
Kjell Orsborn 11/16/03

1UU - IT - UDBL

DATABASTEKNIK - 1DL116

 Fall 2003

An introductury course on database systems

http://user.it.uu.se/~udbl/dbt-ht2003/

Kjell Orsborn
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

Kjell Orsborn 11/16/03

2UU - IT - UDBL

Introduction to Physical Datbase Design
Elmasri/Navathe ch 13 and 14

Kjell Orsborn
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

Kjell Orsborn 11/16/03

3UU - IT - UDBL

Contents - physical database design
(Elmasri/Navathe ch. 13 and 14)

• Record and file organization (ch. 13)
– Data structures for physical storage of the database

• Unsorted files
• Sorted files
• Hashing methods

• Indexes and index files (ch. 14)
– a) Simple (one-level) index

• Primary index
• Secundary index
• Cluster index

– b) Search trees (multi-level index)
– c) Hash indexes

Kjell Orsborn 11/16/03

4UU - IT - UDBL

The physical database
• The physical database is a collection of stored records that have

been organized in files on the harddisk.
– A record consists of a number of data fields.
– Each field has an elementary data type

(integer, real, string, pointer etc.)
• Records are used for physical storage of:

– Tuples, where each attribute in the tuple is stored as a field.
– Objects in object-oriented databases.

Kjell Orsborn 11/16/03

5UU - IT - UDBL

Block transfer is slow!
• Block – a contiguous sequence of disc sectors from a single track.

– data is transferred between disk and main memory in blocks
– sizes range from 512 bytes to several kilobytes
– block transfer is slow (15-60 msec)

• i.e. position the red/write head of the disk at the right track and at the correct
block/sector, and then transfer the block to primary memory.

– disk-arm–scheduling algorithms order accesses to tracks so that disk arm
movement is minimized.

• File organization – optimize block access time by organizing the
blocks to correspond to how data will be accessed. Store related
information on the same or nearby cylinders.

Kjell Orsborn 11/16/03

6UU - IT - UDBL

Storage of records
• A block is usually bigger than a record such that a block

consists of one or several records.
• The highest number of records that can be contained in a block

is called the block factor (here: bfr) for the file of records.
• If R is the record size and B the block size:

bfr = floor[B/R]
– E.g. assume a block B=512 bytes, record size R=79 bytes.
– B / R = 512/79 = 6.48
– Rounded off downwards gives bfr = 6, i.e. we can store 6 records per

block.
• A file with r no. of records therefore require:

b = ceiling[r/bfr] blocks (see Elmasri/Navathe Fig 13.6)

Kjell Orsborn 11/16/03

7UU - IT - UDBL

Storage access
• A database file is partitioned into fixed-length storage units

called blocks. Blocks are units of both storage allocation and
data transfer.

• Database system seeks to minimize the number of block
transfers between the disk and memory. We can reduce the
number of disk accesses by keeping as many blocks as possible
in main memory.

• Buffer – portion of main memory available to store copies of
disk blocks.

• Buffer manager – subsystem responsible for allocating buffer
space in main memory.

Kjell Orsborn 11/16/03

8UU - IT - UDBL

Buffer manager
• Programs call on the buffer manager when they need a block

from disk
– The requesting program is given the address of the block in main

memory, if it is already present in the buffer.
– If the block is not in the buffer, the buffer manager allocates space in the

buffer for the block, replacing (throwing out) some other block, if
required, to make space for the new block.

– The block that is thrown out is written back to disk only if it was
modified since the most recent time that it was written to/fetched from
the disk.

– Once space is allocated in the buffer, the buffer manager reads in the
block from the disk to the buffer, and passes the address of the block in
main memory to the requester.

Kjell Orsborn 11/16/03

9UU - IT - UDBL

File organization

• The database is stored as a collection of files.Each file is a
sequence of records. A record is a sequence of fields.

• Records can have constant (simplest) or variable length
• A file can store records of the same type (simplest) or of

different type.
• Specific files can be used to store specific relations

(simplest) or the same file can store different relations
(maybe even the whole database).

Kjell Orsborn 11/16/03

10UU - IT - UDBL

File descriptor

• Contains information that is needed for record access:
– Block addresses, record format etc.
– To find records, one or several blocks transferred to (one or several

buffers in) primary memory. These blocks can then be searched to
find the block that was sought.

