DATABASTEKNIK - 1DL116

Fall 2003

An introductury course on database systems
http://user.it.uu.se/~udb1/dbt-ht2003/

Kjell Orsborn
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

Introduction to the Relational Model

Elmasri/Navathe ch 7, 9.1

Kjell Orsborn
Department of Information Technology
Uppsala University, Uppsala, Sweden

The Relational Model

- The relational model was introduced by E. F. Codd 1970.
- Many DBMS's are based on this data model.
- It support simple declarative, but yet powerful, languages for describing operations on data.
- Operations in the relational model applies to relations (tables) and produce new relations.
- This means that an operation can be applied to the result of another operation and that several different operations can be combined.
- Operations are described in an algebraic notation that is based on relational algebra.

Relations as mathematical objects

- In set theory, a relation is defined as a subset of the product set (cartesian product) of a number of domains (value sets).
- The product set of the domains $D_{1}, D_{2}, \ldots, D_{n}$ is written as $D_{1} \square D_{2} \square . . \square D_{n}$.
- $\mathbf{D}_{1} \square \mathbf{D}_{2} \square \ldots \square \mathbf{D}_{\mathrm{n}}$ constitute the set of all ordered sets $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}>\right.$ such that v_{i} belongs to D_{i} for all i .
- If $\mathrm{n}=2, \mathrm{D}_{1}=\{\mathrm{T}, \mathrm{F}\}$ and $\mathrm{D}_{2}=\{\mathrm{P}, \mathrm{Q}, \mathrm{R}\}$ one gets the product sets:
$\left.\left.\left.\left.\left.\mathrm{D}_{1} \mathrm{DD}_{2}=\{<\mathrm{T}, \mathrm{P}\rangle,<\mathrm{T}, \mathrm{Q}\right\rangle,<\mathrm{T}, \mathrm{R}\right\rangle,\langle\mathrm{F}, \mathrm{P}\rangle,<\mathrm{F}, \mathrm{Q}\right\rangle,<\mathrm{F}, \mathrm{R}\right\rangle\right\}$
$D_{2} \square D_{1}=\{\langle P, T\rangle,\langle P, F\rangle,\langle Q, T\rangle,\langle Q, F\rangle,\langle R, T\rangle,\langle R, F\rangle\}$
- For example, we have the relations:

$$
\begin{array}{ll}
\mathrm{R}_{1} \square \mathrm{D}_{2} \square \mathrm{D}_{1} & \mathrm{R}_{1}=\{\langle\mathrm{P}, \mathrm{~T}\rangle,\langle\mathrm{Q}, \mathrm{~T}\rangle,\langle\mathrm{R}, \mathrm{~T}\rangle\} \\
\mathrm{R}_{2} \square \mathrm{D}_{2} \square \mathrm{D}_{1} & \mathrm{R}_{2}=\{\langle\mathrm{P}, \mathrm{~T}\rangle,\langle\mathrm{P}, \mathrm{~F}\rangle\}
\end{array}
$$

- Members of a relation is called tuples. If the relation is of degree n, the tuples are called n-tuples.

An example relation

- If

```
customer-name = {Jones, Smith, Curry, Lindsay }
customer-street = { Main, North, Park }
    customer-city = { Harrison, Rye, Pittsfield }
```

- Then
$r=\{($ Jones, Main, Harrison), (Smith, North, Rye), (Curry,
North, Rye), (Lindsay, Park, Pittsfield)\}
is a relation over customer-name \square customer-street \square customercity

Relation schema

- $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ are attributes
- $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation schema
- Customer-schema(customer-name, customer-street, customer-city)
- $r(R)$ is a relation on the relation schema R
- customer (Customer-schema)

Relation instance

- The current values (relation instance) of a relation are specified by a table.
- An element t of r is a tuple - represented by a row in a table customer
customer

customer-name	customer-street	customer-city
Jones	M ain	Harrison
Smith	North	Rye
Curry	North	Rye
Lindsay	Park	Pittsfield

