
Kjell Orsborn 11/4/03

1UU - IT - UDBL

DATABASTEKNIK - 1DL116

 Fall 2003

An introductury course on database systems

http://user.it.uu.se/~udbl/dbt-ht2003/

Kjell Orsborn
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

Kjell Orsborn 11/4/03

2UU - IT - UDBL

Introduction to Normalization
Elmasri/Navathe ch 10

Kjell Orsborn

Department of Information Technology
Uppsala University, Uppsala, Sweden

Kjell Orsborn 11/4/03

3UU - IT - UDBL

Normalization
(Elmasri/Navathe ch. 10)

• Relational database design - normalization of relational
schemas or “we want to have good relations . . .” (ch. 10)
– Problems with bad schema designs
– Functional dependencies
– Normal forms

Kjell Orsborn 11/4/03

4UU - IT - UDBL

Problems in schema design

• Unclear semantics
• Redundancy
• Null values
• Modification problems

– updates
– insertion
– deletion

Kjell Orsborn 11/4/03

5UU - IT - UDBL

Design of relational data bases

• To design a relational database we start from an E-R model
and design a number of relational schemas as e.g.:

• emps(ename, salary, dept, dname, dept#, mgr)
• supp_info(sname, iname, saddr, price)
• items(iname, item#, dept)
• customers(cname, addr, balance, o#, date)

• includes(o#, iname, quantity)

Kjell Orsborn 11/4/03

6UU - IT - UDBL

Bad design causes problems
• We have chosen here to combine the schemas for SUPPLIES and

SUPPLIERS and exchange them with one schema that contain
all information about suppliers:

SUPPLIERS(SNAME, SADDR)
SUPPLIES(SNAME, INAME, PRICE)
SUPP_INFO(SNAME, INAME, SADDR, PRICE)

• Due to this decision we will run into several problems with:
– Redundancy
– Update anomalies
– Insertion anomalies
– Deletion anomalies

Kjell Orsborn 11/4/03

7UU - IT - UDBL

Redundancy

SUPP_INFO(SNAME, INAME, SADDR, PRICE)

• Redundancy:
– When each supplier supplies several products, the address will be

repeated for each product.

Kjell Orsborn 11/4/03

8UU - IT - UDBL

Update anomaly - inconsistency

SUPP_INFO(SNAME, INAME, SADDR, PRICE)

• When you have redundant data you risk, for example,
when updating the address in the table, to miss updating all
occurences of the redundant values (here several
occurences of address values for the same supplier).

• The result will be that we get inconsistencies among data
in the database.

Kjell Orsborn 11/4/03

9UU - IT - UDBL

Insertion anomaly
SUPP_INFO(SNAME, INAME, SADDR, PRICE)

• We can not insert the address for a supplier that do not currently
supply any product.
– One can of course assign null values INAME and PRICE, but the one

must remember to remove these null values later when additional
information exist. Hence, no tractable solution!

• Furthermore, since INAME is part of the key for this relation this
is not a good solution. It is probably not even allowed to assign
null values to key attributes.

Kjell Orsborn 11/4/03

10UU - IT - UDBL

Deletion anomaly

SUPP_INFO(SNAME, INAME, SADDR, PRICE)

• If all tuples are removed, that corresponds to items that a
specific supplier provide, then all information about that
supplier will disappear.

Kjell Orsborn 11/4/03

11UU - IT - UDBL

How to avoid these problems?

• In order to avoid all these problems, we divide the relation
(table) in the following manner:

SUPPLIERS(SNAME, SADDR)
SUPPLIES(SNAME, INAME, PRICE)

• Disadvantages:
– To retrieve addresses for suppliers that provide bananas, we must

perform an expensive join operation, SUPPLIERS * SUPPLIES, that we
could get away with if we instead had the relation:
SUPP_INFO(SNAME, INAME, SADDR, PRICE)

– The operations SELECT and PROJECT that is much cheaper will do
the job in the latter case.

Kjell Orsborn 11/4/03

12UU - IT - UDBL

Normalization
• What principles do we have to follow to systematically end up

with a good schema design.
– In 1972 Codd defined a set of conditions that put various requirements on

a relation.
– To fulfill these conditions, the relation schema is in several steps divided

into smaller schemas.
• This process is called normalization.
• We need to study the following concepts for performing the

normalization:
– Functional dependencies
– Normal forms for relations

Kjell Orsborn 11/4/03

13UU - IT - UDBL

Functional dependency (FD)
• Let R be a relation schema with attributes A1, ..., An and let X and

Y be subsets of {A1, ..., An}.
• Let r(R) determine a relation (instance) of the schema R.

• The attribute set Y is said to be dependent of the attribute set X.
• There is a functional dependency between X and Y.

