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Abstract 
 

Amos II (Active Mediator Object System) is a distributed mediator system 
that uses a functional data model and has a relationally complete functional 
query language, AmosQL. The purpose of this work is to use foreign Java 
functions and Java libraries to develop a generic wrapper facility for music 
files in Amos II, which extracts meta-data contained in music files of 
different kinds into Amos II, thus enabling searching the music files in terms 
of particular music files properties. To implement this, a set of primitive 
functions have been defined, which allow general queries to music files, and 
for finding all music files in a directory. A meta-data refresh facility updates 
extracted meta-data when music files contents have changed. A generic 
JavaSound API with pluggable specific music format support is used to get 
music meta-data from different format files. Primitive foreign functions take 
the name of a music file as a parameter and then store objects and attributes 
in the database. The system implements MP3 and Ogg Vorbis format 
wrappers as examples. 
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1 Introduction 
There are increasing requirements for data integration systems that combine data from 

different kinds of data sources and present them to users in a comprehensible format. The wrapper-

mediator approach [21] divides the functionality of a data integration system into two kinds of 

subsystems. The wrappers (data source interfaces) provide access to the data in data. The 

mediators—data integration modules—provide coherent views of the data in the data sources by 

performing semantic reconciliation (handling of semantic conflicts and overlaps) between the 

wrapped data. 

Amos II [16] is a light-weight and high-performance mediator database engine. Amos II has 

a functional data model with a relationally complete object-oriented query language, AmosQL. The 

Amos II data manager is extensible so that new data types and operators can be added to AmosQL, 

implemented in some external programming language (Java, C, or Lisp). 

Amos II is implemented in C and runs under Windows and Linux operating systems. Amos 

II currently has several wrappers available, including XML [11, 17], relational databases [1, 5], 

RDF [15] and MIDI [10] wrappers. 

Nowadays, it is very common to store music data in computers. Amos II already wraps the 

MIDI music format [10], which represents information on how to play music by musical 

instruments. One would also want to wrap musical data from other kinds of musical formats that 

contain the actual music data sound — like the MP3 (MPEG Audio Layer-3) file format. 

The purpose of the project is to use foreign Java functions and Java libraries to develop a 

generic wrapper facility for music files in Amos II. With this wrapper, the Amos II system is able to 

search meta-data of music files and combine the retrieved data with the other wrapped Amos II data 

sources. Hence, Amos II technologies to query data become available for searching meta-data 

stored in music files, e.g., by using AmosQL to query artist and music track length information. To 

save storage, the system does not load the actual files themselves, but only import their meta-data. 

Database refresh functionality is also implemented to update imported meta-data if changed in the 

musical files. As an example, the wrapper is able to handle both MP3 [3] and Ogg Vorbis [22] 

format files. The design makes it easy to extend the wrapper with new music formats. 

The generic music wrapper is defined as primitive foreign functions taking the name of a 

music file as a parameter and then storing Amos II objects and attributes in the database. 



The primitive Java interfaces to MP3 and Ogg Vorbis files were studied to investigate how 

to access music data from Amos II in a generic way and transform the class structure of Java’s 

music file API into corresponding Amos II data representations. The implemented functions allow 

general queries to MP3 and Vorbis files by querying extracted meta-data from the files using Java 

music interfaces. Some other functions are also implemented, e.g. for finding all music files in a 

directory. 

The project was divided into the following parts:  

1. Acquiring consolidated knowledge about digital music along with its representation in 

computing and music standards, such as MP3 and Ogg Vorbis. 

2. Studying and selecting a development environment—existing generic Java multimedia 

specifications, frameworks, APIs and their implementations. Also, I had to choose concrete 

Java libraries for MP3 and Ogg Vorbis meta-data parsing. 

3. Designing an object oriented database schema for the wrapper structure according to the 

selected Java APIs. 

4. Designing primitive foreign functions to import musical meta-data given a name of a 

directory and to synchronize database meta-data with the real files in a file system. 

5. Developing a simple playback of musical files functionality. 

6. Finally, the whole application had to be integrated with the Amos II environment along with 

demonstration queries illustrating how to query wrapped musical files. 



2 Background 
In this chapter, the mediator-wrapper approach is described on which the Amos II system is 

based; later, the Amos II architecture itself is described. As the main purpose of Amos II is using it 

as a database and the music wrapper is extensively based on custom data types, the data model of 

Amos II is described. Finally, as this project is done with the Java programming language, Java 

interfaces to access Amos II system are described. 

Today, a lot of applications are developed that need to access databases. Therefore, an 

increasing number of databases are in use. For example, online travel agencies must be able to 

access databases of flight companies to gain information of available seats, databases of airports to 

see arrival and departure timetables, and databases of hotels to search for available rooms. Such 

information is not stored in one database, but each flight company, airport and hotel would have 

their own database. Thus, access to several different databases is necessary. Furthermore, many 

possibilities to store data exist. One company may have one database and schema, while another 

company might have a completely different view on the stored data. Thus, an application needs the 

possibility to access heterogeneous data sources. 

The mediator/wrapper approach [21] gives support for applications and users to query and 

access heterogeneous data sources. A mediator system consists of a mediator and one or several 

wrappers. A mediator is a virtual database that comprises a common data model—a data model able 

to specify how to map data between different data sources. The task of a mediator is to process 

queries sent from an application. A query is split depending on the data and capabilities of the target 

data sources. If, as in Amos II, a mediator may also regard other mediators as data sources, a 

network of mediators, consisting of several layers, can be created. In such a network only primitive 

mediators should have access to data sources. Then higher layers, consisting of more advanced data 

abstractions, can be queried by applications. A mediator can access different autonomous data 

sources, like relational databases, XML, MP3, OGG files or object stores, but never directly. Each 

data source needs to be accessed through software interfaces, called wrappers. Queries sent from 

the mediator are translated by a wrapper to a data source specific format and thus it hides the 

heterogeneity of that data source. After that, the wrapper retrieves query results that have to be 

translated into the common data model and passed to the mediator. There all results from all data 

sources are combined and returned to the application. The mediator uses data modeling 

primitives— e.g. types and functions to reconcile differences and overlaps of wrapped data. 



