
Uppsala Master’s Thesis in
Computer Science 303
2005-06-14
ISSN 1100-1836

Object-Relational Wrapping of
Music Files

Vaidrius Petrauskas

Information Technology
Computer Science Department

Uppsala University
Box 337

S-751 05 Uppsala
Sweden

Abstract

Amos II (Active Mediator Object System) is a distributed mediator system
that uses a functional data model and has a relationally complete functional
query language, AmosQL. The purpose of this work is to use foreign Java
functions and Java libraries to develop a generic wrapper facility for music
files in Amos II, which extracts meta-data contained in music files of
different kinds into Amos II, thus enabling searching the music files in terms
of particular music files properties. To implement this, a set of primitive
functions have been defined, which allow general queries to music files, and
for finding all music files in a directory. A meta-data refresh facility updates
extracted meta-data when music files contents have changed. A generic
JavaSound API with pluggable specific music format support is used to get
music meta-data from different format files. Primitive foreign functions take
the name of a music file as a parameter and then store objects and attributes
in the database. The system implements MP3 and Ogg Vorbis format
wrappers as examples.

Supervisor: prof. Tore Risch
Examiner: prof. Tore Risch

Contents

1 Introduction ... 4

2 Background.. 6

2.1 Amos II .. 7

2.1.1 Data Model .. 8

2.1.2 External Interfaces... 10

2.2 Digital Sound... 11

2.2.1 MP3 ... 14

2.2.2 Ogg Vorbis .. 15

2.2.3 Java Sound APIs.. 17

2.2.4 MP3 and Ogg Vorbis SPI .. 19

3 System Architecture .. 21

3.1 Entity-Relationship-Attribute Schema .. 22

3.2 MP3 Schema.. 24

3.3 Ogg Vorbis Schema... 26

3.4 System Usage .. 27

4 Implementation.. 29

4.1 Limitations... 31

4.2 Adding new format.. 31

4.3 Performance... 32

5 Summary.. 34

6 References ... 35

1 Introduction
There are increasing requirements for data integration systems that combine data from

different kinds of data sources and present them to users in a comprehensible format. The wrapper-

mediator approach [21] divides the functionality of a data integration system into two kinds of

subsystems. The wrappers (data source interfaces) provide access to the data in data. The

mediators—data integration modules—provide coherent views of the data in the data sources by

performing semantic reconciliation (handling of semantic conflicts and overlaps) between the

wrapped data.

Amos II [16] is a light-weight and high-performance mediator database engine. Amos II has

a functional data model with a relationally complete object-oriented query language, AmosQL. The

Amos II data manager is extensible so that new data types and operators can be added to AmosQL,

implemented in some external programming language (Java, C, or Lisp).

Amos II is implemented in C and runs under Windows and Linux operating systems. Amos

II currently has several wrappers available, including XML [11, 17], relational databases [1, 5],

RDF [15] and MIDI [10] wrappers.

Nowadays, it is very common to store music data in computers. Amos II already wraps the

MIDI music format [10], which represents information on how to play music by musical

instruments. One would also want to wrap musical data from other kinds of musical formats that

contain the actual music data sound — like the MP3 (MPEG Audio Layer-3) file format.

The purpose of the project is to use foreign Java functions and Java libraries to develop a

generic wrapper facility for music files in Amos II. With this wrapper, the Amos II system is able to

search meta-data of music files and combine the retrieved data with the other wrapped Amos II data

sources. Hence, Amos II technologies to query data become available for searching meta-data

stored in music files, e.g., by using AmosQL to query artist and music track length information. To

save storage, the system does not load the actual files themselves, but only import their meta-data.

Database refresh functionality is also implemented to update imported meta-data if changed in the

musical files. As an example, the wrapper is able to handle both MP3 [3] and Ogg Vorbis [22]

format files. The design makes it easy to extend the wrapper with new music formats.

The generic music wrapper is defined as primitive foreign functions taking the name of a

music file as a parameter and then storing Amos II objects and attributes in the database.

The primitive Java interfaces to MP3 and Ogg Vorbis files were studied to investigate how

to access music data from Amos II in a generic way and transform the class structure of Java’s

music file API into corresponding Amos II data representations. The implemented functions allow

general queries to MP3 and Vorbis files by querying extracted meta-data from the files using Java

music interfaces. Some other functions are also implemented, e.g. for finding all music files in a

directory.

The project was divided into the following parts:

1. Acquiring consolidated knowledge about digital music along with its representation in

computing and music standards, such as MP3 and Ogg Vorbis.

2. Studying and selecting a development environment—existing generic Java multimedia

specifications, frameworks, APIs and their implementations. Also, I had to choose concrete

Java libraries for MP3 and Ogg Vorbis meta-data parsing.

3. Designing an object oriented database schema for the wrapper structure according to the

selected Java APIs.

4. Designing primitive foreign functions to import musical meta-data given a name of a

directory and to synchronize database meta-data with the real files in a file system.

5. Developing a simple playback of musical files functionality.

6. Finally, the whole application had to be integrated with the Amos II environment along with

demonstration queries illustrating how to query wrapped musical files.

2 Background
In this chapter, the mediator-wrapper approach is described on which the Amos II system is

based; later, the Amos II architecture itself is described. As the main purpose of Amos II is using it

as a database and the music wrapper is extensively based on custom data types, the data model of

Amos II is described. Finally, as this project is done with the Java programming language, Java

interfaces to access Amos II system are described.

Today, a lot of applications are developed that need to access databases. Therefore, an

increasing number of databases are in use. For example, online travel agencies must be able to

access databases of flight companies to gain information of available seats, databases of airports to

see arrival and departure timetables, and databases of hotels to search for available rooms. Such

information is not stored in one database, but each flight company, airport and hotel would have

their own database. Thus, access to several different databases is necessary. Furthermore, many

possibilities to store data exist. One company may have one database and schema, while another

company might have a completely different view on the stored data. Thus, an application needs the

possibility to access heterogeneous data sources.