Relations as tables

First Normal Form

- Only simple or atomic values are allowed in the relational model.
- Attributes is not allowed to have composite or multiple values.
- The theory for the relational model is based on these assumptions which is called:

> The first normal form assumption

Null values

- A special value, null or \square, can sometimes be used as an attribute value.
- Every occurence of null is unique. Thus, two occurences of null is not considered to be equal even if they are represented by the same symbol.
- null is used:
- when one does not know the actual value of an attribute.
- when a certain attribute does not have a value.
- when an attribute is not applicable.
- Examples of the use of null are showed later.

Keys

- Because relations are sets, all tuples in the relation are different.
- There is usually a subset k of the attributes in a relation schema R, i.e. $k \square R$, that has the characteristic that if the tuples t 1 , $\mathrm{t} 2 \square \mathrm{r}(\mathrm{R})$ and $\mathrm{t} 1 \neq \mathrm{t} 2$, the following holds: $\mathrm{t} 1[\mathrm{k}] \neq \mathrm{t} 2[\mathrm{k}]$ (i.e. the value of k in $\mathrm{t} 1 \neq$ the value of k in t)
- Every such subset k is called a superkey for R .

Keys - continued...

- A superkey k is minimal if there is no other superkey k^{\prime} such that $\mathrm{k}^{\prime} \mathrm{k}$.
- Every minimal superkey (NOTE! there can be more than one) is called a candidate key for R.
- The candidate key chosen by the database designer as the key for R is called R :s primary key or just key.
- In addition, term foreign key is used when a tuple is referenced, from another relation, with its key.

Key examples

- Example superkey:
- \{customer-name, customer- street\} and \{customer- name\} are both superkeys of Customer, if no two customers can possibly have the same name.
- Example candidate key:
- \{customer- name\} is a candidate key for Customer, since it is a superkey (assuming no two customers can possibly have the same name), and no subset of it is a superkey.

Determining keys from E-R types

- Strong entity type. The primary key of the entity type becomes the primary key of the relation.
- Weak entity type. The primary key of the relation consists of the union of the primary key of the strong entity type and the discriminator of the weak entity type.
- Relationship type. The union of the primary keys of the related entity types becomes a super key of the relation.
- For binary many-to-many relationship types, above super key is also the primary key.
- For binary many-to-one relationship types, the primary key of the "many" entity type becomes the relation's primary key.
- For one-to-one relationship types, the relation's primary key can be that of either entity type.

Integrity constraints

for a relational database schema

- 1. Domain constraint
- attribute values for attribute A shall be atomic values from $\operatorname{dom}(\mathrm{A})$
- 2. Key constraint
- candidate keys for a relation must be unique
- 3. Entity integrity constraint
- no primary key is allowed to have a null value
- 4. Referential integrity constraint
- a tuple that refers to another tuple in another relation must refer to an existing tuple
- 5. Semantic integrity constraint
- e.g. "an employee's total work time per week can not exceed 40 hours for all projects taken all together"

From E-R to relational model

- The basic procedure defines a set of relational schemas that represent entity and relationship types in the E-R model. This model should further with integrity constraints.
- Primary keys allow entity types and relationship types to be expressed uniformly as tables which represent the contents of the database.
- A database which conforms to an E-R diagram can be represented by a collection of tables.
- For each entity type and relationship type there is a unique table which is assigned the name of the corresponding entity type or relationship type.
- Each table has a number of columns (generally corresponding to attributes), which have unique names.
- Converting an E-R diagram to a table format is the basis for deriving a relational database design from an E-R diagram.