2.1 Amos II 

Amos II is a distributed mediator system with an object oriented and functional data model. 

It is based on the mediator/wrapper architecture. It is a distributed mediator system consisting of 

one or several mediator peers. These peers can communicate via the Internet using TCP/IP. Each 

peer offers its own virtual functional database layer, consisting of: 

• A storage manager, 

• A transaction manager, 

• Data abstractions that provide transparent functional views for clients and other mediator 

peers to access data sources, 

• A functional query language: AmosQL. 

 

The core of Amos II is an open, light-weight and extensible database management system 

(DBMS). Queries to the data model are written in AmosQL [16, 6], a relationally complete 

functional query language. The system can be configured as a stand-alone system or as several 

autonomous and distributed Amos II peers. These peers can interoperate through its distributed 

multi-database facilities [16]. Each mediator peer offers three possibilities to access data: 

• Access to data stored in an Amos II database; 

• Access to wrapped data sources; 

Application

Mediator

Mediator Mediator

Music files RDBMS

Name Server

Figure 2.1.1: An example of Amos II system with three mediators 



• Access to data that is reconciled from other mediator peers; 

In this project a generic wrapper for music files is developed, thus making music meta-data 

available to mediators. 

In Amos II it is possible to build up layers of peers with a dynamic communication 

topology. A distributed mediator query optimizer optimizes this communication topology. To 

compute an optimized execution plan for a given query, data and schema information are 

exchanged between the peer. In figure 2.2.1, the top mediator defines a mediating functional view 

integrating data from two other sub-mediators. The mediating view uses facilities for semantic 

reconciliation [16] for combining data from the two lower mediators. The two lower mediators 

translate data from a wrapped relational database and a web server, respectively. They have 

knowledge of how to execute AmosQL queries to get meta-data of music files, and how to translate 

AmosQL queries to SQL, respectively. To summarize, figure 2.2.1 gives an example of the 

distribution of mediator peers. Two distributed data sources offer through three distributed mediator 

peers their data to an application. Communication between peers is illustrated by thick lines, where 

the arrow indicates the peer running as server. One special mediator peer is listed in the figure, the 

name server, which stores meta-data about all peers.  

Mediator peers forming a group are autonomous—there is no control of them on the name 

server. It is left to each peer to describe its own local data view and data sources. Is the name server 

involved in peer communication? No, all communication is done through messages that can request 

or deliver data and commands between peers. To avoid a bottleneck the name server is only 

involved when a new mediator peer wants to register to the group. As soon as mediators are known 

to each other they can communicate directly without any information from the name server. In 

figure 2.2 the communication with the name server is illustrated by dotted lines. The name server 

always acts, with regard to the other mediator peers, as a server. 

2.1.1 Data Model 

Basic components of the data model of Amos II are types, functions and objects. In object 

oriented programming languages these concepts approximately correspond to classes, methods, and 

instances. Types are used for classifying objects. Each object is an instance of a type. All properties 

of an object as well as relationships between objects are represented by functions. 



2.1.1.1 Types 

Types correspond to entity types in Entity-Relationship-diagrams. Types unite objects with 

similar properties. An instance of a type is always an instance of all its supertypes. Also, if an object 

inherits from more than one type it gains all properties from all supertypes. Two kinds of types 

exist, stored and derived types. Derived types are mainly used for defining reconciled views of 

mediated data [16], while the stored types are defined and stored in an Amos II database. In the 

present work only stored types are used since the meta-data is actually imported into an Amos II 

database when a music file is accessed. The music contents itself stays in the file, though, to save 

storage and access time. The following command creates a track and an MP3 track type in Amos II: 

create type track; 

create type mp3track under track; 

The root element in the Amos II type hierarchy is named Object. All (system and user) 

defined type definitions are stored as instances of a type named Type. All functions are instances of 

a type named Function. When a user defines a type it is always a subtype of type Userobject. 

2.1.1.2 Functions 

Functions model the relationship between objects, properties of objects and computations 

over objects. In functional queries and views they are providing the basic primitives. As already 

mentioned, functions are instances of the type Function. The function’s signature contains 

information about all arguments, such as the types and optional names, and about the result of the 

function. The next example shows the signature of a function modeling the attribute name of type 

track: 

title(track)->charstring 

Furthermore, functions can be overloaded, i.e. different functions defined for different 

combinations of arguments can have the same name (polymorphism). The selection of the correct 

function implementation of an overloaded function is made based on the actual argument types. 

2.1.1.3 Objects 

Objects in Amos II correspond to entities in an ER diagram and are instances of Amos II 

types. Everything in Amos II is represented as an object, independent whether the object is user-

defined or system-defined. Literals and surrogates are the main kinds for representing objects. 

Literal objects are primitive objects like integers, strings or even collections of other objects. In 



addition to this, there are surrogates which are explicitly created by the user or the system and 

describe real world entities. For example, a vorbistrack object in Amos II can be created with a 

command as follows: 

create vorbistrack instances :thetrack; 

The system assigns unique object identifiers (OIDs) to all surrogate objects. When a query 

requests a surrogate object, the returned result will be displayed similar to this: 

#[OID 1101] 

2.1.2 External Interfaces 

There are two ways to interface Amos II with other programs—either an external program 

calls Amos II through the callin interface, or Amos II calls external functions through the callout 

interface [15]. Both interfaces are used in this project. 

The most convenient way to write Amos II applications is using the Java interface [4]. The 

music mediator is written in Java language and uses Java interfaces to communicate with Amos II. 

With the callin interface a program in Java calls Amos II. The callin interface is similar in 

structure to the call level interfaces for relational databases, such as JDBC. 

With the callout interface Amos II functions call methods written in Java. Each such foreign 

Amos II function is implemented by one or several Java methods. The foreign functions in Amos II 

are multi-directional which allow them to have separately defined inverses and to be indexed. The 

system furthermore allows the callin interface to be used also in foreign functions, which gives 

great flexibility and allows Java methods to be used as a form of stored procedures. 