The mediator/wrapper approach [21] gives support for applications and users to query and

access heterogeneous data sources. A mediator system consists of a mediator and one or several

wrappers. A mediator is a virtual database that comprises a common data model—a data model able

to specify how to map data between different data sources. The task of a mediator is to process

queries sent from an application. A query is split depending on the data and capabilities of the target

data sources. If, as in Amos II, a mediator may also regard other mediators as data sources, a

network of mediators, consisting of several layers, can be created. In such a network only primitive

mediators should have access to data sources. Then higher layers, consisting of more advanced data

abstractions, can be queried by applications. A mediator can access different autonomous data

sources, like relational databases, XML, MP3, OGG files or object stores, but never directly. Each

data source needs to be accessed through software interfaces, called wrappers. Queries sent from

the mediator are translated by a wrapper to a data source specific format and thus it hides the

heterogeneity of that data source. After that, the wrapper retrieves query results that have to be

translated into the common data model and passed to the mediator. There all results from all data

sources are combined and returned to the application. The mediator uses data modeling

primitives— e.g. types and functions to reconcile differences and overlaps of wrapped data.

2.1 Amos II

Amos II is a distributed mediator system with an object oriented and functional data model.

It is based on the mediator/wrapper architecture. It is a distributed mediator system consisting of

one or several mediator peers. These peers can communicate via the Internet using TCP/IP. Each

peer offers its own virtual functional database layer, consisting of:

• A storage manager,

• A transaction manager,

• Data abstractions that provide transparent functional views for clients and other mediator

peers to access data sources,

• A functional query language: AmosQL.

The core of Amos II is an open, light-weight and extensible database management system

(DBMS). Queries to the data model are written in AmosQL [16, 6], a relationally complete

functional query language. The system can be configured as a stand-alone system or as several

autonomous and distributed Amos II peers. These peers can interoperate through its distributed

multi-database facilities [16]. Each mediator peer offers three possibilities to access data:

• Access to data stored in an Amos II database;

• Access to wrapped data sources;

Application

Mediator

Mediator Mediator

Music files RDBMS

Name Server

Figure 2.1.1: An example of Amos II system with three mediators

• Access to data that is reconciled from other mediator peers;

In this project a generic wrapper for music files is developed, thus making music meta-data

available to mediators.

In Amos II it is possible to build up layers of peers with a dynamic communication

topology. A distributed mediator query optimizer optimizes this communication topology. To

compute an optimized execution plan for a given query, data and schema information are

exchanged between the peer. In figure 2.2.1, the top mediator defines a mediating functional view

integrating data from two other sub-mediators. The mediating view uses facilities for semantic

reconciliation [16] for combining data from the two lower mediators. The two lower mediators

translate data from a wrapped relational database and a web server, respectively. They have

knowledge of how to execute AmosQL queries to get meta-data of music files, and how to translate

AmosQL queries to SQL, respectively. To summarize, figure 2.2.1 gives an example of the

distribution of mediator peers. Two distributed data sources offer through three distributed mediator

peers their data to an application. Communication between peers is illustrated by thick lines, where

the arrow indicates the peer running as server. One special mediator peer is listed in the figure, the

name server, which stores meta-data about all peers.

Mediator peers forming a group are autonomous—there is no control of them on the name

server. It is left to each peer to describe its own local data view and data sources. Is the name server

involved in peer communication? No, all communication is done through messages that can request

or deliver data and commands between peers. To avoid a bottleneck the name server is only

involved when a new mediator peer wants to register to the group. As soon as mediators are known

to each other they can communicate directly without any information from the name server. In

figure 2.2 the communication with the name server is illustrated by dotted lines. The name server

always acts, with regard to the other mediator peers, as a server.

2.1.1 Data Model

Basic components of the data model of Amos II are types, functions and objects. In object

oriented programming languages these concepts approximately correspond to classes, methods, and

instances. Types are used for classifying objects. Each object is an instance of a type. All properties

of an object as well as relationships between objects are represented by functions.

2.1.1.1 Types

Types correspond to entity types in Entity-Relationship-diagrams. Types unite objects with

similar properties. An instance of a type is always an instance of all its supertypes. Also, if an object

inherits from more than one type it gains all properties from all supertypes. Two kinds of types

exist, stored and derived types. Derived types are mainly used for defining reconciled views of

mediated data [16], while the stored types are defined and stored in an Amos II database. In the

present work only stored types are used since the meta-data is actually imported into an Amos II

database when a music file is accessed. The music contents itself stays in the file, though, to save

storage and access time. The following command creates a track and an MP3 track type in Amos II:

create type track;

create type mp3track under track;

The root element in the Amos II type hierarchy is named Object. All (system and user)

defined type definitions are stored as instances of a type named Type. All functions are instances of

a type named Function. When a user defines a type it is always a subtype of type Userobject.

2.1.1.2 Functions

Functions model the relationship between objects, properties of objects and computations

over objects. In functional queries and views they are providing the basic primitives. As already

mentioned, functions are instances of the type Function. The function’s signature contains

information about all arguments, such as the types and optional names, and about the result of the

function. The next example shows the signature of a function modeling the attribute name of type

track:

title(track)->charstring

Furthermore, functions can be overloaded, i.e. different functions defined for different

combinations of arguments can have the same name (polymorphism). The selection of the correct

function implementation of an overloaded function is made based on the actual argument types.

2.1.1.3 Objects

Objects in Amos II correspond to entities in an ER diagram and are instances of Amos II

types. Everything in Amos II is represented as an object, independent whether the object is user-

defined or system-defined. Literals and surrogates are the main kinds for representing objects.

Literal objects are primitive objects like integers, strings or even collections of other objects. In

addition to this, there are surrogates which are explicitly created by the user or the system and

describe real world entities. For example, a vorbistrack object in Amos II can be created with a

command as follows:

create vorbistrack instances :thetrack;

The system assigns unique object identifiers (OIDs) to all surrogate objects. When a query

requests a surrogate object, the returned result will be displayed similar to this:

#[OID 1101]

2.1.2 External Interfaces

There are two ways to interface Amos II with other programs—either an external program

calls Amos II through the callin interface, or Amos II calls external functions through the callout

interface [15]. Both interfaces are used in this project.

The most convenient way to write Amos II applications is using the Java interface [4]. The

music mediator is written in Java language and uses Java interfaces to communicate with Amos II.

With the callin interface a program in Java calls Amos II. The callin interface is similar in

structure to the call level interfaces for relational databases, such as JDBC.

With the callout interface Amos II functions call methods written in Java. Each such foreign

Amos II function is implemented by one or several Java methods. The foreign functions in Amos II

are multi-directional which allow them to have separately defined inverses and to be indexed. The

system furthermore allows the callin interface to be used also in foreign functions, which gives

great flexibility and allows Java methods to be used as a form of stored procedures.

