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Abstract

Evaluation of the Stream Query Language CQL

Robert Kajic

There are several query languages developed for data stream management systems
(DSMS), CQL (Stanford), StreamSQL (StreamBase), WaveScript (MIT), SCSQL
(Uppsala University), etc. This thesis is the research phase of a two-phase project
where the final goal is to provide CQL support to the Super Computer Stream
Query processor (SCSQ); a DSMS developed by the Uppsala DataBase Laboratory. In
this paper, the main properties of CQL, the extent to which they are implemented by
the Stanford STREAM project and the expressibility of the Linear Road (LR)
benchmark using CQL is investigated. An overview and comparison of SQL, CQL,
StreamSQL and WaveScript is also given.
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1 Introduction

A data stream management system (DSMS) is similar to a database manage-
ment system (DBMS) with the difference that while a DBMS allows search-
ing only stored data, a DSMS in addition provides query facilities to search
directly in data streaming from some source(s). The argument is that tradi-
tional DBMSs are not able to efficiently, or at all, handle large amounts of
streaming data and can be greatly outperformed by a dedicated DSMS [4].

In this paper, three general purpose continuous query languages will be
investigated together with their corresponding DSMSs: CQL, StreamSQL
and WaveScript — implemented in STREAM, StreamBase and WaveScope
respectively. Special care will be given to the main properties of CQL as
well as the extent to which they are implemented by the Stanford Stream
Manager (STREAM) project. CQL will be compared with SQL, StreamSQL
and WaveScript.

The most widely used performance evaluation tool for DSMSs is the Lin-
ear Road benchmark [4]. It induces a set of demanding queries based on a
large scale city traffic simulation. The benchmark will be introduced as well
as its expressibility using CQL investigated.

2 Data Stream Management Systems and LR

The following sections will present the motivations behind three data stream
management systems and their contributions. Furthermore, the Linear Road
benchmark will be introduced. It simulates a city with a number of motor
expressways where vehicles are subject to variable tolling.

2.1 Data Stream Management Systems

2.1.1 The Standford Stream Data Manager

The Standford Stream Data Manager (STREAM) was a project at Stanford
university with the goal of developing a DSMS capable of handling large
volumes of queries in the presence of multiple, high volume, input streams
and stored relations [10].

The project produced a DSMS prototype and created CQL 3.1 — a declar-
ative query language based in SQL — for expressing continuous queries on
streams. The fully functional prototype is available for download on the
STREAM homepage [14].
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2.1.2 StreamBase

StreamBase [17] is a commercialization of the Aurora project [1] — a joint
DSMS research project at Brown University, Brandeis University and Mas-
sachusetts Institute of Technology (MIT). Today, StreamBase is one of the
most widely used and recognized commercial event processing platforms, of-
fering a DSMS server and an integrated development environment aimed
at rapid development of stream processing applications [19]. According to
StreamBase, the StreamBase DSMS offers “the fastest performance, with the
lowest latency and highest throughput” [20]. However, the company has not
made any benchmarks publicly available, not of LRB nor any other DSMS
benchmark. These claims are thus not easily verifiable.

StreamBase has two distinct query languages. The first, StreamSQL,
is text based and has many syntactic and semantic similarities with CQL
and SQL languages in general. The second, called EventFlow, is a graph-
ical language where queries are constructed, executed and debugged using
a click-and-point interface as seen in figure 2.1.2. While the languages are
conceptually very different they are equal in their expressiveness [19].
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Figure 1: The StreamBase Studio is build upon the popular Eclipse IDE.
Here can be seen the EventFlow query authoring interface.

2.1.3 WaveScope

WaveScope is a MIT research project in the field of high data-rate wireless
sensor networks [22]. One of its contributions, most relevant to this paper,
is the development of a declarative functional language for stream and signal
processing called WaveScript 3.3.

2.2 Linear Road Benchmark

Congested roads during rush hours is an ever increasing problem in and
around big cities. One method of alleviating this problem is through the use
of variable tolling. Tolls are based on the time of day [7] and/or the current
traffic situation in each vehicles vicinity (congestion, accidents, etc.). The
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basic idea is to discourage use of highly congested roads and to make roads
with excess capacity more attractive.