– If the address to the block containing the record is unknown one
has to search through all block in the file (so called linear search).

Kjell Orsborn 11/16/03

11UU - IT - UDBL

Organization of records in files
• Heap – a record can be placed anywhere in the file where there

is space
• Sequential – store records in sequential order, based on the

value of the search key of each record
• Hashing – a hash function is computed on some attribute of

each record; the result specifies in which block of the file the
record should be placed

• Clustering – records of several different relations can be stored
in the same file; related records are stored on the same block

Kjell Orsborn 11/16/03

12UU - IT - UDBL

Heap - files with
unordered records

– New records are added to the end of the file. Such an organization is
callad a heap file.

• Suitable when we don’t know how data shall be used.
– Insert of a new record is very efficient.
– Search after a specific record is expensive (linear to the size).
– Delete of a record can be expensive (search - read into - delete - write

back).
• Instead of physically removing a record one can mark the record as deleted.

Both methods require a periodically reorganization of the file.
– Modification of a record of variable length can be hard.
– Retrieval according to a certain order requires that the file must be sorted

which is expensive.

Kjell Orsborn 11/16/03

13UU - IT - UDBL

Sequential - files with
ordered records

• The records in the file are ordered according to the value of a
certain field (Elmasri/Navathe Figure 13.7)
– Ordered retrieval very fast (no sorting needed).
– Next record in the order is found on the same block (except for the last

record in the block)
– Search is fast (binary search - log2b)
– Insert and delete are expensive since the file must be kept sorted.
– Suitable for applications that require sequential processing of the entire

file
– Need to reorganize the file from time to time to restore sequential order

Kjell Orsborn 11/16/03

14UU - IT - UDBL

Sequential - files with ordered records
cont’d. . .

• To make record insertions cheaper:
– Create a temporary unsorted file a so called overflow file or transaction

file (the main file is then called “the master file”)
– Update the master file periodically in accordance with the transaction

file.
– These measures improve insertion time but search for records beomes

more complicated.
• Ordered files are not used that often in databases.

– Exception: when extra access paths are created, so called primary
indexes.

Kjell Orsborn 11/16/03

15UU - IT - UDBL

Hashing technique in general

• Goal: to make record retrieval faster.
• How: find a hash function, h, that for a record p, h(f(p))

provides the address to the block where p shall be stored.
• h(f(p)) = f(p) mod M where f(p) is called the hash

field for p and M is the table
size.

• This means that most of the records will be found in only one
block access.

• Observe that we get a collision if: h(f(p)) = h(f(p’))

Kjell Orsborn 11/16/03

16UU - IT - UDBL

Solving collisions in hashing
There are several method for collision elimination:
• Open addressing:

– Take next free place a in the array h(f(p)) £ a £ M-1

• Chaining:
– Choose a larger array of size M+O and use the extra space as overflow

places. (E/N Figur 13.8b)
• Multiple hashing:

– If h leads to collision use h’ in stead. If there is collision again use open
addressing or use h’’ and then open addressing if collision occurs.

Kjell Orsborn 11/16/03

17UU - IT - UDBL

Hashing - properties
• Different hashing methods need different insertion, delete and

retrieval algorithms.
• What is a good hashing method?

– Records should be distributed uniformaly in the hash table such that
collision and unused positions are minimized.

• Principles - rules of thumb:
– 70-90% of the hash table must be utilized.
– If r records shall be stored use a hash table of the size between

r/0.9 and r/0.7
– Preferably chose a prime number size of the sizeof the hash table - this

will give a more uniform distribution.

Kjell Orsborn 11/16/03

18UU - IT - UDBL

External hashing
– Hashing methods for files on disc:

• Records are hashed according to the bucket method.
• A bucket = one block.
• The bucket address is used as the address for a record.
• Info. regarding the block address for each bucket is stored in the beginning

of the file.
(Se E/N Figur 13.9)

– Since several records can be stored in the same block, the number of
collisions decreases.

– When a bucket is filled one can use a chaining method where a number
of buckets are used as overflow buckets.