With the callin interface there are two ways to call Amos II from Java:

1. In the embedded query interface a Java method is provided that passes strings containing

AmosQL statements to Amos II for dynamic evaluation. Methods are also provided to

access the results of the dynamically evaluated AmosQL statement. The embedded

query interface is relatively slow since the AmosQL statements have to be parsed and

compiled at run time.

2. In the fast-path interface predefined Amos II functions are called as Java methods,

without the overhead of dynamically parsing and executing AmosQL statements. The

fast-path is significantly faster than the embedded query interface. It is therefore

recommended to always make Amos II derived functions and stored procedures for the

various Amos II operations performed by the application and then use the fast-path

interface to invoke them directly.

Amos II can be linked directly with a Java application program. This is called the tight

connection where Amos II is an embedded database in the application. It provides for the fastest

possible interface between an application and Amos II since both the application and Amos II run in

the same address space. The disadvantages with the tight connection are that Amos II and the

application must run on the same computer. Another disadvantage is that only a single Java

application can be linked to Amos II.

The musical wrapper system is implemented as a set of foreign functions. The wrapper is

using the callin interface with the tight connection to call AmosQL from inside foreign functions.

2.2 Digital Sound

What is a sound from a physical point of view? It is the result of a mechanical disturbance of

some object in a physical medium, such as air. This mechanical disturbance generates vibrations

that can be represented as electrical signals by means of a device (for example, a microphone), that

converts these vibrations into a time-varying voltage.

An analog sound signal is the result of measuring the voltage that represents the sound.

These kinds of signals are continuous in the sense that they consist of a continuum of constantly

changing values. A digital sound is the result of counting all these values many times per second for

a certain defined length/time. Each measurement value is called a sample, and this kind of process

is called sampling. In order to process sounds on the computer, the analog sound must be converted

into a digital format understandable by computer—binary numbers.

The sampling frequency of a sound is equal to the number of cycles which occur every

second (cycles per second, abbreviated cps or Hz). The Nyquist-Shannon sampling theorem states

that in order to accurately represent a sound digitally, the sampling rate must be higher than at least

twice the value of the highest frequency contained in the signal [23]. The average upper limit of

human hearing is approximately 18 kHz (18000 Hz), which implies a minimum sampling rate of 36

kHz (36000 Hz). The sampling rate frequently used in computer sound design systems is 44.1 kHz

(44100 Hz). Currently, 48 kHz (48000 Hz) sampling rate is beginning to be used.

Another element that influences the quality of sampling is the level of resolution, or

quantization of a sampler. The resolution depends upon the size of the word used to represent the

amplitude of a sampling sound and is determined by the resolution of the ADC (Analog-to-Digital

Converter) and DAC (Digital-to-Analog Converter). A word, for instance, could be 4-bits long or

16-bits long etc. Unsatisfactory lower resolutions are prone to cause a damaging loss of sound

quality, referred to as quantization noise.

After digital conversion the sound needs be stored in order to be re-used or played back. The

most basic way to store sound is to take the stream of samples and write them onto a file. Sound

files normally contain other descriptive meta-data information related to file properties and text

comments; all this information is stored in the sound file header (the initial portion of data of the

file). In the header one may find information such as the sampling rate used, the size of the word,

whether the sound is mono or stereo, and so on. There are two ways to store audio data:

1. uncompressed,

2. compressed.

Some popular uncompressed audio formats are:

• Wave, adopted by Microsoft (.wav)

• VOC, adopted by Creative Lab's Sound Blaster (.voc)

• NeXT/Sun, originated by NeXT and Sun computers (.snd and .au)

• AIFF, originated by Apple computers (.aif)

Uncompressed storage is often uneconomical as it might contain a great deal of redundant

information like, for example, a silent portion. There are techniques for optimizing the

representation of samples in order to reduce the size of the file. There are two kinds of compression:

1. Lossless.

2. Lossy.

Lossless compression is just what it sounds like—a way of compressing music into a file

that, when played back, is absolutely identical to the original. Not just “sounds the same,” but that is

statistically identical. The compressed, smaller file can be expanded back into the original file

without losing any information whatsoever. The original file is bit-for-bit identical. It was once only

a viable option for professionals seeking to archive large volumes of audio but now large hard

drives are cheap and drive-based portable players with lots of storage are abundant, so lossless

formats are increasingly relevant to end users that want the best possible audio fidelity.

Some popular lossless compression formats are:

• FLAC (Free Lossless Audio Codec) by FLAC open-source project (.flac)

• Monkey’s Audio by Matthew T. Ashland (.ape)

• Apple Lossless by Apple Computer, Inc. (.m4a)

• WMA Lossless (Windows Media Audio) by Microsoft (.wma)

Lossy compression removes some information in order to make the file easier to compress.

Lossy compression is by far the most popular format, because it allows for much smaller file sizes.

Virtually all lossy compression schemes, whether for audio or video, work by a principle called

perceptual coding. This is the process of removing parts of the original data that the user will

probably not perceive anyway. The trick is to remove as little information as possible from the

original audio sample and to make sure that what is removed is hard to hear (frequencies above the

range of human hearing or computer equipment capabilities, for example). Lossy audio

compression formats such as Ogg Vorbis and MP3 can achieve results which are provably

indistinguishable from the original, CD-quality, sound but are a mere 10 to 20% of the size. Lossy

compression formats widely used today are:

• MP3 (MPEG Audio Layer 3) by Fraunhofer Institut für Integrierte Schaltungen (.mp3)

• Ogg Vorbis by Xiph.org (.ogg)

• WMA (Windows Media Audio) by Microsoft (.wma)

• AAC (MPEG-4 Advanced Audio Coding) by Dolby, Fraunhofer, AT&T, Sony, and Nokia

(.aac, .m4a).

Sound artists and composers normally do not work with compressed sounds. Compression

should be applied only after the piece is completed.

2.2.1 MP3

The MPEG acronym stands for Motion Picture Experts Group and it refers to a group of

researchers who study new formats for coding and playing audio and video; the acronym refers to

audio/video compression formats created by this group. The term MP3 is the abbreviation of

MPEG1-Layer 3, which is the audio compression format, used in the MPEG 1 algorithm [3]. In

other words, MPEG is a series of compression algorithms to reproduce audio and video; the layers

are compression algorithms used in MPEG playing only for audio; MPEG 1-Layer 3, known as

MP3, is one of the audio compression algorithm used by MPEG 1 algorithm.