The most widely used benchmark for measuring DSMS performance is the
Linear Road (LR) Benchmark (LRB). LRB simulates a fictional city with a
number L of expressways where tolls are determined through variable tolling
[4]. In LRB, a DSMSs performance, its L-rating, is determined by how many
simultaneous expressways it can handle while producing timely and correct
query results.

Expressway L

L-1

L-2

3

2

1

100 one-mile segments

Figure 2: LRB city with L expressways, each being one-hundred miles in
length.

Each expressway is 100 miles long and made up of eight lanes, four of
which go from west to east, and the other four from east to west. Addi-
tionally, three of the lanes in each direction are traveling lanes with the
fourth lane being an entrance and exit lane. Each expressway consists of 100
one mile segments with an entrance ramp at the start of, and an exit ramp
roughly at the end of, each segment.
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Entrance/exit lane 1

Traveling lane 2

Traveling lane 3

Traveling lane 4

Traveling lane 5

Traveling lane 6

Traveling lane 7

Entrance/exit lane 8

Westbound

Eastbound

1 mile

Figure 3: Each segment is one mile long, having four eastbound and four
westbound lanes. Three are traveling lanes and the fourth an entrance/exit
lane.

2.2.1 Notifications

Vehicles report their positions to the tolling system with an interval of 30
seconds. Whenever a vehicle sends a position from a new segment the tolling
system must notify the vehicle of the cost of traveling that particular segment.
The customer may choose to leave the segment by the exit ramp to avoid
paying the segment toll, or continue into the subsequent segment to receive
the next quote.

If two or more vehicles report the same position in four consecutive reports
the tolling system must recognize this as an accident and notify vehicles in
adjacent upstream segments so that they may avoid the accident.

2.2.2 Historical Queries

The tolling system must also respond to the following historical queries which
are issued by the vehicles:

Account balance A vehicles current account balance in the tolling system.

Daily expenditure A sum of all tolls charged today on some given express-
way.

Travel time estimation An expected travel time based on statistics of pre-
vious travel times.
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2.2.3 The Simulation

LRB simulates three hours of traffic which generates roughly the following
input from each expressway [4]:

1. 12 million position reports

2. 60000 account balance queries.

3. 12000 daily expenditure queries.

The following output is expected from the tolling system:

1. 2 million tolls alerts.

2. 28000 accident alerts.

3. One response for each historical query.

3 Continuous Query Languages

DSMS queries are different from conventional database queries in, e.g. SQL,
where a query requests data from tables stored in the database. The result of
a DSMS query can be not only a set of tuples as in SQL, but also a potentially
infinite stream of tuples. Furthermore, stream queries are continuous queries
(CQs) in that they run indefinitely, or until they are terminated, while con-
ventional queries are executed on demand and run until all requested data is
delivered. In this paper, I will take a closer look at CQL 3.1 and two related
stream processing languages: StreamSQL 3.2 and WaveScript 3.3.

3.1 CQL

Syntactically CQL is very similar to the SELECT statement of SQL making
it easy to learn and understand for users with previous experience of SQL-like
languages. Furthermore, being a declarative language, it leaves all choices of
how to execute and optimize the query to the DSMS.

A dominating part of the data manipulation of a CQL query is performed
by relation-to-relation operators [3, 2, 23]. This approach was chosen so
that well understood relational concepts could be reused and extended. The
operators include many of those normally found in SQL, such as projection,
selection, aggregation, joining, grouping, etc.

Additionally, CQL has stream-to-relation and relation-to-stream opera-
tors which, as their names suggest, convert from streams to relations and vice
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versa. Together with the relation-to-relation operators they offer great flexi-
bility in how data can be manipulated; once a stream-to-relation operator has
been applied to a stream it can be subjected to regular relation-to-relation
operators after which it may be, if necessary, transformed back to a stream
using a relation-to-stream operator.

STREAM RELATION

Relation-to-Stream

Stream-to-Relation

Relation-to-Relation

Figure 4: Streams are converted to relations using CQLs sliding window
operators. Relations are manipulated using standard relational operators
and can be converted back to streams using one of the relation-to-stream
operators available in CQL.