 (Se E/N Figure 13.10)

Kjell Orsborn 11/16/03

19UU - IT - UDBL

Pros and cons with
external hashing

Pros:
• Retrieval of a random record is fast.
Cons:
• Retrieval of records in an order according to the value of the

hash field.
• Searching for records with regard to another data field than the

hash field is very costly.
• Files will get a predetermined size. However, there are various

techniques to provide dynamic file sizes - e.g. linear hashing
techniques

Kjell Orsborn 11/16/03

20UU - IT - UDBL

Clustering file organization
• Simple file structure stores each relation in a separate file
• Can instead store several relations in one file using a clustering file

organization
• E.g., clustering organization of customer and depositor:

– good for queries involving depositor customer, and for queries involving one
single customer and his accounts

– bad for queries involving only customer
– results in variable size records

BrooklynHayes Main
Hayes A-102
Hayes A-220
Hayes A-503

StamfordTurner Putnam
Hayes A-305

Kjell Orsborn 11/16/03

21UU - IT - UDBL

Data dictionary storage
• Data dictionary (also called system catalog) stores metadata:

that is, data about data, such as
• information about relations

– names of relations
– names and types of attributes
– physical file organization information
– statistical data such as number of tuples in each relation

• integrity constraints
• view definitions
• user and accounting information
• information about indexes

Kjell Orsborn 11/16/03

22UU - IT - UDBL

Data dictionary storage cont’d
• Catalog structure: can use either

– specialized data structures designed for efficient access
– a set of relations, with existing system features used to ensure efficient

access
and the latter alternative is usually preferred.

• A possible catalog representation:
System-catalog-schema = (relation-name, number-of-attributes)
Attribute-schema = (attribute-name, relation-name, domain-type, position, length)
User-schema = (user-name, encrypted-password, group)
Index-schema = (index-name, relation-name, index-type, index-attributes)
View-schema = (view-name, definition)

Kjell Orsborn 11/16/03

23UU - IT - UDBL

Mapping of objects to files
• Mapping objects to files is similar to mapping tuples to files in a relational

system; object data can be stored using file structures.
• Objects in O-O databases may lack uniformity and may be very large; such

objects have to be managed differently from records in a relational system.
• Objects are identified by an object identifier (OID); the storage system needs

a mechanism to locate an object given its OID.
– logical identifiers do not directly specify an object’s physical location; must

maintain an index that maps an OID to the object’s actual location.
• some overhead for locating the object
• easy to move object between disc and main-memory

– physical identifiers encode the location of the object so the object can be found
directly.

• fast object location
• more complicated to move objects between disc and main-memory (pointer swizzling)

Kjell Orsborn 11/16/03

24UU - IT - UDBL

Large objects
• Very large objects are called binary large objects (BLOBs)

because they typically contain binary data. Examples include:
– text documents
– graphical data such as images and computer aided designs
– audio and video data

• Large objects may need to be stored in a contiguous sequence of
bytes when brought into memory.

• Special-purpose application programs outside the database are
used to manipulate large objects

Kjell Orsborn 11/16/03

25UU - IT - UDBL

Indexes - index files (ch. 14)
• An index (or index file) is an extra file structure that is used to make the

retrieval of records faster.
– Search key (or index field)– attribute or set of attributes (data fields) used to look

up records in a file.
• An index file consists of records (called index entries) of the form:

– These entries determine the physical address for records having a certain value in
their index field.

– Index files are typically much smaller than the original file
– The file that should be indexed is called the data file.

• Two basic kinds of indexes:
– Ordered indexes: search keys are stored in sorted order
– Hash indexes: search keys are distributed uniformly across “buckets” using a

“hash function”.

search-key pointer

Kjell Orsborn 11/16/03

26UU - IT - UDBL

Index evaluation metrics

Indexing techniques evaluated on basis of:
• Access types supported efficiently. E.g.,

– records with a specified value in an attribute
– or records with an attribute value falling in a specified range of

values.
• Access time
• Insertion time
• Deletion time
• Space overhead

Kjell Orsborn 11/16/03

27UU - IT - UDBL

Primary index

– A primary index is a file that consists of records with two fields.
The first field is of the same type as the ordering field (index field)
for the data file and the second field is a pointer to a block (block
pointer).

– A primary index has one index record for each block in the data
file, and therefore is called a sparse index (or “nondense index”)

– A dense index consists of one record for each record in the data
file.