MPEG-1 is the name for the first phase of MPEG work, starting in 1988 [2]. This work was

finalized with the adoption of the ISO/IEC standard in late 1992. The audio coding part of this

standard describes a generic coding system, designed to fit the demands of many applications.

MPEG-1 Audio consists of three operating modes called layers, with increasing complexity and

performance, named Layer-1, Layer-2 and Layer-3. Layer-3, with the highest complexity, was

designed to provide the highest sound quality at low bit-rates (around 128 kbit/s for a typical stereo

signal).

MPEG-2 denotes the second phase of MPEG. It introduced a lot of new concepts into

MPEG video coding, including support for interlaced video signals. The main application area for

MPEG-2 is digital television. The original MPEG-2 Audio standard was finalized in 1994 and

consisted of two extensions to MPEG-1 Audio:

• Multi-channel audio coding, including the 5.1 channel configuration well known from

cinema sound – this multi-channel extension is done in a backward compatible way,

allowing MPEG-1 stereo decoders to reproduce a mixture of all available channels.

• Coding at lower sampling frequencies – this extension adds sampling frequencies of 16

kHz, 22.05 kHz and 24 kHz to the MPEG-1 sampling frequencies of 32 kHz, 44.1 kHz

and 48 kHz, improving the coding efficiency at very low bit-rates.

MPEG-1 Audio works for both mono and stereo signals. A technique called joint stereo

coding can be used to achieve a more efficient combined coding of the left and right channels of a

stereophonic audio signal. Layer-3 allows both mid/side stereo coding and intensity stereo coding.

The latter is especially helpful for lower bit-rates, but bears the risk of changing the sound image.

The operating modes are:

1. single channel;

2. dual channel (two independent channels, for example containing different language

versions of the audio);

3. stereo (no joint stereo coding);

4. joint stereo.

MPEG audio compression works on a number of different sampling frequencies. MPEG-1

defines audio compression at 32 kHz, 44.1 kHz and 48 kHz. MPEG-2 extends this to half the rates,

i.e. 16 kHz, 22.05 and 24 kHz. “MPEG-2.5” is the name of a proprietary extension to Layer-3,

developed by Fraunhofer IIS, which introduces the sampling frequencies 8 kHz, 11.05 kHz and 12

kHz.

MPEG Audio does not just work at a fixed compression ratio. The selection of the bit rate of

the compressed audio is, within some limits, completely left to the implementer or operator of an

MPEG audio coder. For Layer-3, the standard defines a range of bit-rates from 8 kbit/s up to 320

kbit/s. Bit-rate is proportional to sampling frequency. Furthermore, Layer-3 decoders must support

the switching of bit-rates from audio frame to audio frame. Combined with the bit reservoir

technology, this allows both variable bit-rate coding and constant bit-rate coding at any fixed value

within the limits set by the standard.

A very important property of the MPEG standards is the principle of minimizing the amount

of normative elements in the standard. In the case of MPEG Audio, this led to the fact that only the

data representation, i.e. the format of the compressed audio, and the decoder are normative. Even

the decoder is not specified in a bit-exact fashion. Instead, formulae are given for most parts of the

algorithm, and compliance is defined by a maximum deviation of the decoded signal from a

reference decoder, implementing the formulae with double-precision arithmetic accuracy. This

allows building decoders running both on floating-point and fixed-point architectures.

2.2.2 Ogg Vorbis

Ogg Vorbis is a fully open, non-proprietary, patent-and-royalty-free, and general-purpose

compressed audio format for mid to high quality (8 kHz-48.0 kHz, 16+ bit, polyphonic) audio and

music at fixed and variable bit rates from 16 to 128 kbps/channel. This places Vorbis in the same

competitive class as audio representations such as MPEG-4 (AAC), and similar to, but higher

performance than MPEG-1/2 audio layer 3, MPEG-4 audio (TwinVQ), WMA and PAC.

Technically, Ogg is a patent-free, fully open multimedia bitstream container designed for

efficient streaming and storage. It is often used incorrectly to refer to the audio codec Ogg Vorbis. It

has been created as the framework of a larger initiative aimed at developing a set of components for

the coding and decoding of multimedia content which are both freely available and freely re-

implementable in software. The Ogg transport bit stream is designed to provide framing, error

protection and seeking structure for higher-level codec streams that consist of raw, unencapsulated

data packets, such as the Vorbis audio codec or Theora video codec.

The format consists of chunks of data each called an Ogg Page [22]. Each page begins with

the "OggS" string which can be used to identify the file as Ogg. A serial number and page number

in the page header identifies each page as part of a series of pages which make up a bit stream.

Multiple bitstreams may be multiplexed (combined into one stream) in the file where pages from

each bit stream ordered by the seek time of the contained data. Bit streams may also be appended to

existing files, a process known as chaining, to cause the bit streams to be decoded in sequence.

Currently, it is possible to embed these bit streams:

• Audio codecs:

o Lossy:

 Speex (voice data at low bitrates)

 Vorbis (general audio data at mid- to high-level bitrates)

o Lossless:

 FLAC (archival and high-fidelity audio data)

• Text codec:

o Writ (a text codec designed to embed subtitles and captions)

• Video codecs:

o Theora

o Tarkin

Ogg Vorbis is the flagship open source multimedia project of Xiph.Org Foundation. It was

launched after the copyright holders of the MP3 codec (coder/decoder) closed the source of their

product and began demanding stringent licensing fees. In late 1998, Fraunhofer IIS, who owns the

rights to the MP3 codec, sought royalties for all implementations of their MPEG Layer 3 audio

codec. Around this time, MP3 was a mainstream audio format and used by millions of users

worldwide.

Given 44.1 kHz (standard CD audio sample frequency) stereo input, the current encoder as

of September 2004 will produce output from 45 to 500 kbit/s depending on the specified quality

setting. Quality settings run from -1 to 10 and are an arbitrary metric; files encoded at -q5, for

example, should have the same quality of sound in all versions of the encoder, but newer versions

should be able to achieve that quality with a lower bit rate. Vorbis is inherently variable bit rate

(VBR).

Vorbis uses the modified discrete cosine transform (MDCT) for converting sound data from

the time domain to the frequency domain. The resulting frequency-domain data is broken into noise

floor and residue components, and then quantized and entropy coded using a codebook-based vector

quantization algorithm. The decompression algorithm reverses these stages. The noise floor

approach gives Vorbis its characteristic analog noise -like failure mode (when the bit rate is too low

to encode the audio without perceptible loss), which many people find more pleasing to the ears

than metallic warbling as in MP3.