3.1.1 Stream-to-Relation Operators

The stream-to-relation operators in CQL are based on a sliding window [5]
which can be though of as view upon a stream that, at any point in time,
reflects the viewed part of the stream as a relation. As time flows the window
moves over the stream and the contents of the relation are changed to reflect
the current view.

To express sliding windows CQL uses a window specification language in-
spired by SQL-99. The available window types are: time based 3.1.1.1, tuple
based 3.1.1.2 and partitioned windows 3.1.1.3. In the following paragraphs,
each will be described through a series of examples.

3.1.1.1 Time Based Windows Given the following streams:
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Auctions(auction_id , seller , time)
Purchases(auction_id , buyer , cost , time)

Listing 1: Each auction tuple contains an integer auction id auction identi-
fier, an integer seller which identifies the seller and a timestamp time.
Each purchase tuple contains an integer auction id auction identifier, an in-
teger buyer which identifies the buyer, an integer cost for the auction ending
price and a timestamp time. In both streams, the timestamps denote when
the associated tuple was emitted.

The question “What is the total amount spent by Luke on auctions from
John, during the last day.” can be expressed using the following CQL query:

SELECT SUM(P.cost)
FROM Auctions AS A, Purchases [RANGE 1 DAY] AS P
WHERE A.auction_id = P.auction_id

AND A.seller = "John";
AND P.buyer = "Luke";

Listing 2: Time based sliding window.

The query uses [RANGE 1 DAY] to define a time based sliding window
on the Purchases stream, which produces the continuously updated relation
R. At any time T the relation R will contain all stream elements in the
Purchases stream with timestamps ranging from T and going back one day.
As time passes, the window moves forward, excluding purchases as they
become too old and including newly made ones. The current contents of the
window will always be reflected in the relation R.

The aggregate function SUM() is continuously applied on the current
contents of the relation R producing the final result of the query.

3.1.1.2 Tuple Based Windows Using the same input streams, the
question “What is the total amount spent by Luke on his latest ten pur-
chases from John.” can be expressed using the following CQL query:

SELECT SUM(P.cost)
FROM Auctions AS A, Purchases [ROWS 10] AS P
WHERE A.auction_id = P.auction_id

AND A.seller = "John";
AND P.buyer = "Luke";

Listing 3: Tuple based sliding window.

The query differs from the previous one in that we now use a tuple based
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window. ROWS is similar to RANGE, with the difference that while RANGE
defines a window based on time, the ROWS operator expects a physical
window size N, i.e., a maximum number of tuples that may be included in
the sliding window.

3.1.1.3 Partitioned Windows The following CQL query expresses “Take
the 10 most recent auctions from each seller and return the seller of the most
expensive item.”:

SELECT A.seller , MAX(P.cost)
FROM Auctions [PARTITION BY A.seller ROWS 10] AS A,

Purchases AS P
WHERE A.auction_id = P.auction_id
GROUP BY A.seller;

Listing 4: Partitioned sliding window.

The partitioned window operator expects a stream S, a positive number
of tuple attributes and an integer N. It splits the stream S into sub-streams
such that the given attributes are unique for each stream. A tuple based
window of size N is then applied on each sub-stream to create a number
of continuously updated sub-relations. Finally, a relation R, i.e., the query
output, is formed by taking the union of all sub-relations.

3.1.2 Relation-to-Stream Operators

In the previous examples the results of the queries have all been continuously
updated relations. The following relation-to-stream operators are available
when it is desirable for a query to return a stream:

ISTREAM(R) Defines a stream of elements (r, T) such that each r is in
relation R at time T, but was not in R at time T-1.

DSTREAM(R) Defines a stream of elements (r, T) such that each r was
in relation R at time T-1, but is not in R at time T.

RSTREAM(R) Defines a stream of elements (r, T) such that each r is in
relation R at time T.

As an example, the following CQL query expresses “A stream of sellers
of the most expensive sold item, taking into account no more than 2000 of
each sellers most recently sold items.”:
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ISTREAM(SELECT A.seller , MAX(P.cost)
FROM Auctions [PARTITION BY A.seller ROWS 1000] AS A,

Purchases AS P
WHERE A.auction_id = P.auction_id
GROUP BY A.seller );

Listing 5: Using the ISTREAM operator to produce a stream of the most
expensive items.