Steps in translation from E-R model to relational model

- Translation of entity types and their attributes
- Step 1) Entity types
- Step 2) Weak entity types
- Translation of relationships
- Step 3) 1-1 Relationship
- Step 4) 1-N Relationship
- Step 5) M-N Relationship
- Translation of multivalued attributes and relationships
- Step 6) Multivalued attributes
- Step 7) Multivalued relationships

Translating entity types and their attributes

- Step 1: Entity types - a strong entity type reduces to a table with the same attributes.
- Key attributes (primary key - pk) is made the primary key column(s) for the table. Each attribute gets their own column.
- Composite attributes are normally represented by their simple components.
- Example customer schema and table:

Customer(social-security, customer-name, c-street, c-city)

social-security	customer-name	c-street	c-city
$321-12-3123$	Jones	M ain	Harrison
$019-28-3746$	Smith	North	Rye
$677-89-9011$	Hayes	Main	Harrison

Translating entity types cont. . .

- Step 2 : Weak entity types - a weak entity type becomes a table that includes a column for the primary key of the identifying strong entity type .

pk	a1

pK	-- k $_{-}$	a 2

Translating entity types cont. . .

- The table corresponding to a relationship type linking a weak entity type to its identifying strong entity type is redundant.
- Example of the payment schema and table:
- The payment table already contains the information that would appear in the loan-payment table (i.e., the columns loan-number and payment-no).

Payment(loan-number, payment=no,_pay-date, amount)

loan-number	payment-no	pay-date	amount
$\mathrm{L}-17$	5	10 May 1996	50
$\mathrm{~L}-23$	11	17 May 1996	75
$\mathrm{~L}-15$	22	23 May 1996	300

Translating relationship types

- Step 3: 1-1 Relationship types
- The foreign key column (fk) is a copy of the other entity's primary key column (pk). The values in a fk-column point to unique row in the other table, and thus implement the relationship.

Alt 1:

Alt 2:

Translating 1-1 relationship types cont. . .

E1 E2

Alt 4:

pk1	a1	pk2	a2

Translating relationship ... cont. . .

- Step 4: 1-N Relationship types
- Include the primary key of the " 1 -side" as a foreign key on the " N -side", (i.e. the foreign key column is placed on the entity on the N -side).
- Alternatively, an extra table (R) is created whose primary key is a foreign key composed by the primary key from the N -side.

Alt 1:

Alt 2:

pk1	a1

$f k 1$	$\underline{f k 2}$

Translating relationship ... cont. . .

- Step 5: M-N Relationship types
- Always a separate table with columns for the primary keys of the two participating entity types, and any descriptive attributes of the relationship type.

Translating relationship ... cont. . .

- Step 6: Multivalued attributes
- A separate table is created for the multivalued attribute. Its primary key is composed of the owning entity's primary key, and the attribute value itself.

E E-MVA

Translating relationship ... cont. . .

- Step 7: Multivalued relationship types
- First try to remove multivalued relationships on the E-R model level by model transformation.
- A separate table is created, with foreign keys to all tables that are included in the relationship. Its primary key is composed of all foreign keys.

R

$f k 1$	$f k 2$	$f k 3$	a

Translating relationship ... cont. . .

- Step 7: Multivalued relationship types continued
- In the case where R is $1-\mathrm{N}-\mathrm{N}$, the primary key on R shall not include the fk for the table with cardinality 1.

Summary

- Entity types and their attributes
- Step 1) Entity types
- Each entity gets a corresponding table, with the primary key column set to its key attribute.
- Step 2) Weak entity types
- The primary key of a weak entity type table has the primary key of the owner table as a component.
- Relationships
- Step 3) 1-1 Relationship
- 4 alternatives: fk in E1 or E2, separate R table, common table for E1 \& E2
- Step 4) 1-N Relationship
- fk i entity on the N -side, separate R table
- Step 5) M-N Relationship
- separate R table

Summary cont. . .

- Multivalued attributes and relationships
- Step 6) Multivalued attributes
- Separate table for the attribute with its pk composed of the owner pk and the value column.
- Step 7) Multivalued relationships
- Separate R table. N-N-N: pk composed of all fk's. 1-N-N: pk is fk to the E1-table.