Many users feel that Vorbis reaches transparency (sound quality that is indistinguishable

from the original source recording) at a quality setting of -q5, approximately 160 kbit/s. For

comparison, it is commonly felt that MP3 reaches transparency at around 192 kbit/s, resulting in

larger file sizes for the same sound quality.

2.2.3 Java Sound APIs

There are two existing Java APIs for working with sound:

1. Java Sound

2. Java Multimedia Framework (JMF)

The Java Sound API [18] is a low-level API for effecting and controlling the input and

output of sound media, including both audio and Musical Instrument Digital Interface (MIDI) data

[7]. The Java Sound API provides explicit control over the capabilities normally required for sound

input and output, in a framework that promotes extensibility and flexibility.

The Java Sound API provides the lowest level of sound support on the Java platform. It

provides application programs with a great amount of control over sound operations, and it is

extensible. For example, the Java Sound API supplies mechanisms for installing, accessing, and

manipulating system resources such as audio mixers, MIDI synthesizers, other audio or MIDI

devices, file readers and writers, and sound format converters. The Java Sound API does not include

sophisticated sound editors or graphical tools, but it provides capabilities upon which such

programs can be built. It emphasizes low-level control beyond that commonly expected by the end

user.

The Java Media Framework (JMF) [7] is a higher-level API that is currently available as a

Standard Extension to the Java platform. JMF specifies a unified architecture, messaging protocol,

and programming interface for capturing and playing back time-based media. JMF provides a

simpler solution for basic media-player application programs, and it enables synchronization

between different media types, such as audio and video. On the other hand, programs that focus on

sound can benefit from the Java Sound API, especially if they require more advanced features, such

as the ability to carefully control buffered audio playback or directly manipulate a MIDI

synthesizer.

For this project, Java Sound API is sufficient, so below I describe Java Sound API.

The Java Sound API includes support for both digital audio and MIDI data. These two

major modules of functionality are provided in separate packages:

• javax.sound.sampled (for capture, mixing, and playback of digital (sampled) audio)

• javax.sound.midi (for MIDI synthesis, sequencing, and event transport)

Two other packages permit service providers (as opposed to application developers) to

create custom components that can be installed on the system:

• javax.sound.sampled.spi

• javax.sound.midi.spi

This project deals with sampled audio only, so let’s discuss the sampled audio system. The

javax.sound.sampled package handles digital audio data, also referred to as sampled audio.

Java Sound does not assume a specific audio hardware configuration; it is designed to allow

different kinds of audio components to be installed on a system and accessed by the API. Java

Sound supports common functionality such as input and output from a sound card (for example, for

recording and playback of sound files) as well as mixing of multiple streams of audio.

Java Sound doesn’t directly support MP3 or Ogg Vorbis file formats. Support for these

formats is available through third-party libraries with use SPI—Service Provider Interface [19].

The main concepts of Java Sound are:

• Lines: A line is an element of the digital audio “pipeline,” such as an audio input or

output port, a mixer, or an audio data path into or out of a mixer. The audio data flowing

through a line can be mono or multi-channel (for example, stereo).

• Controls: Data lines and ports often have a set of controls that affect the audio signal

passing through the line. The way in which the signal is affected depends on the type of

control. Examples are: GainControl (allows the signal's volume to be boosted or cut a

specified number of decibels), PanControl (affects the sound's right-left positioning).

• Audio System: The AudioSystem class serves as an application's entry point for accessing

the installed sampled-audio resources. AudioSystem can be queried to learn what kinds of

audio components have been installed, and then one can obtain access to them, for

example, mixers, lines, format conversions, files, and streams.

• System Configuration (SPI classes): Service provider interfaces for the sampled audio

system are defined in the javax.sound.sampled.spi package. Service providers can

extend the classes defined here so that their own audio devices, sound file parsers and

writers, and format converters can be installed and made available by a Java Sound

implementation.

2.2.4 MP3 and Ogg Vorbis SPI

MP3 SPI for Java Sound and Ogg Vorbis SPI for Java Sound are two open-source projects

from JavaZOOM [8].

• MP3SPI [12] is a Java Service Provider Interface that adds MP3 (MPEG 1/2/2.5 Layer

1/2/3) audio format support for the Java Platform. It supports streaming, ID3v2 frames,

equalizer etc. It is based on JLayer and Tritonus Java libraries [20].

• VorbisSPI [14] is a Java Service Provider Interface that adds OGG Vorbis audio format

support to Java platform. It supports Icecast streaming. It is based on JOrbis [14] and

Tritonus Java libraries.

Both projects use Tritonus [20]—an open-source implementation of the Java Sound API.

Originally, it emerged as a Linux-only Java Sound API implementation with support for various

Linux sound systems, but now it is being used on Windows systems as well.

Only Java 5 Standard Edition 1.5 allows to pass audio properties as a map (java.util.Map

class). However, MP3 SPI and Ogg Vorbis SPI provide a workaround to get these audio properties

for J2SE 1.3 and J2SE 1.4—class cast from AudioFileFormat to TAudioFileFormat provided by

Tritonus library. This way we get the same properties mechanism (map of key: value pairs) in J2SE

1.3, 1.4 and Java 1.5.

3 System Architecture
The project includes a database schema to describe musical data. When using the wrapper,

the user has to extract meta-data of music files into the database populated according to the schema:

the wrapper creates objects and sets their properties. Then, the user can make queries to the

database using these stored objects and/or their properties. Later, if database information gets out of

sync with the music files in the file system, the user can refresh the database information. During

refresh, all directories known to the wrapper are scanned recursively for added/deleted directories

and changed music files.

To differentiate between music and other files, the wrapper implements file extension hints,

indicating if a file extension stores a musical format known by the wrapper. The actual format

stored in a music file is determined automatically by the JavaSound API itself. Later, when wrapper

needs to know the actual format of an imported music file so it knows what objects of what type it

should create, the wrapper checks a meta-data property which always must be present for a given

format, but which does not exist for any other format. File extension hints are implemented because

it would be slower for JavaSound API to try to load every file, parse it and fail, so instead it tries to

load at least the files with the right file extension that the wrapper implements.

Figure 3.1. Wrapper architecture

Application

Amos II kernel

JavaSound API-Amos II backend

JavaSound SPI

Music files

AmosQL

Java interfaces

Music wrapper

3.1 Entity-Relationship-Attribute Schema

Figure 3.1.1. Entity-Relationship-Attribute schema.

