DATABASTEKNIK - 1DL116

Fall 2003

An introductury course on database systems

http://user.it.uu.se/~udbl/dbt-ht2003/

Kjell Orsborn Uppsala Database Laboratory Department of Information Technology, Uppsala University, Uppsala, Sweden

Kjell Orsborn

10/27/03

Introduction to the Relational Model

Elmasri/Navathe ch 7, 9.1

Kjell Orsborn

Department of Information Technology Uppsala University, Uppsala, Sweden

The Relational Model

- The relational model was introduced by E. F. Codd 1970.
- Many DBMS's are based on this data model.
- It support simple declarative, but yet powerful, languages for describing operations on data.
- Operations in the relational model applies to relations (tables) and produce new relations.
 - This means that an operation can be applied to the result of another operation and that several different operations can be combined.
 - Operations are described in an algebraic notation that is based on relational algebra.

Relations as mathematical objects

- In set theory, a relation is defined as a subset of the product set (cartesian product) of a number of domains (value sets).
- The product set of the domains $D_1, D_2, ..., D_n$ is written as $D_1 \times D_2 \times ... \times D_n$.
- $\mathbf{D}_1 \times \mathbf{D}_2 \times ... \times \mathbf{D}_n$ constitute the set of all ordered sets $\langle v_1, v_2, ..., v_n \rangle$ such that v_i belongs to \mathbf{D}_i for all i.
 - If n=2, D₁={T, F} and D₂={P, Q, R} one gets the product sets: D₁×D₂ = {<T,P>,<T,Q>,<T,R>,<F,P>,<F,Q>,<F,R>} D₂×D₁ = {<P,T>,<P,F>,<Q,T>,<Q,F>,<R,T>,<R,F>}
 - For example, we have the relations:
 - $\begin{array}{ll} R_1 \subseteq D_2 \times D_1 & R_1 = \{ <\!\!P,\!T\!\!>,\!<\!\!Q,\!T\!\!>,\!<\!\!R,\!T\!\!> \} \\ R_2 \subseteq D_2 \times D_1 & R_2 = \{ <\!\!P,\!T\!\!>,\!<\!\!P,\!F\!\!> \} \end{array}$
- Members of a relation is called **tuples**. If the relation is of **degree** n, the tuples are called *n*-tuples.

An example relation

• If

customer-name = {Jones, Smith, Curry, Lindsay }
customer-street = { Main, North, Park }
customer-city = { Harrison, Rye, Pittsfield }

• Then

r = {(Jones, Main, Harrison), (Smith, North, Rye), (Curry, North, Rye), (Lindsay, Park, Pittsfield)} is a relation over *customer-name × customer-street × customer-city*

Relation schema

- A_1, A_2, \ldots, A_n are attributes
- $\mathbf{R} = (A_1, A_2, \dots, A_n)$ is a relation schema
 - Customer-schema(customer-name, customer-street, customer-city)
- r(R) is a relation on the relation schema R
 - customer (Customer-schema)

Relation instance

- The current values (*relation instance*) of a relation are specified by a table.
- An element *t* of *r* is a tuple represented by a *row* in a table customer

customer

customer-name	customer-street	customer-city
Jones	Main	Harrison
Smith	North	Rye
Curry	North	Rye
Lindsay	Park	Pittsfield

7

Relations as tables

First Normal Form

- Only simple or atomic values are allowed in the relational model.
- Attributes is not allowed to have composite or multiple values.
- The theory for the relational model is based on these assumptions which is called:

The first normal form assumption

9

Null values

- A special value, **null** or ⊥, can sometimes be used as an attribute value.
- Every occurence of null is unique. Thus, two occurences of null is not considered to be equal even if they are represented by the same symbol.
- null is used:
 - when one does not know the actual value of an attribute.
 - when a certain attribute does not have a value.
 - when an attribute is not applicable.
- Examples of the use of null are showed later.

- Because relations are sets, all tuples in the relation are different.
- There is usually a subset k of the attributes in a relation schema R, i.e. $k \subseteq R$, that has the characteristic that if the tuples

t1, t2 \in r(R) and t1 \neq t2, the following holds:

 $t1[k] \neq t2[k]$ (i.e. the value of k in t1 \neq the value of k in t2)

• Every such subset k is called a **superkey** for R.

Keys - continued . . .