– The first record in each block is called the anchor record of the
block. (see Elmasri/Navathe Fig 14.1)

Kjell Orsborn 11/16/03

28UU - IT - UDBL

Example - primary index (Fig 14.1)

Kjell Orsborn 11/16/03

29UU - IT - UDBL

Primary index - pros and cons

• Require much less space than the data file.
– a) There is much fewer index records than records in the data file.
– b) Every index record need less space (fi fewer memory blocks).

• Problem with insertion and deletion of records.
– If anchor records are changed the index file must be updated.

Kjell Orsborn 11/16/03

30UU - IT - UDBL

Cluster index

– Cluster index is defined for files that are ordered according to a
non-key field (the cluster field), i.e. several records in the data file
can have the same value for the cluster field.

– A cluster index is a file consisting of records with two fields. The
first field is of the same type as the cluster field for the data file
and the second field is a pointer to a block of records (block
pointer) in the data file. (see Elmasri/Navathe Fig 14.2)

– Insertion and deletion of records is problematic. However, if each
block only can contain records with the same cluster value the
insertion problem is solved. (see Elmasri/Navathe Fig 14.3)

Kjell Orsborn 11/16/03

31UU - IT - UDBL

Example - cluster index (Fig 14.2)

Kjell Orsborn 11/16/03

32UU - IT - UDBL

Secondary index
• A secondary index is an ordered file that consists of records

with two fields.
• The first field is of the same type as the indexing field (any field

in the data file) and the second field is a block pointer.
• The data file is not sorted according to the index field.
• There are two different cases:

1. The index field has unique values for each record (see Elmasri/Navathe
Fig 14.4).

2. Several records in the data file can have the same values for the index
field.

Kjell Orsborn 11/16/03

33UU - IT - UDBL

Example - secondary index (Fig 14.4)

Kjell Orsborn 11/16/03

34UU - IT - UDBL

Secondary index ...
• Based on non-key fields.
• Several records in the data file can have the same values for the

index field. How to implement the index file?
a) Have several index records with the same value on the index field (dense

index).
b) Allow index records of varying size with multiple pointers. Each pointer

gives the address to a block contaning a record with the same value for
the index field.

c) Let the pointer in the index record point to a block of pointers where each
pointer gives the address to a record. (see Elmasri/Navathe Fig 14.6)

Kjell Orsborn 11/16/03

35UU - IT - UDBL

primary

cluster

secondary
(key field)

secondary
(nonkey field option 1)**

secondary
(nonkey field option 2,3)**

block in the data file

unique index field values

records in the data file

records in the data file

unique index field values

No. of index records
(1st level)

sparse

sparse

dense

dense

sparse

Dense / sparse

yes

yes/no*

no

no

no

Anchor block

Comp. different indexes

* Yes, if every distinct index field begins with a new block, else no.
** Implementation dependent - see Elmasri/Navathe p. 111.

Kjell Orsborn 11/16/03

36UU - IT - UDBL

Primary and secondary indexes

• Indexes offer substantial benefits when searching for records.
• When a file is modified, every index on the file must be

updated. Updating indexes imposes overhead on database
modification.

• Sequential scan using primary index is efficient, but a sequential
scan using a secondary index is expensive (each record access
may fetch a new block from disk.

Kjell Orsborn 11/16/03

37UU - IT - UDBL

Contents - physical database design
(Elmasri/Navathe ch. 5 and 6)

• Indexes and index files … continued (ch. 6)
– …
– b) search trees (multi-level indexes)

• B+-trees
• B-trees

– c) hash indexes

Kjell Orsborn 11/16/03

38UU - IT - UDBL

Search trees

– A search tree of order p is a tree such that every node contain at most p-1
search values and p number of pointers as follows:
<P1, K1, P2, K2, … ,Pq-1, Kq-1, Pq>

– where q £ p , Pi is a pointer to a child node (null if no childs) and Ki is a
search value that is part in some ordered set of values..

– Search trees can be used to search for records in a file.
– Values in the search tree can be values of a specific field in the file (the

search field).
– Each value in the tree is associated with a pointer that either points to the

record in the data file that has the value for the search field or the data
block that contains the record.