Figure 3.1.1 depicts the database schema as an extended entity-relationship diagram. The

diagram includes not only attributes represented as stored Amos II functions, but also derived

functions.

The schema consists of these basic types and their attributes:

directory type properties:

Name Amos type Description

Name Charstring absolute directory path

Table 3.1.1: directory type properties

file type properties:

Name Amos type Description

Name Charstring absolute file name

extension Charstring file extension

Date Timeval file last modified date

directory Directory a corresponding directory object

Track Track a corresponding track object

Table 3.1.2: file type properties

Type track has one attribute—the property list—which is a stored function that takes track

and property name as parameters and returns a literal value. To make properties user-friendly,

derived functions are defined which select corresponding property from the property list. The

following derived attributes accessing such properties are defined for all audio tracks:

track type properties:

Name Amos type Java name Java type Description

duration integer “duration” Long duration in microseconds

Title charstring “title” String title of the track

Artist charstring “author” String name of the artist of the track

Album charstring “album” String name of the album of the track

Date charstring “date” String the date (free-form string) of the

recording or release of the track

copyright charstring “copyright” String copyright message

Comment charstring “comment” String comment of the track

Table 3.1.3: track type properties

The properties above belong to the Java class AudioFileFormat (i.e. not the specific SPI

classes). Enclosed in quotes is the property key in the property list. The same property key is used

in a Java SPI property map. Some properties might not exist for a given file.

3.2 MP3 Schema

The MP3 database schemas contains only one type—mp3track which is inherited from

track. mp3track itself has no stored attributes. As with track type, there is only property list and

derived functions accessing properties special for MP3 data.

mp3track type properties:

Name Amos type Java name Java type Description

Mpeg charstring “mp3.version.mpeg” String MPEG version: 1, 2

or 2.5

Layer charstring “mp3.version.layer” String MPEG layer version:

1, 2 or 3

Encoding charstring “mp3.version.encoding” String MPEG encoding:

MPEG1, MPEG2-

LSF, MPEG2.5-LSF

Channels Integer “mp3.channels” Integer number of channels:

1 (mono), 2 (stereo)

Frequency Integer “mp3.frequency.hz” Integer sampling rate in Hz

nominalBitrate Integer “mp3.bitrate.nominal.bps” Integer nominal bitrate in bits

per second

lengthInBytes Integer “mp3.length.bytes” Integer length in bytes

lengthInFrames Integer “mp3.length.frames” Integer length in frames

frameSize Integer “mp3.framesize.bytes” Integer frame size of the first

frame. It is not

constant for VBR

tracks

frameRate Real “mp3.framerate.fps” Float frame rate in frames

per second

id3v2Size Integer “mp3.header.pos” Integer position of first audio

header (or ID3v2

size)

vbrFlag Integer “mp3.vbr” Boolean variable bitrate flag

vbrScale Integer “mp3.vbr.scale” Integer variable bitrate scale

crcFlag Integer “mp3.crc” Boolean cyclical redundancy

check flag

originalFlag Integer “mp3.original” Boolean original flag

copyrightFlag Integer “mp3.copyright” Boolean copyright flag

paddingFlag Integer “mp3.padding” Boolean padding flag

Mode Integer “mp3.mode” Integer mode: 0: STEREO 1:

JOINT_STEREO 2:

DUAL_CHANNEL 3:

SINGLE_CHANNEL

Genre charstring “mp3.id3tag.genre” String ID3 tag genre

Track charstring “mp3.id3tag.track” String ID3 tag track info

encodedBy charstring “mp3.id3tag.encoded” String ID3 tag encoded by

info

Composer charstring “mp3.id3tag.composer” String ID3 tag composer

info

Grouping charstring “mp3.id3tag.grouping” String ID3 tag grouping info

Disc charstring “mp3.id3tag.disc” String ID3 tag disc info

id3v2Version charstring “mp3.id3tag.v2.version” String ID3v2 tag major

version (2=v2.2.0,

3=v2.3.0, 4=v2.4.0)

Table 3.2.1: mp3track type properties

The only property left unused from those offered by MP3 SPI is “mp3.id3tag.v2”, which

returns a Java InputStream of ID3v2 frames. Also, this wrapper supports local file system files only,

so properties for Shoutcast (a technology for broadcasting MP3 files on the Internet in real-time)

streaming are not extracted.

3.3 Ogg Vorbis Schema

Ogg Vorbis database schema also contains only one type—vorbistrack which is inherited

from track. vorbistrack itself has no stored attributes. As with track and mp3track types, there is

only a property list and derived attributes.

vorbistrack type properties:

Name Amos type Java name Java type Description

lengthInBytes Integer “ogg.length.bytes” Integer length in bytes

minBitrate Integer “ogg.bitrate.min.bps” Integer minimum bitrate

nominalBitrate Integer “ogg.bitrate.nominal.bps” Integer nominal bitrate

maxBitrate Integer “ogg.bitrate.max.bps” Integer maximum bitrate

channels Integer “ogg.channels” Integer number of channels:

1 (mono), 2 (stereo)

frequency Integer “ogg.frequency.hz” Integer sampling rate in Hz

oggVersion Integer “ogg.version” Integer version of Ogg

standard

Serial Integer “ogg.serial” Integer serial number of track

Genre charstring “ogg.comment.track” String genre of track

Track charstring “ogg.comment.genre” String track number of track

encodedBy charstring “ogg.comment.encodedby” String encoder name, used

to encode the file

Table 3.3.1: vorbistrack type properties

Properties left unused are extended indexed comments with custom names. Some properties

might not exist for a given file.

3.4 System Usage

The system is started by invoking the Amos II system with the wrapper’s database image.

Then, if the function load is executed to import the meta-data, it takes one string parameter,

specifying a file or a directory path. If a directory is specified the system recursive accesses all files

in the directory and its subdirectories. For each accessed file, its meta-data is imported, the

corresponding database objects are created, and their properties are populated. For example, the

following command loads meta-data of all files in “test” directory to Amos II. Then user can make

queries for these objects and their properties:

load(“test”);

If the user wants to get name of artist, name of song, and a duration of all songs by The Erm,

the query for this is:

select name(t), duration(t) from track t where artist(t)="The Erm";

The following query selects all MP3 files which have Original bit set:

select title(t) from mp3track t where originalFlag(t)=1;

The following query returns a list of all MP3 files whose extension is not “mp3”:

select name(file(t)) from mp3track t where not(like_i(extension(file(t)), "mp3"));

A nice feature is to start playing accessed songs simultaneously. Playing a track opens a new

graphical window.