The query will produce a new tuple (<seller, max>, T ) whenever a seller
achieves a new maximum at time T, as compared with T-1.

3.1.3 Processing of tuples

A fundamental property of CQL is that windows are calculated (concep-
tually) using a time-driven model [11]. All stream tuples are of the form
(value, timestamp) and the contents of a window are updated at the end
each time step T, with regard to tuples with timestamps equal to or smaller
than T. Regardless of how many tuples arrive at any given timestamp, the
window is only updated when it is known that no further tuples can arrive
for said timestamp. This model be contrasted to a tuple-based model, where
a windows’ contents are re-evaluated every time a new tuple arrives.

To highlight one of the differences between the two models I will illustrate
with an example. Given the following stream (which uses the Purchases
schema from Listing 1):

Purchases(auction_id , buyer , cost , time) =
(1, "Lars", 30, 0)
(2, "Mia", 10, 1)
(3, "Sven", 50, 1)
(4, "Klara", 50, 1)
(5, "Svea", 60, 2)

Listing 6: Stream of pruchases.

And using the following query:

ISTREAM(SELECT AVG(cost) as AvgCost , time
FROM Purchases [ROWS 10]);

Listing 7: Calculate the average cost of the latest ten purchases.

We get these results:
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3.1.3.1 Time-driven Using a time-driven model the window is re-evaluated
only at the end of each time step, giving the following output stream:

(30, 0)
(35, 1)
(40, 2)

Listing 8: Output stream for time-driven model.

3.1.3.2 Tuple-based With a tuple-driven model the window is re-evaluated
every time a new tuple arrives. This gives us the following output stream:

(30, 0)
(20, 1)
(30, 1)
(35, 1)
(40, 2)

Listing 9: Output stream for tuple-driven model.

Further examples and a very thorough investigation of the strengths and
limitations of both models can be found in [11].

3.1.4 Defaults

Two of the main goals when designing CQL were that simple queries should
be easy to write and do what you expect [23]. In order to achieve these goals
the language has a number of syntactic defaults such as that: an unlimited
(infinite) window is applied on streams by default, the relation-to-stream
operator can often be omitted as ISTREAM is applied by default, a special
Now window exists and is equivalent to a [RANGE 1 SECONDS] window,
etc.

3.1.5 Implementation in STREAM

The current implementation of CQL in STREAM does not provide all fea-
tures described in [3, 2, 23]. Some of the missing features can, however, be
expressed if intermediate named queries are used [15]. That is, a query can
be given a name which can later be referenced by another query, in place of
a relation or a stream. The following features are not supported:
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1. The WHERE clause may not contain sub queries:

RSTREAM(SELECT *
FROM cars
WHERE cars.id IN (SELECT accident.carid

FROM accident ));

Listing 10: No sub queries in the WHERE clause.

2. The HAVING clause is not supported:

SELECT segid , SUM(carid) AS ncars
FROM segments
GROUP BY segid
HAVING ncars > 1;

Listing 11: No HAVING clause

However, it is possible to rewrite the query using a intermediate named query:

GroupedSegments(segid , ncars ):
SELECT segid , SUM(carid) AS ncars
FROM segments
GROUP BY segid;

SELECT *
FROM GroupedSegments
WHERE ncars > 1;

Listing 12: Intermediate query.

3. Arithmetic with aggregations is not supported in the PROJECT clause:

SELECT segid , MAX(speed)-MIN(speed) AS speed_distance
FROM segments
GROUP BY segid

Listing 13: No aggregation in the PROJECT clause.

4. Attributes may only be of type Integer, Float, Char(n) or Byte and it
is not possible to perform type casting.

5. It is not possible to specify a SLIDE value for windows, i.e., by how
much a window should move when it moves forward.
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6. The INTERSECT operator is not supported, but UNION and EX-
CEPT are.

3.1.6 Linear Road Benchmark Expressibility

The STREAM project has not published an implementation of the LR bench-
mark. However, they have defined a benchmark specification using CQL [13].
The specification does not include the stream of travel-time estimates, but
this output stream is also skipped by all currently published LR implemen-
tations; Super Computer Stream Query processor [24], Aurora [4], Stream
Processing Core [12] and XQuery [6].