Example E-R to relational model translation

Relational schemas for the example

- Schemas for the entity types in the example above

```
    EMP(ENAME, SALARY, DEPT)
```

 DEPTS (DNAME, DEPT\#, MGR)
 SUPPLIERS (SNAME, SADDR)
 ITEMS (INAME, ITEM, DNAME)
 ORDERS (O\#, DATE, CUST)
 CUSTOMERS (CNAME, CADDR, BALANCE)
 - Schemas for relationship types (M:N)

SUPPLIES (SNAME, INAME, PRICE)
INCLUDES(O\#, INAME, QUANTITY)

Short summary E-R -> R

E-R concept	Relational concept
entity type	relation
$1: 1$ relationship type	include one of the primary keys as a foreign key of the other "entity relation"
$1:$ N relationship type	include the "1-side" primary key as a foreign key at the "n-side"
M:N relationship type	relation with two foreign keys
n-ary relationship type (degree >2)	relation with n foreign keys
simple attribute	attribute
composite attribute	simple attribute components
multivalued attribute	relation anf foreign key
value set	domain
key attribute	primary (or secondary key)

Introduction to Relational Algebra

Elmasri/Navathe ch 7

Kjell Orsborn
Department of Information Technology
Uppsala University, Uppsala, Sweden

Query languages

- Languages where users can express what information to retrieve from the database.
- Categories of query languages:
- Procedural
- Non-procedural (declarative)
- Formal ("pure") languages:
- Relational algebra
- Relational calculus
- Tuple-relational calculus
- Domain-relational calculus
- Formal languages form underlying basis of query languages that people use.

Relational algebra

- Relational algebra is a procedural langaue
- Operations in relational algebra takes two or more relations as arguments and return a new relation.
- Relational algebraic operations:
- Operations from set theory:
- Union, Intersection, Difference, Cartesian product
- Operations specifically introduced for the relational data model:
- Select, Project, Join
- It have been shown that the select, project, union, difference, and cartesian product operations form a complete set. That is any other relational algebra operation can be expressed in these.

Operations from set theory

- Relations are required to be union compatible to be able to take part in the union, intersection and difference operations.
- Two relations R_{1} and R_{2} is said to be union-compatible if:
$\mathrm{R}_{1} \square \mathrm{D}_{1} \mathrm{xD}_{2} \mathrm{x} \ldots \mathrm{xD}_{\mathrm{n}}$ and
$\mathrm{R}_{2} \square \mathrm{D}_{1} \mathrm{xD}_{2} \mathrm{x} \ldots \mathrm{xD}_{\mathrm{n}}$
i.e. if they have the same degree and the same domains.

Union operation

- The union of two union-compatible relations R and S is the set of all tuples that either occur in R, S, or in both.
- Notation: R \square S
- Defined as: $\mathrm{R} \square \mathrm{S}=\{\mathrm{tIt} \square \mathrm{R}$ ort C$\}$
- For example:

A	B
a	1
a	2
b	1

A	B
a	2
b	3

$$
=\begin{array}{|c|c|}
\hline A & B \\
\hline \mathrm{a} & 1 \\
\mathrm{a} & 2 \\
\mathrm{~b} & 1 \\
\mathrm{~b} & 3 \\
\hline
\end{array}
$$

Difference operation

- The difference between two union-compatible sets R and S is the set of all tuples that occur in R but not in S.
- Notation: R \square S
- Defined as: $R \square S=\{t \mid t \square R$ and $t \square S\}$
- For example:

A	B
a	1
a	2
b	1

\square

A	B
a	2
b	3

$=$| A | B |
| :--- | :--- |
| a | 1 |
| b | 1 |

Intersection

- The intersection of two union-compatible sets R and S, is the set of all tuples that occur in both R and S.
- Notation: R \square S
- Defined as: $R \square S=\{t \mid t \square R$ and $t \square S\}$
- For example:

A	B
a	1
a	2
b	1

\square

A	B
a	2
b	3

$=$| A | B |
| :---: | :---: |
| a | 2 |

Cartesian product

- Let R and S be relations with k 1 and k 2 arities resp. The cartesian product of R and S is the set of all possible $\mathrm{k}_{1}+\mathrm{k}_{2}$ tuples where the first k_{1} components constitute a tuple in R and the last k_{2} components a tuple in S.
- Notation: R $\square \mathrm{S}$
- Defined as: $\mathrm{R} \square \mathrm{S}=\{\mathrm{tq} \mid \mathrm{t} \square \mathrm{R}$ and $\mathrm{q} \square \mathrm{S}\}$
- Assume that attributes of $\mathrm{r}(\mathrm{R})$ and $\mathrm{s}(\mathrm{S})$ are disjoint. (i.e. $\mathrm{R} \square \mathrm{S}=$ \varnothing). If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Cartesian product example

A	B					
a	1					
b	2		C	D		
:---	:---	:---	:---	:---	:---	
a	5					
b	5					
b	6					
c	5	$=$	A	B	C	D
:---:	:---:	:---:	:---:			
a	1	a	5			
a	1	b	5			
a	1	b	6			
a	1	c	5			
b	2	a	5			
b	2	b	5			
b	2	b	6			
b	2	c	5			

Selection operation

- The selection operator, \square, selects a specific set of tuples from a relation according to a selection condition (or selection predicate) P.
- Notation: $\square_{p}(\mathrm{R})$
- Defined as: $\square_{p}(\mathrm{R})=\{\mathrm{t} \mid \mathrm{t} \square \mathrm{R}$ and $P(\mathrm{t})\}$ (i.e. the set of tuples t in R that fulfills the condition P)
- Where P is a logical expression ${ }^{(*)}$ consisting of terms connected by:
\square (and), (or), \square (not) and each term is one of: <attribute> op <attribute> or <constant> where $o p$ is one of: $=, \neq,>, \geq .<. \square$

Example: $\square_{\text {SALARY }>30000}(E M P L O Y E E)$
(*) a formula in propositional calculus

Selection example

$$
\mathrm{R}=\begin{array}{|c||c|c|c|}
\hline A & B & C & D \\
\hline \mathrm{a} & \mathrm{a} & 1 & 7 \\
\mathrm{a} & \mathrm{~b} & 5 & 7 \\
\mathrm{~b} & \mathrm{~b} & 2 & 3 \\
\mathrm{~b} & \mathrm{~b} & 4 & 9 \\
\hline
\end{array}
$$

$$
\square_{A=B \square D>5}(\mathrm{R})=\begin{array}{|c|c|c|c|}
\hline A & B & C & D \\
\hline \mathrm{a} & \mathrm{a} & 1 & 7 \\
\mathrm{~b} & \mathrm{~b} & 4 & 9 \\
\hline
\end{array}
$$

Projection operation

- The projection operator, \square, picks out (or projects) listed columns from a relation and creates a new relation consisting of these columns.
- Notation: $\square_{A_{1}, A_{2}, \ldots, A_{k}}(R)$
where A_{1}, A_{2} are attribute names and R is a relation name.
- The result is a new relation of k columns.
- Duplicate rows removed from result, since relations are sets.

Example: $\square_{\text {LNAme,fname,salary }}(E M P L O Y E E)$

Projection example

$$
\mathrm{R}=\begin{array}{|c|c|c|}
\hline A & B & C \\
\hline \mathrm{a} & 1 & 1 \\
\mathrm{a} & 2 & 1 \\
\mathrm{~b} & 3 & 1 \\
\mathrm{~b} & 4 & 2 \\
\hline
\end{array}
$$

$$
\square_{A, C}(\mathrm{R})=\begin{array}{|c|c|}
\hline A & C \\
\hline \mathrm{a} & 1 \\
\hline \mathrm{a} & 1 \\
\mathrm{~b} & 1 \\
\mathrm{~b} & 2 \\
\hline
\end{array}=\begin{array}{|c|c|}
\hline A & C \\
\hline \mathrm{a} & 1 \\
\mathrm{~b} & 1 \\
\mathrm{~b} & 2 \\
\hline
\end{array}
$$