We say that X functionally determines Y, and we write
X fi Y

if for every pair of tuples t1, t2 R r(R) and for all r(R) the following hold:
If t1[X] = t2[X] it holds that t1[Y] = t2[Y]

We say that X functionally determines Y, and we write
X fi Y

if for every pair of tuples t1, t2 R r(R) and for all r(R) the following hold:
If t1[X] = t2[X] it holds that t1[Y] = t2[Y]

Kjell Orsborn 11/4/03

14UU - IT - UDBL

Functional dependency - properties
• If X is a candidate key for R we have:

X fi Y for all Y Õ {A1, ..., An}.
X « Y do not need to be the empty set.
Assume that R represents an N:1 relation between the entity types E1
and E2.
It is further assumed that X Õ {A1, ..., An} constitutes a key for E1 and Y
constitutes a key for E2,
Then we have the dependency X fi Y but not Y fi X.
Om R skulle vara en 1:1 relation då gäller även Y fi X.

• A functional dependency is a property of R and not of any
relation r(R). The semantic for the participating attributes in a
relation decides if there exists a FD or not.

Kjell Orsborn 11/4/03

15UU - IT - UDBL

Example
• The simplest form of FD is between the key attributes and the

other attributes in a schema:
{SNAME} fi {SADDR} SUPPLIERS
{SNAME, INAME} fi {PRICE} SUPPLIES
{CNAME} fi {CADDR, BALANCE} CUSTOMERS
{SNAME} fi {SNAME}

• A slightly more complex FD:
{SNAME, INAME} fi {SADDR, PRICE}

– This dependency is the combination of the first two above. We are able
to combine these two because we understand the concepts supplier, item,
address and price and the relationships among them.

Kjell Orsborn 11/4/03

16UU - IT - UDBL

Full functional dependency - FFD
• A functional dependency X fi Y is termed FFD if there is no

attribute A Œ X such that (X- {A}) fi Y holds.
• In other words, a FFD is a dependency that do not contain any

unnecessary attributes in its determinant (i.e. the left-hand side
of the dependency).

SUPP_INFO(SNAME, INAME, SADDR, PRICE)

{SNAME, INAME} fi {PRICE} FFD
{SNAME, INAME} fi {SADDR} Not FFD
{SNAME} fi {SADDR} FFD
compare: f(x,y) = 3x + 2 Not FFD

!!!f(x) = 3x + 2 FFD

Kjell Orsborn 11/4/03

17UU - IT - UDBL

Prime attribute
• Definition: an attribute that is a member in any of the candidate

keys is called a prime attribute of R.
• For example:

– In the schema R(CITY,STREET,ZIPCODE) all attributes are prime
attribute, since we have the dependencies CS fi Z and Z fi C and both
CS and SZ are keys.

– In the schema R(A,B,C,D) with the dependencies AB fi C, B fi D och
BC fi A, are both AB and BC candidate keys. Therefore are A, B and C
prime attribute but not D.

• Attributes that is not part of any candidate key is called non-
prime or non-key attributes.

Kjell Orsborn 11/4/03

18UU - IT - UDBL

First normal form - 1NF

• Only atomic values are allowed as attribute values in the
relational model.
– The relations that fulfill this condition are said to be in 1NF

Kjell Orsborn 11/4/03

19UU - IT - UDBL

Second normal form - 2NF

• A relation schema R is in 2NF if:
– It is in 1NF
– Every non-key attribute A in R is FFD of each candidate key in R.

Kjell Orsborn 11/4/03

20UU - IT - UDBL

Third normal form - 3NF

• A relation schema R is in 3NF if:
– It is in 2NF
– No non-key attribute A in R is allowed to be FFD of any other

non-key attribute.

Kjell Orsborn 11/4/03

21UU - IT - UDBL

Boyce-Codd normal form - BCNF

• A relation schema R is in BCNF if:
– It is in 1NF
– Every determinant X is a candidate key.

• The difference between BCNF and 3NF is that in BCNF, a
prime attribute A in R can not be FFD of a non-key (or
non-prime) determinant X. Therefore BCNF is a more
strict condition.

Kjell Orsborn 11/4/03

22UU - IT - UDBL

Additional normal forms

• There are a number of other normal forms available
• These explores additional data dependencies such as:

– multi-valued dependencies (4NF)
– join dependencies (5NF)

Kjell Orsborn 11/4/03

23UU - IT - UDBL

Multi-valued dependencies
• Consider the relation classes(course, teacher, book)

• The book attribute specifies required litterature independent of teacher.
• The relation fulfills BCNF, but still every teacher must be supplied two

times.

course
database
database
database
database

operating system
operating system

teacher
Tore
Tore

Martin
Martin
Martin
Martin

book
Elmasri
Ullman
Elmasri
Ullman

Silberschatz
Shaw

Kjell Orsborn 11/4/03

24UU - IT - UDBL

Lossless join

• We decompose a schema R with functional dependencies
D into schemas R1 and R2

• R1 and R2 is called a lossless-join decomposition (in
relation to D) if R1 * R2 contain the same information as
R.
– no spurious tuples are generated when we perform the join

between the decomposed relations.
– no information is lost when the relation is decomposed.

Kjell Orsborn 11/4/03

25UU - IT - UDBL

3NF/BCNF

• BCNF is a strong condition. It is not always possible to
transform (through decomposition) a schema to BCNF and keep
the dependencies.

• 3NF has the most of BCNF's advantages and can still be
fulfilled without giving up dependencies or the lossless-join
property for the relation schema.

• Observe that 3NF admits some sort of redundance that BCNF
do not allow. BCNF requires that one eliminates redundance
caused by functional dependencies.