With the callin interface there are two ways to call Amos II from Java: 

1. In the embedded query interface a Java method is provided that passes strings containing 

AmosQL statements to Amos II for dynamic evaluation. Methods are also provided to 

access the results of the dynamically evaluated AmosQL statement. The embedded 

query interface is relatively slow since the AmosQL statements have to be parsed and 

compiled at run time. 

2. In the fast-path interface predefined Amos II functions are called as Java methods, 

without the overhead of dynamically parsing and executing AmosQL statements. The 



fast-path is significantly faster than the embedded query interface. It is therefore 

recommended to always make Amos II derived functions and stored procedures for the 

various Amos II operations performed by the application and then use the fast-path 

interface to invoke them directly. 

Amos II can be linked directly with a Java application program. This is called the tight 

connection where Amos II is an embedded database in the application. It provides for the fastest 

possible interface between an application and Amos II since both the application and Amos II run in 

the same address space. The disadvantages with the tight connection are that Amos II and the 

application must run on the same computer. Another disadvantage is that only a single Java 

application can be linked to Amos II.  

The musical wrapper system is implemented as a set of foreign functions. The wrapper is 

using the callin interface with the tight connection to call AmosQL from inside foreign functions. 

2.2 Digital Sound 

What is a sound from a physical point of view? It is the result of a mechanical disturbance of 

some object in a physical medium, such as air. This mechanical disturbance generates vibrations 

that can be represented as electrical signals by means of a device (for example, a microphone), that 

converts these vibrations into a time-varying voltage. 

An analog sound signal is the result of measuring the voltage that represents the sound. 

These kinds of signals are continuous in the sense that they consist of a continuum of constantly 

changing values. A digital sound is the result of counting all these values many times per second for 

a certain defined length/time. Each measurement value is called a sample, and this kind of process 

is called sampling. In order to process sounds on the computer, the analog sound must be converted 

into a digital format understandable by computer—binary numbers. 

The sampling frequency of a sound is equal to the number of cycles which occur every 

second (cycles per second, abbreviated cps or Hz). The Nyquist-Shannon sampling theorem states 

that in order to accurately represent a sound digitally, the sampling rate must be higher than at least 

twice the value of the highest frequency contained in the signal [23]. The average upper limit of 

human hearing is approximately 18 kHz (18000 Hz), which implies a minimum sampling rate of 36 

kHz (36000 Hz). The sampling rate frequently used in computer sound design systems is 44.1 kHz 

(44100 Hz). Currently, 48 kHz (48000 Hz) sampling rate is beginning to be used. 



Another element that influences the quality of sampling is the level of resolution, or 

quantization of a sampler. The resolution depends upon the size of the word used to represent the 

amplitude of a sampling sound and is determined by the resolution of the ADC (Analog-to-Digital 

Converter) and DAC (Digital-to-Analog Converter). A word, for instance, could be 4-bits long or 

16-bits long etc. Unsatisfactory lower resolutions are prone to cause a damaging loss of sound 

quality, referred to as quantization noise. 

After digital conversion the sound needs be stored in order to be re-used or played back. The 

most basic way to store sound is to take the stream of samples and write them onto a file. Sound 

files normally contain other descriptive meta-data information related to file properties and text 

comments; all this information is stored in the sound file header (the initial portion of data of the 

file). In the header one may find information such as the sampling rate used, the size of the word, 

whether the sound is mono or stereo, and so on. There are two ways to store audio data: 

1. uncompressed, 

2. compressed. 

Some popular uncompressed audio formats are: 

• Wave, adopted by Microsoft (.wav)  

• VOC, adopted by Creative Lab's Sound Blaster (.voc)  

• NeXT/Sun, originated by NeXT and Sun computers (.snd and .au)  

• AIFF, originated by Apple computers (.aif)  

Uncompressed storage is often uneconomical as it might contain a great deal of redundant 

information like, for example, a silent portion. There are techniques for optimizing the 

representation of samples in order to reduce the size of the file. There are two kinds of compression: 

1. Lossless. 

2. Lossy. 

Lossless compression is just what it sounds like—a way of compressing music into a file 

that, when played back, is absolutely identical to the original. Not just “sounds the same,” but that is 

statistically identical. The compressed, smaller file can be expanded back into the original file 



without losing any information whatsoever. The original file is bit-for-bit identical. It was once only 

a viable option for professionals seeking to archive large volumes of audio but now large hard 

drives are cheap and drive-based portable players with lots of storage are abundant, so lossless 

formats are increasingly relevant to end users that want the best possible audio fidelity. 

Some popular lossless compression formats are:  

• FLAC (Free Lossless Audio Codec) by FLAC open-source project (.flac) 

• Monkey’s Audio by Matthew T. Ashland (.ape) 

• Apple Lossless by Apple Computer, Inc. (.m4a) 

• WMA Lossless (Windows Media Audio) by Microsoft (.wma) 

Lossy compression removes some information in order to make the file easier to compress. 

Lossy compression is by far the most popular format, because it allows for much smaller file sizes. 

Virtually all lossy compression schemes, whether for audio or video, work by a principle called 

perceptual coding. This is the process of removing parts of the original data that the user will 

probably not perceive anyway. The trick is to remove as little information as possible from the 

original audio sample and to make sure that what is removed is hard to hear (frequencies above the 

range of human hearing or computer equipment capabilities, for example). Lossy audio 

compression formats such as Ogg Vorbis and MP3 can achieve results which are provably 

indistinguishable from the original, CD-quality, sound but are a mere 10 to 20% of the size. Lossy 

compression formats widely used today are:  

• MP3 (MPEG Audio Layer 3) by Fraunhofer Institut für Integrierte Schaltungen (.mp3) 

• Ogg Vorbis by Xiph.org (.ogg) 

• WMA (Windows Media Audio) by Microsoft (.wma) 

• AAC (MPEG-4 Advanced Audio Coding) by Dolby, Fraunhofer, AT&T, Sony, and Nokia 

(.aac, .m4a). 