Join operator

- The join operator, (almost), creates a new relation by joining related tuples from two relations.
- Notation: R c^{S} C is the join condition which has the form $A_{r} \square A_{s}$, where \square is one of $\{=,<,>, \leq, \geq, \neq\}$. Several terms can be connected as C_{1} $\square C_{2} \square \ldots C_{k}$.
- A join operation with this kind of general join condition is called "Theta join".

Example Theta join

R			S					R		A	${ }_{A \leq D} \mathrm{~S}$		
A	B	C	$A \leq D$	B	C	D	$=$	A	B	C	B	C	D
1	2	3		2	3	4		1	2	3	2	3	4
6	7	8		7	3	5		1	2	3	7	3	5
9	7	8		7	8	9		1	2	3	7	8	9
								6	7	8	7	8	9
								9	7	8	7	8	9

Equijoin

- The same as join but it is required that attribute A_{r} and attribute A_{s} should have the same value.
- Notation: $\mathrm{R}{ }_{c}$ S
C is the join condition which has the form $A_{r}=A_{s}$. Several terms can be connected as $C_{1} \square C_{2} \square \ldots C_{k}$.

Example Equijoin

$$
\begin{aligned}
& \text { R } \\
& \text { S } \\
& \mathrm{R}_{B=C} \mathrm{~S} \\
& \begin{array}{|l|l|}
\hline A & B \\
\hline \mathrm{a} & 2 \\
\mathrm{a} & 4 \\
\hline
\end{array} \quad B=C \quad \begin{array}{|l||l|l|}
\hline C & D & E \\
\hline 2 & \mathrm{~d} & \mathrm{e} \\
4 & \mathrm{~d} & \mathrm{e} \\
9 & \mathrm{~d} & \mathrm{e} \\
\hline
\end{array}
\end{aligned}
$$

Natural join

- Natural join is equivalent with the application of join to R and S with the equality condition $A_{r}=A_{s}$ (i.e. an equijoin) and then removing the redundant column A_{s} in the result.
- Notation: R * ${ }_{A r, A s} S$
A_{r}, A_{s} are attribute pairs that should fulfil the join condition which has the form $A_{r}=A_{s}$. Several terms can be connected as $C_{1} \square C_{2} \square \ldots C_{k}$.

Example Natural join

$$
\begin{aligned}
& \text { R } \\
& \text { S } \\
& \mathrm{R} \square_{B=C} \mathrm{~S} \\
& \begin{array}{|l|l|}
\hline A & B \\
\hline \mathrm{a} & 2 \\
\mathrm{a} & 4 \\
\hline
\end{array} \quad B=C \quad \begin{array}{|l||l|l|}
\hline C & D & E \\
\hline 2 & \mathrm{~d} & \mathrm{e} \\
4 & \mathrm{~d} & \mathrm{e} \\
9 & \mathrm{~d} & \mathrm{e} \\
\hline
\end{array}
\end{aligned}
$$

Composition of operations

- Expressions can be built by composing multiple operations
- Example: $\square_{A=C}(\mathrm{R} \square \mathrm{S})$

Additional relational operations

- Assignment and Rename
- Division
- Outer join and outer union
- Aggregate functions (presented together with SQL)
- Update operations (presented together with SQL)
- (not part of pure query language)

Assignment operation

- The assignment operation (\square) makes it possible to assign the result of an expression to a temporary relation variable.
- Example:
- temp $\square \square_{d n o=5}($ EMPLOYEE)
result $\square \prod_{\text {fname,lname,salary }}$ (temp)
- The result to the right of the \square is assigned to the relation variable on the left of the \square.
- The variable may use variable in subsequent expressions.