- A superkey k is *minimal* if there is no other superkey k' such that k' ⊂ k.
- Every minimal superkey (NOTE! there can be more than one) is called a **candidate key** for R.
- The candidate key <u>chosen</u> by the database designer as the key for R is called R:s **primary key** or just **key**.
- In addition, term **foreign key** is used when a tuple is referenced, from another relation, with its key.

Key examples

- Example superkey:
 - {customer-name, customer-street} and {customer-name} are both superkeys of *Customer*, if no two customers can possibly have the same name.
- Example candidate key:
 - {customer- name} is a candidate key for *Customer*, since it is a superkey (assuming no two customers can possibly have the same name), and no subset of it is a superkey.

Determining keys from E-R types

- **Strong entity type**. The primary key of the entity type becomes the primary key of the relation.
- Weak entity type. The primary key of the relation consists of the union of the primary key of the strong entity type and the discriminator of the weak entity type.
- **Relationship type**. The union of the primary keys of the related entity types becomes a super key of the relation.
 - For binary many-to-many relationship types, above super key is also the primary key.
 - For binary many-to-one relationship types, the primary key of the "many" entity type becomes the relation's primary key.
 - For one-to-one relationship types, the relation's primary key can be that of either entity type.

Integrity constraints for a relational database schema

- 1. Domain constraint
 - attribute values for attribute A shall be atomic values from dom(A)
- 2. Key constraint
 - candidate keys for a relation must be unique
- 3. Entity integrity constraint
 - no primary key is allowed to have a null value
- 4. Referential integrity constraint
 - a tuple that refers to another tuple in another relation must refer to an existing tuple
- 5. Semantic integrity constraint
 - e.g. "an employee's total work time per week can not exceed 40 hours for all projects taken all together"

From E-R to relational model

- The basic procedure defines a set of relational schemas that represent entity and relationship types in the E-R model. This model should further with integrity constraints.
 - Primary keys allow entity types and relationship types to be expressed uniformly as *tables* which represent the contents of the database.
 - A database which conforms to an E-R diagram can be represented by a collection of tables.
 - For each entity type and relationship type there is a unique table which is assigned the name of the corresponding entity type or relationship type.
 - Each table has a number of columns (generally corresponding to attributes), which have unique names.
 - Converting an E-R diagram to a table format is the basis for deriving a relational database design from an E-R diagram.

Steps in translation from E-R model to relational model

- Translation of entity types and their attributes
 - Step 1) Entity types
 - Step 2) Weak entity types
- Translation of relationships
 - Step 3) 1-1 Relationship
 - Step 4) 1-N Relationship
 - Step 5) M-N Relationship
- Translation of multivalued attributes and relationships
 - Step 6) Multivalued attributes
 - Step 7) Multivalued relationships

Translating entity types and their attributes

- Step 1: Entity types a strong entity type reduces to a table with the same attributes.
 - Key attributes (primary key pk) is made the primary key column(s) for the table. Each attribute gets their own column.
 - Composite attributes are normally represented by their simple components.
 - Example customer schema and table:

Customer(<u>social-security</u>, customer-name, c-street, c-city)

social-security	customer-name	c-street	c-city
321-12-3123	Jones	Main	Harrison
019-28-3746	Smith	North	Rye
677-89-9011	Hayes	Main	Harrison

pk

18

UPPSALA

UNIVERSITET

Translating entity types cont...

• Step 2: Weak entity types - a weak entity type becomes a table that includes a column for the primary key of the identifying strong entity type .

Translating entity types cont. . .

- The table corresponding to a relationship type linking a weak entity type to its identifying strong entity type is redundant.
- Example of the payment schema and table:
 - The payment table already contains the information that would appear in the loan-payment table (i.e., the columns loan-number and payment-no).

Payment(loan-number, payment-no, pay-date, amount)

loan-number	payment-no	pay-date	amount
L-17	5	10 May 1996	50
L-23	11	17 May 1996	75
L-15	22	23 May 1996	300

20

Translating relationship types

- Step 3: 1-1 Relationship types
 - The foreign key column (fk) is a copy of the other entity's primary key column (pk). The values in a fk-column point to unique row in the other table, and thus implement the relationship.

Translating 1-1 relationship types cont...