Sound artists and composers normally do not work with compressed sounds. Compression 

should be applied only after the piece is completed.  



2.2.1 MP3 

The MPEG acronym stands for Motion Picture Experts Group and it refers to a group of 

researchers who study new formats for coding and playing audio and video; the acronym refers to 

audio/video compression formats created by this group. The term MP3 is the abbreviation of 

MPEG1-Layer 3, which is the audio compression format, used in the MPEG 1 algorithm [3]. In 

other words, MPEG is a series of compression algorithms to reproduce audio and video; the layers 

are compression algorithms used in MPEG playing only for audio; MPEG 1-Layer 3, known as 

MP3, is one of the audio compression algorithm used by MPEG 1 algorithm. 

MPEG-1 is the name for the first phase of MPEG work, starting in 1988 [2]. This work was 

finalized with the adoption of the ISO/IEC standard in late 1992. The audio coding part of this 

standard describes a generic coding system, designed to fit the demands of many applications. 

MPEG-1 Audio consists of three operating modes called layers, with increasing complexity and 

performance, named Layer-1, Layer-2 and Layer-3. Layer-3, with the highest complexity, was 

designed to provide the highest sound quality at low bit-rates (around 128 kbit/s for a typical stereo 

signal). 

MPEG-2 denotes the second phase of MPEG. It introduced a lot of new concepts into 

MPEG video coding, including support for interlaced video signals. The main application area for 

MPEG-2 is digital television. The original MPEG-2 Audio standard was finalized in 1994 and 

consisted of two extensions to MPEG-1 Audio: 

• Multi-channel audio coding, including the 5.1 channel configuration well known from 

cinema sound – this multi-channel extension is done in a backward compatible way, 

allowing MPEG-1 stereo decoders to reproduce a mixture of all available channels. 

• Coding at lower sampling frequencies – this extension adds sampling frequencies of 16 

kHz, 22.05 kHz and 24 kHz to the MPEG-1 sampling frequencies of 32 kHz, 44.1 kHz 

and 48 kHz, improving the coding efficiency at very low bit-rates. 

MPEG-1 Audio works for both mono and stereo signals. A technique called joint stereo 

coding can be used to achieve a more efficient combined coding of the left and right channels of a 

stereophonic audio signal. Layer-3 allows both mid/side stereo coding and intensity stereo coding. 

The latter is especially helpful for lower bit-rates, but bears the risk of changing the sound image. 

The operating modes are: 



1. single channel; 

2. dual channel (two independent channels, for example containing different language 

versions of the audio); 

3. stereo (no joint stereo coding); 

4. joint stereo. 

MPEG audio compression works on a number of different sampling frequencies. MPEG-1 

defines audio compression at 32 kHz, 44.1 kHz and 48 kHz. MPEG-2 extends this to half the rates, 

i.e. 16 kHz, 22.05 and 24 kHz. “MPEG-2.5” is the name of a proprietary extension to Layer-3, 

developed by Fraunhofer IIS, which introduces the sampling frequencies 8 kHz, 11.05 kHz and 12 

kHz. 

MPEG Audio does not just work at a fixed compression ratio. The selection of the bit rate of 

the compressed audio is, within some limits, completely left to the implementer or operator of an 

MPEG audio coder. For Layer-3, the standard defines a range of bit-rates from 8 kbit/s up to 320 

kbit/s. Bit-rate is proportional to sampling frequency. Furthermore, Layer-3 decoders must support 

the switching of bit-rates from audio frame to audio frame. Combined with the bit reservoir 

technology, this allows both variable bit-rate coding and constant bit-rate coding at any fixed value 

within the limits set by the standard. 

A very important property of the MPEG standards is the principle of minimizing the amount 

of normative elements in the standard. In the case of MPEG Audio, this led to the fact that only the 

data representation, i.e. the format of the compressed audio, and the decoder are normative. Even 

the decoder is not specified in a bit-exact fashion. Instead, formulae are given for most parts of the 

algorithm, and compliance is defined by a maximum deviation of the decoded signal from a 

reference decoder, implementing the formulae with double-precision arithmetic accuracy. This 

allows building decoders running both on floating-point and fixed-point architectures. 

2.2.2 Ogg Vorbis 

Ogg Vorbis is a fully open, non-proprietary, patent-and-royalty-free, and general-purpose 

compressed audio format for mid to high quality (8 kHz-48.0 kHz, 16+ bit, polyphonic) audio and 

music at fixed and variable bit rates from 16 to 128 kbps/channel. This places Vorbis in the same 



competitive class as audio representations such as MPEG-4 (AAC), and similar to, but higher 

performance than MPEG-1/2 audio layer 3, MPEG-4 audio (TwinVQ), WMA and PAC. 

Technically, Ogg is a patent-free, fully open multimedia bitstream container designed for 

efficient streaming and storage. It is often used incorrectly to refer to the audio codec Ogg Vorbis. It 

has been created as the framework of a larger initiative aimed at developing a set of components for 

the coding and decoding of multimedia content which are both freely available and freely re-

implementable in software. The Ogg transport bit stream is designed to provide framing, error 

protection and seeking structure for higher-level codec streams that consist of raw, unencapsulated 

data packets, such as the Vorbis audio codec or Theora video codec. 

The format consists of chunks of data each called an Ogg Page [22]. Each page begins with 

the "OggS" string which can be used to identify the file as Ogg. A serial number and page number 

in the page header identifies each page as part of a series of pages which make up a bit stream. 

Multiple bitstreams may be multiplexed (combined into one stream) in the file where pages from 

each bit stream ordered by the seek time of the contained data. Bit streams may also be appended to 

existing files, a process known as chaining, to cause the bit streams to be decoded in sequence. 