Renaming relations and attribute

- The assignment operation can also be used to rename relations and attributes.
- Example:

NEWEMP $\square \square_{\mathrm{dno}}=5$ (EMPLOYEE)
R(FIRSTNAME,LASTNAME,SALARY) \square
$\Pi_{\text {fname, Iname,salary }}$ (NEWEMP)

Division operation

- Suited to queries that include the phrase "for all".
- Let R and S be relations on schemas R and S respectively, where $R=\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$

$$
S=\left(B_{1}, \ldots, B_{n}\right)
$$

- The result of $\mathrm{R} \div \mathrm{S}$ is a relation on schema

$$
\begin{aligned}
& R-S=\left(A_{1}, \ldots, A_{m}\right) \\
& R \div S=\left\{\mathrm{t} \mid \mathrm{t} \square \square_{R-S}(R) \square \square \mathrm{u} \square S(\mathrm{tu} \square R)\right\}
\end{aligned}
$$

Example Division operation

R			S		$\div S$
A	B	\div	B	$=$	A
a	1		1		a
a	3				
b	1				
c	1				
d	1				
d	3				
d	4				
d	6				
e	1				
e	2				

Outer join/union operation

- Extensions of the join/union operations that avoid loss of information.
- Computes the join/union and then adds tuples from one relation that do not match tuples in the other relation to the result of the join.
- Fills out with null values:
- null signifies that the value is unknown or does not exist.
- All comparisons involving null are false by definition.

Example Outer join

- Relation Ioan

branch-name	loan-number	amount
Downtown	$1-170$	3000
Redwood	L-230	4000
Perryridge	L-260	1700

- Relation borrower

customer-name	loan-number
Jones	$1-170$
Smith	$\mathrm{L}-230$
Hayes	$\mathrm{L}-155$

Example Outer join cont...

- loan * borrower (natural join)

branch-name	loan-number	amount	customer-name
Downtown	$1-170$	3000	Jones
Redwood	L-230	4000	Smith

- Ioan left borrower (left outer join)

branch-name	loan-number	amount	customer-name	loan-number
Downtown	$1-170$	3000	Jones	$1-170$
Redwood	L-230	4000	Smith	L-230
Perryridge	L-260	1700	null	null
10102703				
Kjell Orsborn				

Example Outer join cont...

- Ioan right borrower (natural right outer join)

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
null	L-155	null	Hayes

- Ioan full borrower (natural full outer join)

branch-name	loan-number	amount	customer-name
Downtown	L-170	3000	Jones
Redwood	L-230	4000	Smith
Perryridge	L-260	1700	null
null	L-155	null	Hayes

Aggregation operations

- Presented together with SQL later
- Examples of aggregation operations
- avg
- min
- max
- sum
- count

Update operations

- Presented together with SQL later
- Operations for database updates are normally part of the DML
- insert (of new tuples)
- update (of attribute values)
- delete (of tuples)
- Can be expressed by means of the assignment operator

Example DB schema

- In the following example we will use a database with the following relation schemas:
- emps(ename, salary, dept)
- depts(dname, dept\#, mgr)
- suppliers(sname, addr)
- items(iname, item\#, dept)
- orders(o\#, date, cust)
- customers(cname, addr, balance)
- supplies(sname, iname, price)
- includes(o\#, item, quantity)

Relation algebra as a query language

- Relational schema: supplies(sname, iname, price)
- "What is the names of the suppliers that supply cheese?"
$\square_{\text {sname }}\left(\square_{\text {iname }=\text { 'CHEESE }}(\right.$ SUPPLIES $\left.)\right)$
- "What is the name and price of the items that cost less than $5 \$$ and that are supplied by WALMART"

$$
\square_{\text {iname,price }}\left(\square_{\text {sname='WALMART' } \square \text { price }<5}(\text { SUPPLIES })\right)
$$