UPPSALA

UNIVERSITET

22

- Step 4: 1-N Relationship types
 - Include the primary key of the "1-side" as a foreign key on the "N-side", (i.e. the foreign key column is placed on the entity on the N-side).
 - Alternatively, an extra table (R) is created whose primary key is a foreign key composed by the primary key from the N-side.

- Step 5: M-N Relationship types
 - Always a separate table with columns for the primary keys of the two participating entity types, and any descriptive attributes of the relationship type.

- Step 6: Multivalued attributes
 - A separate table is created for the multivalued attribute. Its primary key is composed of the owning entity's primary key, and the attribute value itself.

E E-MVA

<u>pk</u>	а	<u>pk</u>	₋mva

- Step 7: Multivalued relationship types
 - First try to remove multivalued relationships <u>on the E-R model level</u> by model transformation.
 - A separate table is created, with foreign keys to all tables that are included in the relationship. Its primary key is composed of all foreign keys.

- Step 7: Multivalued relationship types continued
 - In the case where R is 1-N-N, the primary key on R shall not include the fk for the table with cardinality 1.

Summary

- Entity types and their attributes
 - Step 1) Entity types
 - Each entity gets a corresponding table, with the primary key column set to its key attribute.
 - Step 2) Weak entity types
 - The primary key of a weak entity type table has the primary key of the owner table as a component.
- Relationships
 - Step 3) 1-1 Relationship
 - 4 alternatives: fk in E1 or E2, separate R table, common table for E1 & E2
 - Step 4) 1-N Relationship
 - fk i entity on the N-side, separate R table
 - Step 5) M-N Relationship
 - separate R table

Summary cont. . .

- Multivalued attributes and relationships
 - Step 6) Multivalued attributes
 - Separate table for the attribute with its pk composed of the owner pk and the value column.
 - Step 7) Multivalued relationships
 - Separate R table. N-N-N: pk composed of all fk's. 1-N-N: pk is fk to the E1-table.

Example E-R to relational model translation

Relational schemas for the example

• Schemas for the entity types in the example above EMP(ENAME, SALARY, DEPT)

DEPTS(<u>DNAME</u>, DEPT#, MGR)

SUPPLIERS(<u>SNAME</u>, SADDR)

ITEMS(<u>INAME</u>, ITEM, DNAME)

ORDERS(<u>O#</u>, DATE, CUST)

CUSTOMERS (<u>CNAME</u>, CADDR, BALANCE)

• Schemas for relationship types (M:N) SUPPLIES(<u>SNAME</u>, <u>INAME</u>, PRICE) INCLUDES(<u>O#</u>, <u>INAME</u>, QUANTITY)

Short summary E-R -> R

E-R concept	Relational concept
entity type	relation
1:1 relationship type	include one of the primary keys as a foreign key of the other "entity relation"
1:N relationship type	include the "1-side" primary key as a foreign key at the "n-side"
M:N relationship type	relation with two foreign keys
n-ary relationship type (degree > 2)	relation with n foreign keys
simple attribute	attribute
composite attribute	simple attribute components
multivalued attribute	relation anf foreign key
value set	domain
key attribute	primary (or secondary key)

Introduction to Relational Algebra

Elmasri/Navathe ch 7

Kjell Orsborn

Department of Information Technology Uppsala University, Uppsala, Sweden

Query languages

- Languages where users can express what information to retrieve from the database.
- Categories of query languages:
 - Procedural
 - Non-procedural (declarative)
- Formal ("pure") languages:
 - Relational algebra
 - Relational calculus
 - Tuple-relational calculus
 - Domain-relational calculus
 - Formal languages form underlying basis of query languages that people use.

Relational algebra

- **Relational algebra** is a procedural langaue
- Operations in relational algebra takes two or more relations as arguments and return a new relation.
- Relational algebraic operations:
 - Operations from set theory:
 - Union, Intersection, Difference, Cartesian product
 - Operations specifically introduced for the relational data model:
 - Select, Project, Join
- It have been shown that the *select*, *project*, *union*, *difference*, and *cartesian product* operations form a complete set. That is any other relational algebra operation can be expressed in these.