Currently, it is possible to embed these bit streams: 

• Audio codecs: 

o Lossy: 

 Speex (voice data at low bitrates) 

 Vorbis (general audio data at mid- to high-level bitrates) 

o Lossless: 

 FLAC (archival and high-fidelity audio data) 

• Text codec: 

o Writ (a text codec designed to embed subtitles and captions) 

• Video codecs: 

o Theora 



o Tarkin 

Ogg Vorbis is the flagship open source multimedia project of Xiph.Org Foundation. It was 

launched after the copyright holders of the MP3 codec (coder/decoder) closed the source of their 

product and began demanding stringent licensing fees. In late 1998, Fraunhofer IIS, who owns the 

rights to the MP3 codec, sought royalties for all implementations of their MPEG Layer 3 audio 

codec. Around this time, MP3 was a mainstream audio format and used by millions of users 

worldwide. 

Given 44.1 kHz (standard CD audio sample frequency) stereo input, the current encoder as 

of September 2004 will produce output from 45 to 500 kbit/s depending on the specified quality 

setting. Quality settings run from -1 to 10 and are an arbitrary metric; files encoded at -q5, for 

example, should have the same quality of sound in all versions of the encoder, but newer versions 

should be able to achieve that quality with a lower bit rate. Vorbis is inherently variable bit rate 

(VBR). 

Vorbis uses the modified discrete cosine transform (MDCT) for converting sound data from 

the time domain to the frequency domain. The resulting frequency-domain data is broken into noise 

floor and residue components, and then quantized and entropy coded using a codebook-based vector 

quantization algorithm. The decompression algorithm reverses these stages. The noise floor 

approach gives Vorbis its characteristic analog noise -like failure mode (when the bit rate is too low 

to encode the audio without perceptible loss), which many people find more pleasing to the ears 

than metallic warbling as in MP3. 

Many users feel that Vorbis reaches transparency (sound quality that is indistinguishable 

from the original source recording) at a quality setting of -q5, approximately 160 kbit/s. For 

comparison, it is commonly felt that MP3 reaches transparency at around 192 kbit/s, resulting in 

larger file sizes for the same sound quality. 

2.2.3 Java Sound APIs 

There are two existing Java APIs for working with sound: 

1. Java Sound 

2. Java Multimedia Framework (JMF) 



The Java Sound API [18] is a low-level API for effecting and controlling the input and 

output of sound media, including both audio and Musical Instrument Digital Interface (MIDI) data 

[7]. The Java Sound API provides explicit control over the capabilities normally required for sound 

input and output, in a framework that promotes extensibility and flexibility. 

The Java Sound API provides the lowest level of sound support on the Java platform. It 

provides application programs with a great amount of control over sound operations, and it is 

extensible. For example, the Java Sound API supplies mechanisms for installing, accessing, and 

manipulating system resources such as audio mixers, MIDI synthesizers, other audio or MIDI 

devices, file readers and writers, and sound format converters. The Java Sound API does not include 

sophisticated sound editors or graphical tools, but it provides capabilities upon which such 

programs can be built. It emphasizes low-level control beyond that commonly expected by the end 

user. 

The Java Media Framework (JMF) [7] is a higher-level API that is currently available as a 

Standard Extension to the Java platform. JMF specifies a unified architecture, messaging protocol, 

and programming interface for capturing and playing back time-based media. JMF provides a 

simpler solution for basic media-player application programs, and it enables synchronization 

between different media types, such as audio and video. On the other hand, programs that focus on 

sound can benefit from the Java Sound API, especially if they require more advanced features, such 

as the ability to carefully control buffered audio playback or directly manipulate a MIDI 

synthesizer. 

For this project, Java Sound API is sufficient, so below I describe Java Sound API. 

The Java Sound API includes support for both digital audio and MIDI data. These two 

major modules of functionality are provided in separate packages: 

• javax.sound.sampled (for capture, mixing, and playback of digital (sampled) audio) 

• javax.sound.midi (for MIDI synthesis, sequencing, and event transport) 

Two other packages permit service providers (as opposed to application developers) to 

create custom components that can be installed on the system: 

• javax.sound.sampled.spi 

• javax.sound.midi.spi 



This project deals with sampled audio only, so let’s discuss the sampled audio system. The 

javax.sound.sampled package handles digital audio data, also referred to as sampled audio.  

Java Sound does not assume a specific audio hardware configuration; it is designed to allow 

different kinds of audio components to be installed on a system and accessed by the API. Java 

Sound supports common functionality such as input and output from a sound card (for example, for 

recording and playback of sound files) as well as mixing of multiple streams of audio. 

Java Sound doesn’t directly support MP3 or Ogg Vorbis file formats. Support for these 

formats is available through third-party libraries with use SPI—Service Provider Interface [19]. 

The main concepts of Java Sound are: 

• Lines: A line is an element of the digital audio “pipeline,” such as an audio input or 

output port, a mixer, or an audio data path into or out of a mixer. The audio data flowing 

through a line can be mono or multi-channel (for example, stereo). 

• Controls: Data lines and ports often have a set of controls that affect the audio signal 

passing through the line. The way in which the signal is affected depends on the type of 

control. Examples are: GainControl (allows the signal's volume to be boosted or cut a 

specified number of decibels), PanControl (affects the sound's right-left positioning). 

• Audio System: The AudioSystem class serves as an application's entry point for accessing 

the installed sampled-audio resources. AudioSystem can be queried to learn what kinds of 

audio components have been installed, and then one can obtain access to them, for 

example, mixers, lines, format conversions, files, and streams. 

• System Configuration (SPI classes): Service provider interfaces for the sampled audio 

system are defined in the javax.sound.sampled.spi package. Service providers can 

extend the classes defined here so that their own audio devices, sound file parsers and 

writers, and format converters can be installed and made available by a Java Sound 

implementation. 

2.2.4 MP3 and Ogg Vorbis SPI 

MP3 SPI for Java Sound and Ogg Vorbis SPI for Java Sound are two open-source projects 

from JavaZOOM [8]. 



• MP3SPI [12] is a Java Service Provider Interface that adds MP3 (MPEG 1/2/2.5 Layer 

1/2/3) audio format support for the Java Platform. It supports streaming, ID3v2 frames, 

equalizer etc. It is based on JLayer and Tritonus Java libraries [20]. 