Kjell Orsborn 11/16/03

39UU - IT - UDBL

Requirements on search trees

• A search tree must always fulfil two conditions:
1. For every node should hold that K1 < K2 <... < Kq-1

2. For all values X i in a subtree identified by Pi the following
should hold:
– Ki-1 < X < Ki (1<i<q)
– X < Ki (i=1) (see E/N Fig 14.8)
– Ki-1 < X (i=q)

• Condition 2 is important for choosing the correct subtree when
searching for a specific value X.

Kjell Orsborn 11/16/03

40UU - IT - UDBL

Problems with general search trees

• Insertion/deletion of data file records result in changes to the
structure of the search tree. There are algorithms that guaranties
that the search-tree conditions continue to hold also after
modifications.

• After an update of a search tree one can get the following
problems:
1. inbalance in the search tree that usually result in slower search.
2. empty nodes (after deletions)

• To avoid these types of problem one can use some type of so
called B-trees (balanced trees) that fulfil stricter requirements
than general serach trees.

Kjell Orsborn 11/16/03

41UU - IT - UDBL

B+-tree index files
• B+-tree indexes are an alternative to indexed-sequential files.
• Disadvantage of indexed-sequential files: performance degrades

as file grows, since many overflow blocks get created. Periodic
reorganization of entire file is required.

• Advantage of B+-tree index files: automatically reorganizes
itself with small, local, changes, in the face of insertions and
deletions. Reorganization of entire file is not required to
maintain performance.

• Disadvantage of B+-trees: extra insertion and deletion overhead,
space overhead.

• Advantages of B+-trees outweigh disadvantages, and they are
used extensively.

Kjell Orsborn 11/16/03

42UU - IT - UDBL

B+-Tree index files ...
A B+-tree of order n is a rooted tree satisfying the following

properties:
• All paths from root to leaf are of the same length.
• Each node that is not a root or a leaf has between Èn / 2˘ and n

children.
• A leaf node has between È(n - 1) / 2˘ and n - 1 values.
• Special cases: if the root is not a leaf, it has at least 2 children.
• If the root is a leaf (that is, there are no other nodes in the tree),

it can have between 0 and (n - 1).

Kjell Orsborn 11/16/03

43UU - IT - UDBL

B+-tree node structure

• A typical node

– Ki are the search-key values
– Pi are pointers to children (for non-leaf nodes) or pointers to

records or buckets of records (for leaf nodes).
• The search-keys in a node are ordered

K1 < K2 < K3 < ...< Kn-1

P1 K1 P2 . . . Pn-1 Kn-1 Pn

Kjell Orsborn 11/16/03

44UU - IT - UDBL

Leaf nodes in B+-trees
Properties of a leaf node:
• For i = 1, 2, ..., n-1, pointer Pi either points to a file record with search-key

value Ki, or to a bucket of pointers to file records, each record having search-
key value Ki. Only need bucket structure if search-key does not form a
primary key.

• If Li, Lj are leaf nodes and i < j, Li ’s search-key values are less than Lj’s
search-key values

• Pn points to next leaf node in search-key order

DowntownBrighton

Brighton A-212 750
Downtown A-101 500
Downtown A-110 600

...

CCC

leaf node

account file

Kjell Orsborn 11/16/03

45UU - IT - UDBL

Non-leaf nodes in B+-trees

• Non leaf nodes form a multi-level sparse index on the leaf
nodes. For a non-leaf node with m pointers:
– All the search-keys in the subtree to which P1 points are less than

K1
– For 2 ≤ i ≤ n-1, all the search-keys in the subtree to which Pi points

have values greater than or equal to Ki-1 and less than Pi
– All the search-keys in the subtree to which Pm points are greater

than or equal to Km-1

P1 K1 P2 . . . Pn-1 Kn-1 Pn

Kjell Orsborn 11/16/03

46UU - IT - UDBL

Example of a B+-tree

• B+-tree for account file (n = 3)

Perryridge

Mianus Redwood

Brighton Downtown Mianus Perryridge Redwood Round Hill

Kjell Orsborn 11/16/03

47UU - IT - UDBL

Example of a B+-tree

• B+-tree for account file (n = 5)
• Leaf nodes must have between 2 and 4 values (È(n - 1) / 2˘

and n - 1, with n = 5).
• Non-leaf nodes other than root must have between 3 and 5

children (È(n / 2˘ and n with n = 5).
• Root must have at least 2 children.