The imported meta-data may get out-of-synch from the musical files if new musical files

have been added or if old MP3 files have been replaced or updated. The system remembers last

modified date of an imported file and checks it against the real one, this way determining if file

needs updating. The file list is built recursively and checked against all files in a database, thus

checking which files’ meta-data needs to be extracted or removed. Hence the user can

resynchronize (refresh) information in the database with the updated data in the file system by

calling the function update() with no parameters. It scans all known directory paths recursively for

added/deleted files and directories and adds/deletes corresponding objects and their properties to

Amos II:

update();

User can also save Amos database image using command:

save “image.dmp”;

Amos II can later be started with this image (file name passed as a parameter), and the user

will be able to continue using accumulated meta-data in the database. The user then also can refresh

the database.

4 Implementation
The wrapper is implemented using AmosQL code and four Java foreign functions. The Java

functions implement only the parts of the wrapper that could not be implemented in AmosQL.

The meta-data loader, which imports meta-data from the music files into the mediator's

database, is implemented with the function load that takes parameter of file name or directory

name. If a directory name is specified, the foreign Java function getFiles builds a recursive list of

all files in that directory, using a file extension filter (AmosQL function fileExtHints). getFiles

function also has a side-effect of creating directory objects in database, so that these directories

remain known to the database and can be later refreshed. Then, each file name one by one is passed

to loadFile foreign Amos function, which does the actual parsing of the file and stores meta-data in

the database.

The Java function load both imports new meta-data to the database and refreshes existing

file meta-data. This is how it works:

1. It retrieves the property list of the properties of the music file. Firstly, it gets a file name of

the music file by parsing the Amos II command line parameter, and then builds a chain of

Java Sound API classes to get a property map of all available properties for this particular

file and their values.

2. The derived function trackstests is called. For every result—a bag of track type and a test

for this type, the function checks if the test property is available for current file. If it is, then

conclusion is made that this is the right type of track (e.g., mp3.id3tag.v2.version

determines the type mp3track, which always exists for MP3 files and not for any other

music format).

3. The stored procedure getFile is called with arguments of file name, file last modified year,

month, day, hour, minute, and second by using corresponding functions from Java API.

This procedure searches the database for an already existing file object with the file name.

If it exists, the procedure returns it, otherwise, creates a new one, sets a file name attribute,

and returns it. Also, if the file object exists, the procedure compares the last modified date

of the one stored in database and the one given as parameter. If they are not the same, this

means that file object needs updating, or, if the procedure created a new object, it also

means that properties must be set. Having determined this, the procedure returns a set of

file objects, and integer flags indicating whether the load function should be continuing its

work to update file properties (it should if file last modified date is different from the one in

database).

4. If function load needs to update some file properties. It sets attribute extension of the

file, gets a corresponding directory object (and returns it at the end of execution) using the

getDirectory stored procedure and then sets a directory attribute of file object.

5. Then function load checks if stored function track is set for file object. If it is, it means

that we are updating a file (attribute was set before). If not, a new object of type which was

determined in step 2 is created, and set to track attribute of file.

6. Then a type object of type “track” is retrieved from the database using getTrackType

derived function. The function gets a set of all Java property names (and their Java types);

this set is defined by the type of track. For example, one would not need Vorbis-specific

properties for an MP3 track. These property names will be used later to see what properties

should the function query and emit to database.

7. For every property function the system checks if this function exists, if it does, the system

sets a property in the database (casting value to proper type first). If the function does not

exist in the current file, but it exists in the database, the system removes it from database.

The database meta-data information is refreshed in a similar way; foreign function update

with no parameters is used. It does this:

1. All existing file names are retrieved from the database using oldFileNames derived function.

This function selects names of all file objects.

2. All file names from file system are retrieved using newFileNames derived function. This

function gets them in the same way as load gets existing file names (by using fileExtHints

and getFiles foreign functions).

3. For every “old” file name, it checks if the file exists. If not, it deletes file meta-data from

the database using the deleteFile stored procedure, else, it passes file name to load Java

function to refresh it.

4. The refresh function updates directory information saved in the database. For every

directory name (retrieved using dirNames derived function), it checks whether the directory

exists. If not, it removes its object using deleteDirectory stored procedure.

5. Finally, for every file which is not among old files and is among new ones, the Java

function load is called to store its meta-data in the database.

A separate Java class PlayThread is implemented for playing music files with a simple GUI.

There is an AmosQL function play which takes a track as a parameter. The actual foreign function

implementing this is playFile, which takes file name as a parameter. It creates PlayThread class,

sets its properties and then executes it in a new thread. PlayThread does the following:

1. It creates a minimal GUI, containing playing song file name and a button “Stop”.

2. It constructs AudioInputStream from File, which is constructed using given file name.

3. It constructs AudioInputStream which will be decoded by underlying SPI by converting

from AudioFormat which file is in to a decoded AudioFormat.

4. It gets SourceDataLine from AudioSystem for decoded format, opens it, feeds audio data to it

with 4096 byte blocks. If the user waits to finish playing (drains line) it stops.

4.1 Limitations

In J2SE 1.4 and earlier, a way to get properties is inflexible, static and allows only few

common predefined properties. Since Java 5, a new type of passing properties is allowed—by

immutable java.util.Map key/value pairs.

As a compromise to support Java 1.4 and earlier and still have advanced properties this

project uses alternative JavaSound implementation—open-source Tritonus library, which uses the

same mechanism but with class-cast workaround. SPI implementations often provide separate

versions for Java 1.5 and for Tritonus. MP3SPI, Ogg Vorbis SPI and many others have versions for

Tritonus implementation, and only recently for Java 1.5.