• VorbisSPI [14] is a Java Service Provider Interface that adds OGG Vorbis audio format 

support to Java platform. It supports Icecast streaming. It is based on JOrbis [14] and 

Tritonus Java libraries. 

Both projects use Tritonus [20]—an open-source implementation of the Java Sound API. 

Originally, it emerged as a Linux-only Java Sound API implementation with support for various 

Linux sound systems, but now it is being used on Windows systems as well. 

Only Java 5 Standard Edition 1.5 allows to pass audio properties as a map (java.util.Map 

class). However, MP3 SPI and Ogg Vorbis SPI provide a workaround to get these audio properties 

for J2SE 1.3 and J2SE 1.4—class cast from AudioFileFormat to TAudioFileFormat provided by 

Tritonus library. This way we get the same properties mechanism (map of key: value pairs) in J2SE 

1.3, 1.4 and Java 1.5. 



3 System Architecture 
The project includes a database schema to describe musical data. When using the wrapper, 

the user has to extract meta-data of music files into the database populated according to the schema: 

the wrapper creates objects and sets their properties. Then, the user can make queries to the 

database using these stored objects and/or their properties. Later, if database information gets out of 

sync with the music files in the file system, the user can refresh the database information. During 

refresh, all directories known to the wrapper are scanned recursively for added/deleted directories 

and changed music files.  

To differentiate between music and other files, the wrapper implements file extension hints, 

indicating if a file extension stores a musical format known by the wrapper. The actual format 

stored in a music file is determined automatically by the JavaSound API itself. Later, when wrapper 

needs to know the actual format of an imported music file so it knows what objects of what type it 

should create, the wrapper checks a meta-data property which always must be present for a given 

format, but which does not exist for any other format. File extension hints are implemented because 

it would be slower for JavaSound API to try to load every file, parse it and fail, so instead it tries to 

load at least the files with the right file extension that the wrapper implements. 

Figure 3.1. Wrapper architecture 

Application 

Amos II kernel 

JavaSound API-Amos II backend 

JavaSound SPI

Music files

AmosQL 

Java interfaces 

Music wrapper 



3.1 Entity-Relationship-Attribute Schema 

 

Figure 3.1.1. Entity-Relationship-Attribute schema.  

Figure 3.1.1 depicts the database schema as an extended entity-relationship diagram. The 

diagram includes not only attributes represented as stored Amos II functions, but also derived 

functions. 

The schema consists of these basic types and their attributes: 

directory type properties: 

Name Amos type Description 

Name Charstring absolute directory path 

Table 3.1.1: directory type properties 



file type properties: 

Name Amos type Description 

Name Charstring absolute file name 

extension Charstring file extension 

Date Timeval file last modified date 

directory Directory a corresponding directory object 

Track Track a corresponding track object 

Table 3.1.2: file type properties 

Type track has one attribute—the property list—which is a stored function that takes track 

and property name as parameters and returns a literal value. To make properties user-friendly, 

derived functions are defined which select corresponding property from the property list. The 

following derived attributes accessing such properties are defined for all audio tracks: 

track type properties: 

Name  Amos type Java name Java type Description 

duration integer “duration” Long duration in microseconds 

Title charstring “title” String title of the track 

Artist charstring “author” String name of the artist of the track 

Album charstring “album” String name of the album of the track 

Date charstring “date” String the date (free-form string) of the 

recording or release of the track 

copyright charstring “copyright” String copyright message 

Comment charstring “comment” String comment of the track 

Table 3.1.3: track type properties 



The properties above belong to the Java class AudioFileFormat  (i.e. not the specific SPI 

classes). Enclosed in quotes is the property key in the property list. The same property key is used 

in a Java SPI property map. Some properties might not exist for a given file. 

3.2 MP3 Schema 

The MP3 database schemas contains only one type—mp3track which is inherited from 

track. mp3track itself has no stored attributes. As with track type, there is only property list and 

derived functions accessing properties special for MP3 data. 

mp3track type properties: 

Name   Amos type Java name Java type Description 

Mpeg charstring “mp3.version.mpeg” String MPEG version: 1, 2 

or 2.5 

Layer charstring “mp3.version.layer” String MPEG layer version: 

1, 2 or 3 

Encoding charstring “mp3.version.encoding” String MPEG encoding: 

MPEG1, MPEG2-

LSF, MPEG2.5-LSF 

Channels Integer “mp3.channels” Integer number of channels: 

1 (mono), 2 (stereo) 

Frequency Integer “mp3.frequency.hz” Integer sampling rate in Hz 

nominalBitrate Integer “mp3.bitrate.nominal.bps” Integer nominal bitrate in bits 

per second 

lengthInBytes Integer “mp3.length.bytes” Integer length in bytes 

lengthInFrames Integer “mp3.length.frames” Integer length in frames 

frameSize Integer “mp3.framesize.bytes” Integer frame size of the first 

frame. It is not 

constant for VBR 



tracks 

frameRate Real “mp3.framerate.fps” Float frame rate in frames 

per second 

id3v2Size Integer “mp3.header.pos” Integer position of first audio 

header (or ID3v2 

size) 

vbrFlag Integer “mp3.vbr” Boolean variable bitrate flag 

vbrScale Integer “mp3.vbr.scale” Integer variable bitrate scale 

crcFlag Integer “mp3.crc” Boolean cyclical redundancy 

check flag 

originalFlag Integer “mp3.original” Boolean original flag 

copyrightFlag Integer “mp3.copyright” Boolean copyright flag 

paddingFlag Integer “mp3.padding” Boolean padding flag 

Mode Integer “mp3.mode” Integer mode: 0: STEREO 1: 

JOINT_STEREO 2: 

DUAL_CHANNEL 3: 

SINGLE_CHANNEL 

Genre charstring “mp3.id3tag.genre” String ID3 tag genre 

Track charstring “mp3.id3tag.track” String ID3 tag track info 

encodedBy charstring “mp3.id3tag.encoded” String ID3 tag encoded by 

info 

Composer charstring “mp3.id3tag.composer” String ID3 tag composer 

info 

Grouping charstring “mp3.id3tag.grouping” String ID3 tag grouping info 



Disc charstring “mp3.id3tag.disc” String ID3 tag disc info 

id3v2Version charstring “mp3.id3tag.v2.version” String ID3v2 tag major 

version (2=v2.2.0, 

3=v2.3.0, 4=v2.4.0) 

Table 3.2.1: mp3track type properties 

The only property left unused from those offered by MP3 SPI is “mp3.id3tag.v2”, which 

returns a Java InputStream of ID3v2 frames. Also, this wrapper supports local file system files only, 

so properties for Shoutcast (a technology for broadcasting MP3 files on the Internet in real-time) 

streaming are not extracted.  