Perryridge

Brighton Downtown Mianus Perryridge Redwood Round Hill

Kjell Orsborn 11/16/03

48UU - IT - UDBL

Observations about B+-trees
• Since the inter-node connections are done by pointers, there is

no assumption that in the B+-tree, the “logically” close blocks
are “physically” close.

• The non-leaf levels of the B+-tree form a hierarchy of sparse
indexes.

• The B+-tree contains a relatively small number of levels
(logarithmic in the size of the main file), thus searches can be
conducted efficiently.

• Insertions and deletions to the main file can be handled
efficiently, as the index can be restructured in logarithmic time.

Kjell Orsborn 11/16/03

49UU - IT - UDBL

Queries on B+-Trees
• Find all records with a search-key value of k.

– Start with the root node.
– Examine the node for the smallest search-key value > k.
– If such a value exists, assume it is Ki. Then follow Pi to the child node.
– Otherwise k ≥ Km-1, where there are m pointers in the node. Then follow

Pm to the child node.
– If the node reached by following the pointer above is not a leaf node,

repeat the above procedure on the node, and follow the corresponding
pointer.

– Eventually reach a leaf node. If key Ki = k, follow pointer Pi to the
desired record or bucket. Else no record with search-key value k exists.

Kjell Orsborn 11/16/03

50UU - IT - UDBL

Queries on B+-Trees ...
• In processing a query, a path is traversed in the tree from the root to some

leaf node.
• If there are K search-key values in the file, the path is no longer than Èlog

Èn/2˘(K)˘.
• A node is generally the same size as a disk block, typically 4 kilobytes, and n

is typically around 100 (40 bytes per index entry).
• With 1 million search key values and n = 100, at most log50(1,000,000) = 4

nodes are accessed in a lookup.
• Contrast this with a balanced binary tree with 1 million search key values —

around 20 nodes are accessed in a lookup.
– above difference is significant since every node access may need a disk I/O,

costing around 30 millisecond!

Kjell Orsborn 11/16/03

51UU - IT - UDBL

Updates on B+-Trees: insertion

• Find the leaf node in which the search-key value would appear.
• If the search-key value is already there in the leaf node, record is

added to file and if necessary pointer is inserted into bucket.
• If the search-key value is not there, then add the record to the

main file and create bucket if necessary. Then:
– if there is room in the leaf node, insert (search-key value, record/bucket

pointer) pair into leaf node at appropriate position.
– if there is no room in the leaf node, split it and insert (search-key value,

record/bucket pointer) pair as discussed in the next slide.

Kjell Orsborn 11/16/03

52UU - IT - UDBL

Updates on B+-Trees: insertion ...
• Splitting a node:

– take the n (search-key value, pointer) pairs (including the one being
inserted) in sorted order. Place the first Èn/2˘ in the original node, and the
rest in a new node.

– let the new node be p, and let k be the least key value in p.
• Insert (k,p) in the parent of the node being split. If the parent is

full, split it and propagate the split further up.
• The splitting of nodes proceeds upwards till a node that is not

full is found. In the worst case the root node may be split
increasing the height of the tree by 1.

Kjell Orsborn 11/16/03

53UU - IT - UDBL

Updates on B+-Trees: insertion ...

• B+-Tree before and after insertion of “Clearview”

Perryridge

Mianus Redwood

Brighton Downtown Mianus Perryridge Redwood Round Hill

Perryridge

Downtown Redwood

Brighton Clearview Perryridge Redwood Round Hill

Mianus

MianusDowntown

Kjell Orsborn 11/16/03

54UU - IT - UDBL

Updates on B+-Trees: deletion
• Find the record to be deleted, and remove it from the main file

and from the bucket (if present).
• Remove (search-key value, pointer) from the leaf node if there

is no bucket or if the bucket has become empty.
• If the node has too few entries due to the removal, and the

entries in the node and a sibling fit into a single node, then
– Insert all the search-key values in the two nodes into a single node (the

one on the left), and delete the other node.
– Delete the pair (Ki-1 , Pi), where Pi is the pointer to the deleted node,

from its parent, recursively using the above procedure.

