeRQL,
http://www.openrdf.org/doc/sesame/users/ch06.html

18. SPARQL Query Language for RDF, W3C Working
Draft, 23 November 2005, http://www.w3.org/TR/rdf-
sparql-query/.

19. E. Tambouris, G.Kavadias, and E.Spanos: The
Government Markup Language (GovML), Journal of
E.Government, 1(2), Haworth Press, 2004,
http://www.haworthpress.com/web/JEG/.

20. K.Wilkinson, C.Sayers, H.A.Kuno, and D.Reynolds:
Efficient RDF Storage and Retrieval in Jena 2, Proc.
VLDB Workshop on Semantic Web and Databases
(SWDB’03), pp 131-150, September 2003.