3.3 Ogg Vorbis Schema 

Ogg Vorbis database schema also contains only one type—vorbistrack which is inherited 

from track. vorbistrack itself has no stored attributes. As with track and mp3track types, there is 

only a property list and derived attributes. 

vorbistrack type properties: 

Name   Amos type Java name Java type Description 

lengthInBytes Integer “ogg.length.bytes” Integer length in bytes 

minBitrate Integer “ogg.bitrate.min.bps” Integer minimum bitrate 

nominalBitrate Integer “ogg.bitrate.nominal.bps” Integer nominal bitrate 

maxBitrate Integer “ogg.bitrate.max.bps” Integer maximum bitrate 

channels Integer “ogg.channels” Integer number of channels: 

1 (mono), 2 (stereo) 

frequency Integer “ogg.frequency.hz” Integer sampling rate in Hz 

oggVersion Integer “ogg.version” Integer version of Ogg 

standard 



Serial Integer “ogg.serial” Integer serial number of track

Genre charstring “ogg.comment.track” String genre of track 

Track charstring “ogg.comment.genre” String track number of track 

encodedBy charstring “ogg.comment.encodedby” String encoder name, used 

to encode the file 

Table 3.3.1: vorbistrack type properties 

Properties left unused are extended indexed comments with custom names. Some properties 

might not exist for a given file. 

3.4 System Usage 

The system is started by invoking the Amos II system with the wrapper’s database image. 

Then, if the function load is executed to import the meta-data, it takes one string parameter, 

specifying a file or a directory path. If a directory is specified the system recursive accesses all files 

in the directory and its subdirectories. For each accessed file, its meta-data is imported, the 

corresponding database objects are created, and their properties are populated. For example, the 

following command loads meta-data of all files in “test” directory to Amos II. Then user can make 

queries for these objects and their properties: 

load(“test”); 

If the user wants to get name of artist, name of song, and a duration of all songs by The Erm, 

the query for this is: 

select name(t), duration(t) from track t where artist(t)="The Erm"; 

The following query selects all MP3 files which have Original bit set: 

select title(t) from mp3track t where originalFlag(t)=1; 

The following query returns a list of all MP3 files whose extension is not “mp3”: 

select name(file(t)) from mp3track t where not(like_i(extension(file(t)), "mp3")); 

A nice feature is to start playing accessed songs simultaneously. Playing a track opens a new 

graphical window. 



The imported meta-data may get out-of-synch from the musical files if new musical files 

have been added or if old MP3 files have been replaced or updated. The system remembers last 

modified date of an imported file and checks it against the real one, this way determining if file 

needs updating. The file list is built recursively and checked against all files in a database, thus 

checking which files’ meta-data needs to be extracted or removed. Hence the user can 

resynchronize (refresh) information in the database with the updated data in the file system by 

calling the function update() with no parameters. It scans all known directory paths recursively for 

added/deleted files and directories and adds/deletes corresponding objects and their properties to 

Amos II: 

update(); 

User can also save Amos database image using command: 

save “image.dmp”; 

Amos II can later be started with this image (file name passed as a parameter), and the user 

will be able to continue using accumulated meta-data in the database. The user then also can refresh 

the database. 



4 Implementation 
The wrapper is implemented using AmosQL code and four Java foreign functions. The Java 

functions implement only the parts of the wrapper that could not be implemented in AmosQL.  

The meta-data loader, which imports meta-data from the music files into the mediator's 

database, is implemented with the function load that takes parameter of file name or directory 

name. If a directory name is specified, the foreign Java function getFiles builds a recursive list  of 

all files in that directory, using a file extension filter (AmosQL function fileExtHints). getFiles 

function also has a side-effect of creating directory objects in database, so that these directories 

remain known to the database and can be later refreshed. Then, each file name one by one is passed 

to loadFile foreign Amos function, which does the actual parsing of the file and stores meta-data in 

the database. 

The Java function load both imports new meta-data to the database and refreshes existing 

file meta-data. This is how it works: 

1. It retrieves the property list of the properties of the music file. Firstly, it gets a file name of 

the music file by parsing the Amos II command line parameter, and then builds a chain of 

Java Sound API classes to get a property map of all available properties for this particular 

file and their values. 

2. The derived function trackstests is called. For every result—a bag of track type and a test 

for this type, the function checks if the test property is available for current file. If it is, then 

conclusion is made that this is the right type of track (e.g., mp3.id3tag.v2.version 

determines the type mp3track, which always exists for MP3 files and not for any other 

music format). 

3. The stored procedure getFile is called with arguments of file name, file last modified year, 

month, day, hour, minute, and second by using corresponding functions from Java API. 

This procedure searches the database for an already existing file object with the file name. 

If it exists, the procedure returns it, otherwise, creates a new one, sets a file name attribute, 

and returns it. Also, if the file object exists, the procedure compares the last modified date 

of the one stored in database and the one given as parameter. If they are not the same, this 

means that file object needs updating, or, if the procedure created a new object, it also 

means that properties must be set. Having determined this, the procedure returns a set of 



file objects, and integer flags indicating whether the load function should be continuing its 

work to update file properties (it should if file last modified date is different from the one in 

database). 

4. If function load needs to update some file properties. It sets attribute extension of the 

file, gets a corresponding directory object (and returns it at the end of execution) using the 

getDirectory stored procedure and then sets a directory attribute of file object. 