Kjell Orsborn 11/16/03

55UU - IT - UDBL

Updates on B+-Trees: deletion
• Otherwise, if the node has too few entries due to the removal,

and the entries in the node and a sibling fit into a single node,
then
– Redistribute the pointers between the node and a sibling such that both

have more than the minimum number of entries.
– Update the corresponding search-key value in the parent of the node.

• The node deletions may cascade upwards till a node which has
Èn/2˘ or more pointers is found. If the root node has only one
pointer after deletion, it is deleted and the sole child becomes
the root.

Kjell Orsborn 11/16/03

56UU - IT - UDBL

Examples of B+-Tree deletion

• Result after deleting “Downtown” from account
• The removal of the leaf node containing “Downtown” did

not result in its parent having too little pointers. So the
cascaded deletions stopped with the deleted leaf node’s
parent.

Perryridge

Mianus Redwood

Brighton Clearview Perryridge Redwood Round HillMianus

Kjell Orsborn 11/16/03

57UU - IT - UDBL

Examples of B+-Tree deletion ...

• Deletion of “Perryridge” instead of “Downtown”
• The deleted “Perryridge” node’s parent became too small,

but its sibling did not have space to accept one more
pointer. So redistribution is performed. Observe that the
root node’s search-key value changes as a result.

Downtown Redwood

Brighton Clearview Redwood Round HillMianusDowntown

Mianus

Kjell Orsborn 11/16/03

58UU - IT - UDBL

B-Tree index files
• Similar to B+-tree, but B-tree allows search-key values to appear

only once; eliminates redundant storage of search keys.
• Search keys in nonleaf nodes appear nowhere else in the B-tree;

an additional pointer field for each search key in a nonleaf node
must be included.

• Generalized B-tree leaf node:

• Nonleaf node in B-trees where extra pointers Bi are the bucket or
file record pointers.

P1 K1 P2 . . . Pn-1 Kn-1 Pn

P1 K1 P2 . . . Pm-1 Km-1 PmB1 B2 K2 Bm-1

Kjell Orsborn 11/16/03

59UU - IT - UDBL

B-Tree index files ...
• Advantages of B-Tree indexes:

– May use less tree nodes than a corresponding B+-Tree.
– Sometimes possible to find search-key value before reaching leaf node.

• Disadvantages of B-Tree indexes:
– Only small fraction of all search-key values are found early
– Non-leaf nodes are larger, so fan-out is reduced. Thus B-Trees typically

have greater depth than corresponding B+-Tree
– Insertion and deletion more complicated than in B+-Trees
– Implementation is harder than B+-Trees.

• Typically, advantages of B-Trees do not outweigh
disadvantages.

Kjell Orsborn 11/16/03

60UU - IT - UDBL

Static hashing
• A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).
• In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.
• Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses B.
• Hash function is used to locate records for access, insertion as well

as deletion.
• Records with different search-key values may be mapped to the

same bucket; thus entire bucket has to be searched sequentially to
locate a record.

Kjell Orsborn 11/16/03

61UU - IT - UDBL

Example of hash file organization

• Hash file organization of
account file, using branch-
name as key

• There are 10 buckets,
• The binary representation of

the ith character is assumed
to be the integer i.

• The hash function returns the
sum of the binary
representations of the
characters modulo 10

– E.g. h(Perryridge) = 5
h(Round Hill) = 3
h(Brighton) = 3

Kjell Orsborn 11/16/03

62UU - IT - UDBL

Hash functions
• Worst has function maps all search-key values to the same bucket; this makes

access time proportional to the number of search-key values in the file.
• An ideal hash function is uniform, i.e., each bucket is assigned the same

number of search-key values from the set of all possible values.
• Ideal hash function is random, so each bucket will have the same number of

records assigned to it irrespective of the actual distribution of search-key
values in the file.

• Typical hash functions perform computation on the internal binary
representation of the search-key.
– For example, for a string search-key, the binary representations of all the

characters in the string could be added and the sum modulo the number of
buckets could be returned.