The CQL-based specification published at [13] defines the following out-
put streams:

TollStr The stream of tolls for cars entering congested segments.

AccNotifyStr The stream of accident notifications to cars which are moving
toward and are in close proximity to a accident segment.

AccBalOutStr The stream of account balance notifications answering ad-
hoc account balance queries.

ExpOutStr The stream of todays expenditures notifications answering the
corresponding adhoc queries.

The streams are defined using a number of intermediate named queries.
I will not present those queries here — they are readily available at [13].

3.1.6.1 The output stream ExpOutStr is interesting because it makes
use of a special “Today Window” to define a window which contains all
stream tuples with timestamps within the current day (note it uses a depre-
cated relation-to-stream operator syntax):

SELECT RSTREAM(query_id , E.car_id , -1 * SUM(credit )) FROM
ExpQueryStr [NOW] as Q, AccTransStr[Today Window] as T WHERE
Q.car_id = T.car_id;

Listing 14: Using the Today Window to define the LRB output stream
ExpOutStr.

The query is taken out of its context and you may want to take a closer
look at the definitions of ExpQueryStr and AccTransStr at [13]. Shortly,
ExpQueryStr is the input stream of adhoc queries requesting todays expen-
ditures, and AccTransStr is the stream of all car account transactions.
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The ExpOutStr should produce a stream of todays expenditures, but
using CQL it is not possible to define a window with a specific “start” time,
e.g. the start of the current day, nor a window slide, e.g. that the window
should move by one day at the end of each day. While the suggested “Today
Window” expresses exactly those requirements it is actually not implemented
by the protoype [14]; i.e., the definition of the ExpOutStr stream unusable
in practice. Indeed, a formal definition of the benchmark, in the form of a
CQL script, can be found in the latest source code distribution of STREAM
[14] (in $SOURCE/examples/scripts/linearroad); the only missing part is
the ExpOutStr query.

3.1.7 Slide parameter

A slide parameter has been incorporated into the most recently released
version of STREAM. This makes it possible to define a “Today Window” as
it was described in the previous section, and to fully implement LR using
CQL and STREAM. The modified source is available at [9]. Here is an
informal description of the semantics of the new parameter:

The slide is optional and should be specified immediately after the window
operator RANGE. It is currently not possible to define a slide together with
the ROWS operator. The slide is expressed using a time specification which
follows the exact same syntax as RANGE. Finally, specifying a range smaller
than the slide has undefined results.

3.1.7.1 Simple example The following example defines a window with
a range of 10 seconds, and a slide of 5 seconds:

SELECT *
FROM S [RANGE 10 SECONDS SLIDE 5 SECONDS ];

Listing 15: Slide of 5 seconds.

Once the window encompasses a range of 10 seconds, it will move forward
5 seconds. All tuples with timestamps between the windows’ original and new
position will be dropped.

3.1.7.2 Revisiting the Today Window The window [RANGE 1 DAY
SLIDE 1 DAY] is equivalent to the “Today Window” described at [13]. It
can be used to define the ExpOutStr stream in the following way (I am using
the deprecated relation-to-stream operator syntax for consistency with the
original query):
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SELECT RSTREAM(query_id , E.car_id , -1 * SUM(credit ))
FROM ExpQueryStr [NOW] as Q,

AccTransStr [RANGE 1 DAY SLIDE 1 DAY] as T
WHERE Q.car_id = T.car_id;

Listing 16: The ExpOutStr stream using the new SLIDE parameter.

3.2 StreamSQL

With a similar reasoning as the STREAM project when creating CQL —
to take advantage of SQLs ubiquity in DBMSs — StreamSQL also has its
foundations laid in SQL. Therefore, StreamSQL shares many syntactic and
semantic similarities with both SQL and CQL.

The language has operators which deal with two data types; streams and
relations, both of which may appear in the from clause of queries. Streams
are defined as potentially infinite sequences of tuples and relations are either
regular relational tables or stream windows. The main distinction here, from
CQL, is the addition of operators that deal directly with streams. Further-
more, StreamSQL stream windows are tuple-driven instead of time-driven.
This is investigated in greater detail in sections 3.2.1 and 3.1.3.