35

Operations from set theory

- Relations are required to be **union compatible** to be able to take part in the union, intersection and difference operations.
- Two relations R_1 and R_2 is said to be union-compatible if:

 $\begin{aligned} & \textbf{R}_1 \subseteq \textbf{D}_1 \textbf{x} \textbf{D}_2 \textbf{x} ... \textbf{x} \textbf{D}_n \text{ and } \\ & \textbf{R}_2 \subseteq \textbf{D}_1 \textbf{x} \textbf{D}_2 \textbf{x} ... \textbf{x} \textbf{D}_n \end{aligned}$

i.e. if they have the same degree and the same domains.

Union operation

- The **union** of two union-compatible relations *R* and *S* is the set of all tuples that either occur in *R*, *S*, or in both.
- Notation: $R \cup S$
- Defined as: $R \cup S = \{t \mid t \in R \text{ or } t \in S\}$
- For example:

Difference operation

- The **difference** between two union-compatible sets *R* and *S* is the set of all tuples that occur in *R* but not in *S*.
- Notation: R S
- Defined as: $R S = \{t \mid t \in R \text{ and } t \notin S\}$
- For example:

Intersection

- The **intersection** of two union-compatible sets *R* and *S*, is the set of all tuples that occur in both *R* and *S*.
- Notation: $R \cap S$
- Defined as: $R \cap S = \{t \mid t \in R \text{ and } t \in S\}$
- For example:

Cartesian product

- Let R and S be relations with k1 and k2 arities resp. The cartesian product of R and S is the set of all possible k₁+k₂ tuples where the first k₁ components constitute a tuple in R and the last k₂ components a tuple in S.
- Notation: $R \times S$
- Defined as: $R \times S = \{t q \mid t \in R \text{ and } q \in S\}$
- Assume that attributes of r(R) and s(S) are disjoint. (i.e. R ∩ S = Ø). If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Cartesian product example

Selection operation

- The selection operator, σ , selects a specific set of tuples from a relation according to a selection condition (or selection predicate) *P*.
- Notation: $\sigma_p(\mathbf{R})$
- Defined as: $\sigma_p(\mathbf{R}) = \{t \mid t \in \mathbf{R} \text{ and } P(t)\}$ (i.e. the set of tuples t in *R* that fulfills the condition *P*)
- Where *P* is a logical expression^(*) consisting of terms connected by: ∧ (and), ∨ (or), ¬ (not) and each term is one of: <attribute> op <attribute> or <constant> where op is one of: =, ≠, >, ≥. <. ≤

Example: $\sigma_{SALARY>30000}$ (EMPLOYEE)

(*) a formula in propositional calculus

Selection example

$$\sigma_{A=B \land D>5}(\mathbf{R}) = \begin{array}{ccc} A & B & C & D \\ & a & a & 1 & 7 \\ & b & b & 4 & 9 \end{array}$$

10/27/03

43

Projection operation

- The projection operator, Π, picks out (or projects) listed columns from a relation and creates a new relation consisting of these columns.
- Notation: $\Pi_{A_1, A_2, ..., A_k}(\mathsf{R})$ where A_1, A_2 are attribute names and R is a relation name.
- The result is a new relation of k columns.
- Duplicate rows removed from result, since relations are sets.

Example: $\Pi_{\text{LNAME,FNAME,SALARY}}$ (EMPLOYEE)

Projection example

UPPSALA

UNIVERSITET

Join operator

- The **join** operator, ⊗ (almost), creates a new relation by joining related tuples from two relations.
- Notation: $\mathbb{R} \otimes_C \mathbb{S}$ *C* is the join condition which has the form $A_r \theta A_s$, where θ is one of $\{=, <, >, \le, \ge, \ne\}$. Several terms can be connected as C_1 $\wedge C_2 \wedge ... C_k$.
- A join operation with this kind of general join condition is called "Theta join".

Example Theta join

С

В

С

D

Equijoin

- The same as join but it is required that attribute A_r and attribute A_s should have the same value.
- Notation: $\mathbf{R} \otimes_{\mathcal{C}} \mathbf{S}$

C is the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \wedge C_2 \wedge ... C_k$.

Example Equijoin

Natural join

- Natural join is equivalent with the application of join to R and S with the equality condition $A_r = A_s$ (i.e. an equijoin) and then removing the redundant column A_s in the result.
- Notation: R $*_{Ar,As}$ S A_{r},A_{s} are attribute pairs that should fulfil the join condition which has the form $A_{r} = A_{s}$. Several terms can be connected as $C_{1} \wedge C_{2} \wedge ... C_{k}$.