Kjell Orsborn 11/16/03

63UU - IT - UDBL

Handling of bucket overflows
• Bucket overflow can occur because of

– Insufficient buckets
– Skew in distribution of records. This can occur due to two reasons:

• multiple records have same search-key value
• chosen hash function produces non-uniform distribution of key values

• Although the probability of bucket overflow can be reduced, it cannot be
eliminated; it is handled by using overflow buckets.

• Overflow chaining – the overflow buckets of a given bucket are chained
together in a linked list.

• Above scheme is called closed hashing.
– An alternative, called open hashing, which does not use overflow buckets, is

not suitable for database applications.

Kjell Orsborn 11/16/03

64UU - IT - UDBL

Hash indexes

• Hashing can be used not only for file organization, but also for
index-structure creation.

• A hash index organizes the search keys, with their associated
record pointers, into a hash file structure.

• Hash indexes are always secondary indexes
– if the file itself is organized using hashing, a separate primary hash index

on it using the same search-key is unnecessary.
– however, we use the term hash index to refer to both secondary index

structures and hash organized files.

Kjell Orsborn 11/16/03

65UU - IT - UDBL

Example of a hash index

Kjell Orsborn 11/16/03

66UU - IT - UDBL

Deficiencies of Static Hashing
• In static hashing, function h maps search-key values to a fixed set of B of

bucket addresses.
– Databases grow with time. If initial number of buckets is too small, performance

will degrade due to too much overflows.
– If file size at some point in the future is anticipated and number of buckets

allocated accordingly, significant amount of space will be wasted initially.
– If database shrinks, again space will be wasted.
– One option is periodic re-organization of the file with a new hash function, but it

is very expensive.
• These problems can be avoided by using dynamic hashing techniques that

allow the number of buckets to be modified dynamically.

Kjell Orsborn 11/16/03

67UU - IT - UDBL

Dynamic Hashing
• Good for database that grows and shrinks in size
• Allows the hash function to be modified dynamically
• Extendable hashing – one form of dynamic hashing

– A table with the size 2d is used as directory or index where d is called the global
depth of the directory.

– The first d bits in the hash field is used to find the correct place in the directory
and then the address in that position is used to find the right bucket.

– Several directory element s with the same first d’ bits in their hash values can
contain the same bucket address (if all records fits in one single bucket).

– The directory size is changed by increasing (or decreasing) d.
• d Æ d+1
• 2d Æ 2d+1

Kjell Orsborn 11/16/03

68UU - IT - UDBL

Extendable hashing

Kjell Orsborn 11/16/03

69UU - IT - UDBL

Extendable hashing vs. other schemes
• Benefits of extendable hashing:

– Hash performance does not degrade with growth of file
– Minimal space overhead

• Disadvantages of extendable hashing
– Extra level of indirection to find desired record
– Bucket address table may itself become very big (larger than memory)

• Need a tree structure to locate desired record in the structure!
– Changing size of bucket address table is an expensive operation

• Linear hashing is an alternative mechanism which avoids these disadvantages
at the possible cost of more bucket overflows

Kjell Orsborn 11/16/03

70UU - IT - UDBL

Linear hashing
– No directory is created
– One starts with M buckets [0,1,…,M-1],

and the hash function h0=k mod 20M,
and the number of bucket divisions n = 0

– If the file load factor becomes to high a new bucket is created M+n and
bucket number n is split up between bucket n and M+n via a new hash
function h1=k mod 21M

– Thus we can keep the file load factor, l, within wanted interval by letting
it trig possible splits and combinations.

– l = r / bfr * N l = file load factor
r = no of records
N = no of buckets

Kjell Orsborn 11/16/03

71UU - IT - UDBL

Comparison of ordered indexing and
hashing

Issues to consider:
• Cost of periodic re-organization
• Relative frequency of insertions and deletions
• Is it desirable to optimize average access time at the

expense of worst-case access time?
• Expected type of queries:

– Hashing is generally better at retrieving records having a specified
value of the key.

– If range queries are common, ordered indices are to be preferred

Kjell Orsborn 11/16/03

72UU - IT - UDBL

Index definition in SQL

• Create an index
– create index <index-name> on <relation-name> (<attribute-list>)
– E.g.: create index b-index on branch(branch-name)

• Use create unique index to indirectly specify and enforce
the condition that the search key is a candidate key.
– Not really required if SQL unique integrity constraint is supported

• To drop an index
drop index <index-name>