STREAM RELATION

Relation-to-Stream

Stream-to-Relation

Relation-to-RelationStream-to-Stream

Figure 5: As in Figure 3.1, streams are converted to relations using sliding
window operators. Relations are manipulated using standard relational op-
erators and then converted back to streams. Additionally, in StreamSQL,
streams can be directly manipulated, whiteout intermediate conversions, us-
ing a set of stream-to-stream operators.

3.2.1 Tuple-driven Processing

In section 3.1.3 I touched upon how a continuous languages’ tuple processing
model can influence the behaviour of its operators and consequently the out-
put produced by its queries. StreamSQL uses a tuple-driven model ordering
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tuples not only on their timestamps, but also on their order of arrival [5].
Tuples are assigned ranks based on arrival and processing is performed in
rank-ascending order as far as possible, i.e., a tuple with rank R is processed
before all tuples with rank > R.

3.2.2 Stream-to-Stream Operators

This section will give an introduction to some of the available stream-to-
stream operators in StreamSQL. For a complete reference of all available
operators please refer to the StreamSQL documentation [21].

Given the following Auctions stream:

Auctions(auction_id , seller , starting_price , time)

Listing 17: Each auction tuple contains an integer auction id auction identi-
fier, an integer seller which identifies the seller, an integer starting cost of the
initial auction price and a timestamp time of when the tuple was emitted.

3.2.2.1 Filter To filter the Auctions stream and keep auctions with a
starting price bellow 10 we could use the following query:

SELECT *
FROM Auctions
WHERE starting_price <10;

Listing 18: Stream filtering.

The query will output a new stream from which overly expensive items
have been excluded.

3.2.2.2 Stream Join A stream can be joined with static tables, combin-
ing each stream tuple with a set of tuples from the tables. To illustrate, I will
add schemas for two tables; one that associates auctions with categories and
one that contains the actual category information. This will make it possible
to associate each auction with several categories.

AuctionCategories(auction_id , category_id)
Categories(category_id , name)

Listing 19: Static table schemas for auction categories and category infor-
mation.

The auctions stream can then be joined with the static tables:
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SELECT *
FROM Auctions A, AuctionCategories AC , Categories C
WHERE A.auction_id=AC.auction_id

AND AC.category_id=C.category_id;

Listing 20: Stream joining.

3.2.2.3 Stream Union It is possible to combine two streams using the
union operator, the result being an interlacing of the two streams with their
order of arrival preserved. Given the following streams of Swedish and Nor-
wegian auctions, where tuples arrive at time:

Auctions_Sweden(auction , time) =
(auction , 7),
(auction , 10);

Auctions_Norway(auction , time) =
(auction , 0),
(auction , 6),
(auction , 9);

Listing 21: Norwegian and Swedish auctions.

The streams can be unified:

SELECT *
FROM Auctions_Sweden UNION Auctions_Norway;

Listing 22: Stream union.

To produce the following output stream:

Auctions_Union(auction , time) =
(Norwegian_auction , 0)
(Norwegian_auction , 6)
(Swedish_auction , 7)
(Norwegian_auction , 9)
(Swedish_auction , 10)

Listing 23: Union of Swedish and Norwegian auctions.

3.2.2.4 Pattern matching StreamSQL has pattern matching operators
which allow detection of temporal or range-based patterns between tuples
from one or more streams. For example it is possible to detect that an
auction is not followed by a bid within T seconds.
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This is achieved through the PATTERN clause which consists of a tem-
plate that references one or more streams and defines some relationship be-
tween those using pattern operators, and a window that defines the maxi-
mum allowed duration for the defined relationship. The window may either
be time-based or value-based. I.e., with a maximum time, or a maximum
range of values on some field, during which the relationship must occur.

I will illustrate with an example. Using a bids stream with the following
schema:

Bids(auction_id , buyer , cost , time)

Listing 24: Each bid tuple contains an integer auction id auction identifier,
an integer buyer which identifies the buyer, an integer cost for the current
bid price and a timestamp time of when the tuple was emitted.

This query then expresses “All auctions which have no bids within ten
minutes.”:

SELECT *
FROM PATTERN Auctions THEN NOT Bids WITHIN 600 TIME;

Listing 25: Using pattern matching to find auctions with no bids.

The template Auctions THEN NOT Bids defines a relationship where
auctions are not followed by bids, and WITHIN 600 TIME specifies a time-
based window during which the relationship must occur. Whenever an auc-
tion is created the template will immediately match. Additionally, if there
are no bids for ten minutes the window will be satisfied and the query will
output the unpopular auction. Otherwise, i.e., if a bid arrives before the
window closes, the template will no longer match and the auction no longer
needs to be monitored for bids.

The following figure depicts a scenario where the template discards the
first auction and accepts the second:
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Figure 6: Equally colored auctions and bids have the same auction id. The
red auction is invalidated by the pattern template in Listing 25 as a bid
arrives after only three minutes, i.e., within the ten minutes specified by the
pattern window. The green auction, however, has no bids within ten minutes
and the pattern produces the auction tuple on the output stream.

A formal definition of the pattern matching language, together with addi-
tional examples, can be found at [18]. Furthermore, the StreamBase Stream-
SQL webinar [16] has additional pattern matching examples and an intro-
duction to StreamSQL in general.

3.2.3 Stream-to-Relation Operators

Like CQL, StreamSQL makes use of the notion of sliding windows 3.1.1. It is
possible to define windows “inline” , i.e. as part of a query, but also using a
separate CREATE WINDOW statement, so that a window may be used by
more than one query. Compared with CQL, the StreamSQL window offers a
few additional features such as:

1. Ability to define a slide.

2. An offset that specifies how long to wait before opening the first window
on the stream.

3. A timeout after which the window closes.

4. The ability to define windows not only based on time, and number of
tuples, but also on a range on some user defined stream field.

Disregarding the added functionality, the StreamSQL and CQL windows
are semantically very similar, with an important exception. In CQL, the
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state of a window changes at the end of each time step, while in StreamSQL
it is changed every time a new tuple arrives [5].

3.2.4 Relation-to-Stream Operators

Unlike CQL, where there are three different relation-to-stream operators
available, StreamSQL has a single relation-to-stream operator with the lim-
itation that the PROJECT clause must perform some kind of aggregation.
The operator streams the result of the aggregation every time a new tuple
arrives, instead of the end of each time step.

To give an idea of the languages syntax, the “most expensive item” query
in Listing 5 is rewritten using StreamSQL:

CREATE STREAM MostExpensiveAuctions AS
SELECT A.seller , MAX(P.cost)
FROM Auctions [SIZE 10 ADVANCE 1 TUPLES PARTITION BY A.seller] AS A,

Purchases AS P
WHERE A.auction_id = P.auction_id
GROUP BY A.seller;

Listing 26: Stream of most expensive items.

The window specification creates a window with a fixed length of 10
tuples, that advances one tuple each time a new window is opened. The
output of the query is sent into a stream called MostExpensiveAuctions.

3.3 WaveScript

With sensors, such as microphones and cameras, that produce signals with
data rates of hundreds of thousands of samples per second it is often desirable
to analyze the signal in chunks, instead of splitting it into a sequence of tuples
as is the usual approach by most DSMSs. Furthermore, the analysis of such
signals is often application specific and must be processed by used defined
code which introduces the non negligible overhead of converting the signal
data back and forth from the DSMS to some external langauge such as C or
MATLAB for processing.

WaveScript is a programming language developed to integrate high data-
rate stream processing with signal processing where the traditional tuple-
based approach of analyzing streams doesn’t provide sufficient performance.
The language introduces a new first-class data type called signal segment
that groups signal samples into chunks. Each signal segment contains a fixed
number of signal samples emitted at an regular rate, allowing the segment
to timestamp only the first sample (the remaining samples being implicitly
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timestamped), and by doing so avoiding the substantial space overhead in-
curred by per-tuple timestamps. A signal segment can be directly processed
using native WaveScript operators which perform, e.g., signal filtering, spec-
trum analysis, resampling, etc. [8], or users may define new operators directly
using WaveScript, by doing so avoiding data conversion to and from foreign
functions defined in an external language.

4 Conclusions

In this paper, a number of continuous query languages were investigated and
compared. Special attention was given to CQL, its operators and the level
at which the Linear Road benchmark can be expressed using STREAMs’
implementation of CQL.

CQL is an extension of the ubiquitous relational database language SQL
and makes use of its relation-to-relation operators to the furthest extent pos-
sible. To do this CQL offers a number of stream-to-relation operators which,
after they have been applied to a stream, allow its data to be manipulated
using well understood relational operators, such as projection, selection, ag-
gregation, joining, grouping, etc. Once the data has been appropriately
transformed it can converted back to a stream using some of the relation-to-
stream operators available in CQL.

The stream-to-relation operators available in CQL are based on the con-
cept of a sliding window. The sliding window is not unique to CQL but
is available in most continuous query languages as a tool for dividing the
stream into finite segments which can then be readily manipulated and ana-
lyzed. To calculate its windows, CQL uses a time-driven model, as opposed
to tuple-driven, which is for example used by StreamSQL. In any CQL im-
plementation, it is important to adhere to the semantics of the time-driven
model to get the same behaviour across all implementations.

CQL is not able to express the linear road benchmark in its entirety.
This can mainly be affected to CQLs inability of expressing windows with a
variable SLIDE parameter, or more specifically a “Today Window” 3.1.6.1.
However, using the new SLIDE parameter, which was added and described
in this paper 3.1.7, it should be possible to implement LRB using STREAM.
STREAM includes a significant LRB implementation which comes short of
being complete because it does not implement the ExpOutStr output stream
3.1.6.1. This implementation should serve as a natural starting point to any
endeavour of implementing the complete LRB.

Compared with StreamSQL, CQL is relatively small in terms of available
features. StreamSQL has all the features available in CQL, and addition-
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ally offers additional operators in all operator classes (relation-to-relation,
relation-to-stream and stream-to-relation). Furthermore it has a completely
new class of stream-to-stream operators which allow manipulation of streams
without intermediate conversion to and from relations. These allow for
stream filtering, joining, pattern matching, etc.

However, StreamSQL uses a tuple-driven model and therefore some queries
expressible using CQL are not possible using StreamSQL and vice versa. Re-
search has recently been undertaken in unifying the tuple- and time-based
models [11], so that the benefits of both can be harvested and their individual
limitations avoided.

WaveScript is aimed at stream applications where segments of stream tu-
ples are more meaningfully analyzed than isolated stream tuples. By group-
ing tuples into segments, and treating those segments as first-class objects
which are directly manipulable by the language, performance is increased by
several orders of magnitude.

5 Future Work

It has been mentioned that this thesis is the first phase of a project which
hopes to add CQL support to SCSQ. An important, yet unresolved issue, on
the way to reaching this goal, is to determine how CQL operators can be
expressed in terms of SCSQL operators (SCSQL is the query language used
by SCSQ), and which, if any, CQL operators require new functionality in
SCSQ.

StreamSQL shares many similarities with CQL, but has had time to de-
velop a richer set of features and uses a tuple-driven model. When CQL
support has been added to SCSQ it should be interesting to evaluate if it
is possible, and if so, how to give support to StreamSQL in SCSQ. Stream-
SQL has many features not available in CQL, most notably stream-to-stream
operators, with pattern matching in particular, which give it additional ex-
pressive power.

A recent paper [11] seeks to integrate the differences between CQLs time-
based model with StreamSQLs tuple-based and proposes the new SPREAD
operator. It should be investigated if the ideas behind the SPREAD operator
can help in implementing CQL and StreamSQL in SCQL in a general way.

Together with its source code, the STREAM project has released an in-
complete definition of the LR benchmark. Part and possibly the whole prob-
lem was CQLs inability to express windows with a SLIDE parameter. Now
that the SLIDE parameter is available, it would be interesting to complete
the LRB definition in order to evaluate STREAMs performance and deter-
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mine its L-value. There may be other issues, unrelated to the SLIDE param-
eter which prevent the completion of the benchmark; if so, these obstacles
should be identified and resolved.
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