Example Natural join

Composition of operations

- Expressions can be built by composing multiple operations
- Example: $\sigma_{A=C}(\mathbf{R} \times \mathbf{S})$

Additional relational operations

- Assignment and Rename
- Division
- Outer join and outer union
- Aggregate functions (presented together with SQL)
- Update operations (presented together with SQL)
 - (not part of pure query language)

Assignment operation

- The assignment operation (←) makes it possible to assign the result of an expression to a temporary relation variable.
- Example:
- $temp \leftarrow \sigma_{dno = 5}(EMPLOYEE)$ $result \leftarrow \prod_{fname, Iname, salary}(temp)$
- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- The variable may use variable in subsequent expressions.

Renaming relations and attribute

- The assignment operation can also be used to rename relations and attributes.
- Example: NEWEMP $\leftarrow \sigma_{dno = 5}(EMPLOYEE)$ R(FIRSTNAME,LASTNAME,SALARY) \leftarrow $\Pi_{fname,lname,salary}(NEWEMP)$

Division operation

- Suited to queries that include the phrase "for all".
- Let *R* and *S* be relations on schemas *R* and *S* respectively, where $R = (A_1, ..., A_m, B_1, ..., B_n)$ $S = (B_1, ..., B_n)$
- The result of $R \div S$ is a relation on schema $R \cdot S = (A_1, \dots, A_m)$ $R \div S = \{t \mid t \in \prod_{R \cdot S} (R) \land \forall u \in S (tu \in R)\}$

Example Division operation

Outer join/union operation

- Extensions of the join/union operations that avoid loss of information.
- Computes the join/union and then adds tuples from one relation that do not match tuples in the other relation to the result of the join.
- Fills out with *null* values:
 - *null* signifies that the value is unknown or does not exist.
 - All comparisons involving null are **false** by definition.

Example Outer join

• Relation *loan*

branch-name	loan-number	amount
Downtown	1-170	3000
Redwood	L-230	4000
Perryridge	L-260	1700

• Relation *borrower*

customer-name	loan-number	
Jones	1-170	
Smith	L-230	
Hayes	L-155	

Example Outer join cont...

• *loan* * *borrower* (natural join)

branch-name	loan-number	amount	customer-name
Downtown	1-170	3000	Jones
Redwood	L-230	4000	Smith

• $loan \otimes_{left} borrower$ (left outer join)

branch-name	loan-number	amount	customer-name	loan-number
Downtown	1-170	3000	Jones	1-170
Redwood	L-230	4000	Smith	L-230
Perryridge	L-260	1700	null	null
Kjell Orsborn		10/27/03		UPPSALA UNIVERSITET

Example Outer join cont...

• *loan* ⊗_{right} *borrower* (natural right outer join)

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
<i>null</i>	L-155	<i>null</i>	Hayes

• *loan* \otimes_{full} *borrower* (natural full outer join)

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
Perryridge	L-260	1700	null
null	L-155	null	Hayes

61

Aggregation operations

- Presented together with SQL later
- Examples of aggregation operations
 - avg
 - min
 - max
 - sum
 - count

Update operations

- Presented together with SQL later
- Operations for database updates are normally part of the DML
 - insert (of new tuples)
 - **update** (of attribute values)
 - **delete** (of tuples)
- Can be expressed by means of the assignment operator

Example DB schema

- In the following example we will use a database with the following relation schemas:
 - emps(<u>ename</u>, salary, dept)
 - depts(<u>dname</u>, dept#, mgr)
 - suppliers(<u>sname</u>, addr)
 - items(iname, item#, dept)
 - orders(<u>o#</u>, date, cust)
 - customers(<u>cname</u>, addr, balance)
 - supplies(<u>sname</u>, <u>iname</u>, price)
 - includes(<u>o#</u>, <u>item</u>, quantity)

64

Relation algebra as a query language

- Relational schema: supplies(<u>sname</u>, <u>iname</u>, price)
- "What is the names of the suppliers that supply cheese?" $\pi_{sname}(\sigma_{iname='CHEESE'}(SUPPLIES))$
- "What is the name and price of the items that cost less than 5 \$ and that are supplied by WALMART"

 $\pi_{\text{iname,price}}(\sigma_{\text{sname='WALMART' } \wedge \text{ price } < 5}(\text{SUPPLIES}))$

10/27/03