5. Then function load checks if stored function track is set for file object. If it is, it means 

that we are updating a file (attribute was set before). If not, a new object of type which was 

determined in step 2 is created, and set to track attribute of file.  

6. Then a type object of type “track” is retrieved from the database using getTrackType 

derived function. The function gets a set of all Java property names (and their Java types); 

this set is defined by the type of track. For example, one would not need Vorbis-specific 

properties for an MP3 track. These property names will be used later to see what properties 

should the function query and emit to database. 

7. For every property function the system checks if this function exists, if it does, the system 

sets a property in the database (casting value to proper type first). If the function does not 

exist in the current file, but it exists in the database, the system removes it from database. 

The database meta-data information is refreshed in a similar way; foreign function update 

with no parameters is used. It does this: 

1. All existing file names are retrieved from the database using oldFileNames derived function. 

This function selects names of all file objects. 

2. All file names from file system are retrieved using newFileNames derived function. This 

function gets them in the same way as load gets existing file names (by using fileExtHints 

and getFiles foreign functions). 

3. For every “old” file name, it checks if the file exists. If not, it deletes file meta-data from 

the database using the deleteFile stored procedure, else, it passes file name to load Java 

function to refresh it. 



4. The refresh function updates directory information saved in the database. For every 

directory name (retrieved using dirNames derived function), it checks whether the directory 

exists. If not, it removes its object using deleteDirectory stored procedure. 

5. Finally, for every file which is not among old files and is among new ones, the Java 

function load is called to store its meta-data in the database. 

A separate Java class PlayThread is implemented for playing music files with a simple GUI. 

There is an AmosQL function play which takes a track as a parameter. The actual foreign function 

implementing this is playFile, which takes file name as a parameter. It creates PlayThread class, 

sets its properties and then executes it in a new thread. PlayThread does the following: 

1. It creates a minimal GUI, containing playing song file name and a button “Stop”. 

2. It constructs AudioInputStream from File, which is constructed using given file name. 

3. It constructs AudioInputStream which will be decoded by underlying SPI by converting 

from AudioFormat which file is in to a decoded AudioFormat. 

4. It gets SourceDataLine from AudioSystem for decoded format, opens it, feeds audio data to it 

with 4096 byte blocks. If the user waits to finish playing (drains line) it stops. 

4.1 Limitations 

In J2SE 1.4 and earlier, a way to get properties is inflexible, static and allows only few 

common predefined properties. Since Java 5, a new type of passing properties is allowed—by 

immutable java.util.Map key/value pairs. 

As a compromise to support Java 1.4 and earlier and still have advanced properties this 

project uses alternative JavaSound implementation—open-source Tritonus library, which uses the 

same mechanism but with class-cast workaround. SPI implementations often provide separate 

versions for Java 1.5 and for Tritonus. MP3SPI, Ogg Vorbis SPI and many others have versions for 

Tritonus implementation, and only recently for Java 1.5. 

4.2 Adding new format 

An important aim of this project is extensibility—the wrapper should be designed so that it 

would be easy to add a new music format. The wrapper is initially implemented for MP3 and Ogg 



Vorbis formats. We will take an example of JMAC SPI library which implements support for 

Monkey’s Audio (.ape) [13, 9] format: 

1. Make Java SPI libraries for this new format available to Java runtime. This can be done 

copying them to “lib\” directory and specifying them in “env.cmd” file. In JMAC case, 

add “jmactritonusspi.jar” to Java classpath in “env.cmd” file 

2. Create new AmosQL file and add a command to parse it to “mkSchema.amosql” file, e. g. 

mkApeSchema. In this new file, one needs to: 

a. Specify create new track type under the type track, e. g.  

create type apetrack under track; 

b. Specify a test property form Java property list, which always exist for a given 

format (and for no other one), usually format/encoder version. The wrapper uses 

this property to check the musical format of current file, so it would know the 

type of track it should create (e.g., mp3track vs. apetrack): 

set tracktest(typenamed("APETRACK")) = "ape.version”; 

c. Specify all properties for the format and their Java types. One example: 

add props(typenamed("APETRACK")) = <"ape.peaklevel", "Integer">; 

d. Specify derived helper functions for more comfortable use. One example: 

create function peakLevel(apetrack tr) -> integer  as select 

property(tr, "ape.peaklevel"); 

3. Edit file extension hints function in “mkBasicSchema.amosql” file to include “.ape” files 

as well. For example, 

create function fileExtHints(charstring fn) -> boolean as  

select where like_i(fn, "*.mp3") or  

             like_i(fn, "*.ogg") or  

             like_i(fn, "*.ape"); 

4.3 Performance 

Tests were performed in two real-life collections of MP3 and Ogg files. In the first test, the 

meta-data of 820 files collection was loaded into database and loading took 57 seconds (14.4 



files/sec). In second test, meta-data of a collection of 3924 files was loaded into database, and that 

took 246 seconds (15.9 file/sec). In general, performance is acceptable. 



5 Summary 
Nowadays, information systems are increasingly distributed by means of computer networks 

and the Internet. Information flows are very dynamic and continuously changing. The Amos II 

mediator database implements an approach to this problem by dividing functionality of data 

integration to two subsystems—wrappers, providing access to data in various data sources using 

common data model, and mediators—servers with one or more wrappers, providing coherent views 

of data from wrappers. 

The purpose of this project was to extend Amos II with a generalized music file wrapper to 

wrap different kinds of music files. Today, music files make up a large proportion of data available, 

so there is a need to have a way to query different kinds of music files. This wrapper enables Amos 

II to query music files of various formats. As an example, MP3 and Ogg Vorbis format wrappers 

were implemented. This wrapper does not deal with reconciliation between data from different 

sources. In future, such reconciliation could be designed and implemented. 

The wrapper makes a tradeoff for compatibility with Java 1.4 APIs—using an external 

Tritonus JavaSound API implementation which is similar to Java 5 one. This could be improved by, 

for example, adding dynamic support for both Java 5 and Tritonus implementations. Also, editing 

of meta-data in database and saving it back to files could be implemented. There could also be 

query functions for audio fragments comparison and search. 
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