4.2 Adding new format

An important aim of this project is extensibility—the wrapper should be designed so that it

would be easy to add a new music format. The wrapper is initially implemented for MP3 and Ogg

Vorbis formats. We will take an example of JMAC SPI library which implements support for

Monkey’s Audio (.ape) [13, 9] format:

1. Make Java SPI libraries for this new format available to Java runtime. This can be done

copying them to “lib\” directory and specifying them in “env.cmd” file. In JMAC case,

add “jmactritonusspi.jar” to Java classpath in “env.cmd” file

2. Create new AmosQL file and add a command to parse it to “mkSchema.amosql” file, e. g.

mkApeSchema. In this new file, one needs to:

a. Specify create new track type under the type track, e. g.

create type apetrack under track;

b. Specify a test property form Java property list, which always exist for a given

format (and for no other one), usually format/encoder version. The wrapper uses

this property to check the musical format of current file, so it would know the

type of track it should create (e.g., mp3track vs. apetrack):

set tracktest(typenamed("APETRACK")) = "ape.version”;

c. Specify all properties for the format and their Java types. One example:

add props(typenamed("APETRACK")) = <"ape.peaklevel", "Integer">;

d. Specify derived helper functions for more comfortable use. One example:

create function peakLevel(apetrack tr) -> integer as select

property(tr, "ape.peaklevel");

3. Edit file extension hints function in “mkBasicSchema.amosql” file to include “.ape” files

as well. For example,

create function fileExtHints(charstring fn) -> boolean as

select where like_i(fn, "*.mp3") or

 like_i(fn, "*.ogg") or

 like_i(fn, "*.ape");

4.3 Performance

Tests were performed in two real-life collections of MP3 and Ogg files. In the first test, the

meta-data of 820 files collection was loaded into database and loading took 57 seconds (14.4

files/sec). In second test, meta-data of a collection of 3924 files was loaded into database, and that

took 246 seconds (15.9 file/sec). In general, performance is acceptable.

5 Summary
Nowadays, information systems are increasingly distributed by means of computer networks

and the Internet. Information flows are very dynamic and continuously changing. The Amos II

mediator database implements an approach to this problem by dividing functionality of data

integration to two subsystems—wrappers, providing access to data in various data sources using

common data model, and mediators—servers with one or more wrappers, providing coherent views

of data from wrappers.

The purpose of this project was to extend Amos II with a generalized music file wrapper to

wrap different kinds of music files. Today, music files make up a large proportion of data available,

so there is a need to have a way to query different kinds of music files. This wrapper enables Amos

II to query music files of various formats. As an example, MP3 and Ogg Vorbis format wrappers

were implemented. This wrapper does not deal with reconciliation between data from different

sources. In future, such reconciliation could be designed and implemented.

The wrapper makes a tradeoff for compatibility with Java 1.4 APIs—using an external

Tritonus JavaSound API implementation which is similar to Java 5 one. This could be improved by,

for example, adding dynamic support for both Java 5 and Tritonus implementations. Also, editing

of meta-data in database and saving it back to files could be implemented. There could also be

query functions for audio fragments comparison and search.

6 References
[1]. S. Brandani: Multi-database Access from Amos II using ODBC. In Linköping Electronic

Press, Vol. 3, Nr. 19, Dec. 8th, 1998. http://www.ep.liu.se/ea/cis/1998/019/

[2]. K. Brandenburg and H. Popp: An introduction to MPEG Layer-3. EBU Technical

Review, Fraunhofer Institut für Integrierte Schaltungen (IIS), Germany, June 2000.

http://www.mp3-tech.org/programmer/docs/trev_283-popp.pdf

[3]. P. Corsini: The MP3 standard. April 2, 1999.

http://www.hwupgrade.com/audio/diamond_rio/index2.html

[4]. D. Elin, T. Risch: Amos II JAVA Interfaces. UDBL Technical Report, Dept. of

Information Science, Uppsala University, Sweden, 2000. http://user.it.uu.se/~torer/publ/javaapi.pdf

[5]. G. Fahl and T. Risch: Query Processing over Object Views of Relational Data. The

VLDB Journal, Vol. 6 No. 4, November 1997, pp 261-281.

[6]. S. Flodin, M. Hansson, V. Josifovski, T. Katchaounov, T. Risch, and M. Sköld: Amos II

Release 7 User's Manual, March 29, 2005.

http://www.dis.uu.se/~udbl/amos/doc/amos_users_guide.html

[7]. Java Plug-in Developer Guide. June 11, 2005.

http://java.sun.com/j2se/1.4.2/docs/guide/sound/programmer_guide/contents.html

[8]. JavaZOOM team. http://www.javazoom.net

[9]. JMAC: Open Source Java Monkey's Audio Decoder/Encoder/JavaSound SPI.

http://jmac.sourceforge.net/

[10]. M. Jost: A Wrapper for MIDI files from an Object-Relational Mediator System,

Technical Report, Uppsala Database Laboratory. http://user.it.uu.se/~udbl/publ/MidiWrapper.pdf

[11]. H. Lin, T. Risch, and T. Katchanounov: Adaptive data mediation over XML data. In

special issue on “Web Information Systems Applications” of Journal of Applied System Studies

(JASS), Cambridge International Science Publishing, 2002.

[12]. MP3 SPI for Java Sound. http://www.javazoom.net/mp3spi/mp3spi.html

[13]. Monkey’s Audio. http://www.monkeysaudio.com/

[14]. Ogg Vorbis SPI for Java Sound. http://www.javazoom.net/vorbisspi/vorbisspi.html

[15]. T. Risch: Functional Queries to Wrapped Educational Semantic Web Meta-data in

P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional Approach to Data

Management - Modeling, Analyzing and Integrating Heterogeneous Data, Springer, ISBN 3-540-

00375-4, 2003.

[16]. T. Risch, V. Josifovski, and T. Katchaounov: Functional Data Integration in a

Distributed Mediator System, in P. Gray, L. Kerschberg, P. King, and A. Poulovassilis (eds.):

Functional Approach to Data Management - Modeling, Analyzing and Integrating Heterogeneous

Data, Springer, ISBN 3-540-00375-4, 2003.

[17]. C. Rodunger: Accessing XML data from an Object-Relational Mediator Database.

Uppsala Master's Theses in Computing Science no. 235, ISSN 1100-1836, 2002.

[18]. Sun Microsystems, Inc.: Java Sound API, January 11, 2002,

http://java.sun.com/j2se/1.4.2/docs/guide/sound/programmer_guide/contents.html

[19]. Sun Microsystems, Inc.: The Science of Java Sound, June 1999,

http://java.sun.com/developer/technicalArticles/Media/JavaSoundAPI/

[20]. Tritonus: Open Source Java Sound. http://www.tritonus.org/

[21]. G. Wiederhold: Mediators in the Architecture of Future Information Systems. IEEE

Computer, 1992.

[22]. Wikipedia: Ogg, June 10, 2005, http://en.wikipedia.org/wiki/Ogg

[23]. Wikipedia: Nyquist-Shannon sampling theorem, June 06, 2005.

http://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem

