
ACTA UNIVERSITATIS UPSALIENSIS
Uppsala Dissertations from the Faculty of Science and Technology

66

Milena Ivanova

Scalable Scientific Stream Query
Processing

Dissertation at Uppsala University to be publicly examined in MIC campus, room 1211, Po-
lacksbacken, on Monday, November 7, 2005 at 13:15, for the Degree of Doctor of Philosophy.
The examination will be conducted in English.

Abstract
Ivanova, M. 2005. Scalable Scientific Stream Query Processing. Acta Universitatis Upsaliensis.
Uppsala Dissertations from the Faculty of Science and Technology 66. 137 pp. Uppsala. ISBN
91-554-6351-7

Scientific applications require processing of high-volume on-line streams of numerical data
from instruments and simulations. In order to extract information and detect interesting pat-
terns in these streams scientists need to perform on-line analyses including advanced and of-
ten expensive numerical computations. We present an extensible data stream management sys-
tem, GSDM (Grid Stream Data Manager) that supports scalable and flexible continuous queries
(CQs) on such streams. Application dependent streams and query functions are defined through
an object-relational model.

Distributed execution plans for continuous queries are specified as high-level data flow dis-
tribution templates. A built-in template library provides several common distribution patterns
from which complex distribution patterns are constructed. Using a generic template we de-
fine two customizable partitioning strategies for scalable parallel execution of expensive stream
queries: window split and window distribute. Window split provides parallel execution of ex-
pensive query functions by reducing the size of stream data units using application dependent
functions as parameters. By contrast, window distribute provides customized distribution of en-
tire data units without reducing their size. We evaluate these strategies for a typical high volume
scientific stream application and show that window split is favorable when expensive queries
are executed on limited resources, while window distribution is better otherwise. Profile-based
optimization automatically generates optimized plans for a class of expensive query functions.
We further investigate requirements for GSDM in Grid environments.

GSDM is a fully functional system for parallel processing of continuous stream queries.
GSDM includes components such as a continuous query engine based on a data-driven data flow
paradigm, a compiler of CQ specifications into distributed execution plans, stream interfaces
and communication primitives. Our experiments with real scientific streams on a shared-nothing
architecture show the importance of both efficient processing and communication for efficient
and scalable distributed stream processing.

Keywords: data stream management systems, parallel stream processing, scientific stream query
processing, user-defined stream partitioning

Milena Ivanova, Department of Information Technology, Uppsala University, PO-Box 337, SE-
751 05 Uppsala, Sweden

c©Milena Ivanova 2005

ISSN 1104-2516
ISBN 91-554-6351-7

Printed in Sweden by Universitetstryckeriet, Uppsala 2005
Distributor: Uppsala University Library, Box 510, SE-751 20 Uppsala
www.uu.se, acta@ub.uu.se

To my parents and
my son

Contents

1 Introduction . 1
1.1 Motivation . 1
1.2 Database Management Systems . 2
1.3 Distributed and Parallel DBMS . 5

1.3.1 Parallel Database Architectures . 6
1.3.2 Types of Parallelism for DBMS . 7

1.4 Data Stream Management Systems (DSMSs) 8
1.5 Summary of Contributions and Thesis Outline 11

2 GSDM System Architecture . 15
2.1 Scenario . 15
2.2 Query Specification and Execution . 16
2.3 GSDM Coordinator . 19
2.4 GSDM Working Nodes . 21
2.5 CQ Life Cycle . 23

2.5.1 Compilation . 24
2.5.2 Execution . 24
2.5.3 Deactivation . 26

3 An Object-Relational Stream Data Model and Query Language . . . 27
3.1 Amos II Data Model and Query Language 27
3.2 Stream Data Model . 28

3.2.1 Window Functions . 29
3.2.2 Stream Types . 30
3.2.3 Registering Stream Interfaces . 32

3.3 Query Language . 32
3.3.1 Defining Stream Query Functions 33
3.3.2 SQF Discussion . 33
3.3.3 Transforming SQFs . 34
3.3.4 Combining SQFs . 36

3.4 Data Flow Distribution Templates . 37
3.4.1 Central Execution . 37
3.4.2 Partitioning . 38
3.4.3 Parallel Execution . 39
3.4.4 Pipelined Execution . 40
3.4.5 Partition-Compute-Combine (PCC) 40

vii

3.4.6 Compositions of Data Flow Graphs 41
4 Scalable Execution Strategies for Expensive CQ 43

4.1 Window Split and Window Distribute 43
4.2 Parallel Strategies Implementation in GSDM 45

4.2.1 Window Split Implementation . 46
4.2.2 Window Distribute Implementation 49

4.3 Experimental Results . 50
4.3.1 Performance Metrics . 50
4.3.2 FFT Experiments . 51
4.3.3 Analysis . 58

5 Definition and Management of Continuous Queries 61
5.1 Meta-data for CQs . 61
5.2 Data Flow Graph Definition . 63
5.3 Templates Implementation . 64

5.3.1 Central Execution . 65
5.3.2 Partitioning . 65
5.3.3 Parallel execution . 66
5.3.4 Pipelined execution . 67

5.4 CQ Management . 68
5.4.1 CQ Compilation . 68
5.4.2 Mapping . 73
5.4.3 Installation . 73
5.4.4 Activation . 74
5.4.5 Deactivation . 74

5.5 Monitoring Continuous Query Execution 75
5.6 Data Flow Optimization . 76

5.6.1 Estimating Plan Costs . 76
5.6.2 Plan Enumeration . 76

6 Execution of Continuous Queries . 79
6.1 SQF Execution . 79

6.1.1 Operator Structure . 79
6.1.2 Execute operator . 81
6.1.3 Implementation of S-Merge SQF 82
6.1.4 Implementation of OS-Join SQF 83

6.2 Inter-GSDM communication . 85
6.3 Scheduling . 86

6.3.1 Scheduling periods . 86
6.3.2 SQF Scheduling . 87
6.3.3 Scheduling of System Tasks . 88
6.3.4 Effects of scheduling on system performance 88

6.4 Activation and Deactivation . 92
6.5 Impact of Marshaling . 92

viii

7 Continuous Queries in a Computational Grid Environment 95
7.1 Overview of Grids . 95
7.2 Integrating Databases and Grid . 96
7.3 GSDM as an Application for Computational Grids 96

7.3.1 GSDM Requirements for Grids . 97
7.3.2 GSDM Resource Allocation . 98
7.3.3 Multiple Grid Resources . 99
7.3.4 Grid Requirements for Applications 99

7.4 Related Projects on Grid . 100
7.4.1 OGSA-DAI . 100
7.4.2 OGSA-DQP . 100
7.4.3 GATES . 102
7.4.4 R-GMA . 103

8 Related work . 105
8.1 Data Stream Management Systems . 105

8.1.1 Aurora . 106
8.1.2 Aurora*, Medusa, and Borealis . 107
8.1.3 Telegraph and TelegraphCQ . 108
8.1.4 CAPE . 110
8.1.5 Distributed Eddies . 111
8.1.6 Tribeca . 112
8.1.7 STREAM . 113
8.1.8 Gigascope . 114
8.1.9 StreamGlobe . 115
8.1.10 Sensor Networks . 116

8.2 Continuous Query Systems . 117
8.3 Database Technology for Scientific Applications 117
8.4 Parallel DBMS . 118

9 Conclusions and Future Work . 121
References . 131

ix

1. Introduction

This Thesis presents the design, implementation and evaluation of Grid Stream
Database Manager (GSDM), a prototype of an extensible stream database
system for scientific applications. The main motivation of the project is to
provide scalable execution of computationally expensive analyses over data
streams specified in a high-level query language. This chapter presents the
problem description and introduces background knowledge about the main
enabling technologies for the GSDM prototype: database management sys-
tems (DBMSs), distributed and parallel DBMSs, and the evolving area of data
stream management systems. At the end of the chapter, we summarize the
main contributions of the Thesis and describe the Thesis organization.

1.1 Motivation
Scientific instruments, such as satellites, on-ground antennas, and simulators,
generate very high volume of raw data often in form of streams [55, 82]. Sci-
entists need to perform a wide range of analyses over these raw data streams
in order to explore information and detect interesting events. Complex analy-
ses are presently carried out off-line on data stored on disk using hard-coded
predefined processing of the data. The off-line processing has a number of
disadvantages that reduce the potential usage of the raw data. It creates large
backlogs of unanalyzed data that prevents timely analysis after interesting nat-
ural events occurred. The high data volume produced by scientific instruments
can also be too large to be stored and processed.

One of the driving forces behind the development of the GSDM prototype
were the requirements of scientific applications from LOFAR/LOIS projects
[54, 55]. The goal of the LOFAR project [54] in the Netherlands is to con-
struct a radio telescope to receive signals from space and process them entirely
in software. The LOIS (LOFAR Outrigger in Scandinavia, http://www.lois-
space.net/) extends LOFAR with dedicated space radio/radar facilities and IT
infrastructure with up to a few thousand units. As a part of LOIS a scientific
instrument has been constructed that is a specialized three-poled antenna re-
ceiving radio signals. The signals are transformed from analogous into digital
format, filtered initially by hardware, and sent in real time to the registered
clients (receivers). At the receiver side there is need for a data stream process-

1

ing system that allows users, scientists in space physics, to detect interesting
events in these high-volume signals by on-line analyses that include advanced
and often expensive numerical computations.

The presence of high volume data and several users who want to perform
similar analyses on the data suggest the use of database technology. Database
management systems have proven their efficiency in managing large amounts
of data, providing fast extraction of data of interest through declarative query
languages, allowing for concurrent data access to multiple users, etc. How-
ever, several specific characteristics of scientific stream data and applications
make them not fitting well in the current DBMSs.

This Thesis presents our efforts to bring the advantages of database tech-
nology to the class of scientific stream applications by the design and imple-
mentation of a data stream management system where users can express and
efficiently execute expensive scientific computations as high-level declarative
database queries towards the stream data.

The following three sections present the key technologies used in this The-
sis. We end the chapter with a summary of our contributions.

1.2 Database Management Systems
Database management systems(DBMSs) (e.g. [34]) are software systems that
allow for creating and managing large amounts of data. A database is a col-
lection of data managed by a DBMS. The DBMSs i) allow users to create new
databases and specify the logical structure of the data called schema; ii) allow
users to query and modify the data using an appropriate language, called a
query language or data manipulation language; iii) support secure storage of
large amounts of data over long period of time; iv) provide concurrent access
of multiple users to data.

DBMSs utilize various data models, which are primitives used for describ-
ing the structure of the information in the database, the schema. The evolution
of DBMSs follows the development of new data models.

The first commercial DBMSs appeared in the late 1960s evolving from the
file systems that were used as the main tool for data management until then.
These database management systems utilized hierarchical and network data
models that provided users with a view over data close to the physical data
representation and storage. These early data models and systems did not sup-
port high-level query languages. In order to retrieve the required data, users
had to navigate through a graph or tree of data elements connected by point-
ers. Thus, database programming required considerable effort and changes in
the physical representation of data required rewriting database applications.

The relational data model proposed by Codd [26] at the beginning of 1970s

2

influenced significantly the development of database technology. According
to this model, data is presented to the users in form of two-dimensional tables
called relations. The relations have one or more named columns and data en-
tries called rows, or tuples. The crossing points of columns and rows contain
data values that can be of different atomic types, e.g. numbers or strings of
characters. The simplicity of this conceptual view of data, close to the tra-
ditional non-electronic data representations, was one of the main reasons for
the popularity it gained especially for business applications. At the same time,
data is internally organized in complex data structures that allow for efficient
access and manipulation.

In contrast to the earlier data models, the relational model allows for ex-
pressing queries in a very high-level query language which substantially in-
creases the efficiency of database programming. The queries can be specified
using two main formalisms: the procedural relational algebra and the declar-
ative relational calculus. Based on these formalisms a number of query lan-
guages have been proposed, among which Structured Query Language (SQL)
became the widely used standard. Instead of navigating through low-level data
structures as in the early DBMSs, the users declaratively specify in SQL what
data to be retrieved. The SQL query processing module takes care to translate
the declarative query into an efficient execution plan specifying how data is re-
trieved. The separation of the query languages from the low-level implemen-
tation details provides another important feature: data independence. Two lev-
els of data independence are distinguished: the ability to change the physical
data organization without affecting the application programs is called physical
data independence, while logical data independence insulates programs from
changes to the logical database design.

By the 1990s the relational databases were commonly used in business
applications. However, a number of applications from new domains, such
as science, computer-aided engineering, and multimedia put requirements to
the database technology that exposed the limitations of the relational model.
Among these requirements is the need to represent more complex objects and
new types of data such as audio and video, and to define specific operations
over them. These applications became a driving force for the development of
a new generation of DBMSs based on the object-oriented (OO) data model.
All concepts in the OO paradigm are presented by objects classified in classes.
A class consists of a type and possibly functions or procedures, called meth-
ods, which can be executed on objects of that class. The type system is very
powerful: starting from atomic types, such as integers and strings, the user can
build new types by using type constructors for record structures, collection
types (sets, bags, arrays, etc.), and reference types. Record structures and col-
lection operators can be applied repeatedly to construct even more complex
types. Objects are assumed to have an object identity (OID) that identifies an

3

object independently of its value. Classes are organized in a class hierarchy,
i.e. it is possible to declare one class A to be a subclass of another class B. In
that case class A inherits all the properties of class B. The subclass may also
have additional properties, including methods, that may be either in addition
or in place of methods of the superclass.

Typically, OODBMSs were implemented by extending some object-oriented
programming language, e.g. C++, with database features such as persistent
storage, concurrency control, and recovery. The object-oriented data model
is more powerful than the relational one when modeling real-world complex
objects and may provide higher performance. However, early OODBMSs did
not provide declarative query languages. Queries were specified by a naviga-
tion through a graph of objects where the arcs are defined by OIDs stored as
attribute values of other objects.

During the last decade the development of both RDBMSs and OODBMSs
followed a common goal, namely to combine in one system the declarative
power of the relational DBMSs with the modeling power of the object-oriented
paradigm. In the world of relational DBMSs most of the major vendors ex-
tended gradually their systems with object-oriented capabilities establishing in
this way the new generation of object-relational DBMSs. The object-relational
model includes the following main extensions of the relational model [34,
80]:
• Extensible base type system. New user-defined base data types (UDTs)

can be introduced together with user-defined functions, operators, and ag-
gregates operating on values of these types;

• Support for complex types by type constructors for rows (records of val-
ues), collections (sets, bags, lists, and arrays), and reference types;

• Special operations, methods, can be defined for, and applied to, values of a
user-defined types;

• Types can be organized in a hierarchy with support for inheritance of prop-
erties from super types to subtypes;

• Unique object identifiers that distinguish an object independently of the
object’s data values.
Most of the object-oriented extensions above were included in the object-

relational standard SQL:1999 [58] and its next edition SQL:2003 [31].
Simultaneously object-oriented DBMSs have been developing to incorpo-

rate declarative query languages as well in order to gain the advantages of the
relational systems. The ODMG (Object Data Management Group) created a
standard including Object Definition Language (ODL) and Object Query Lan-
guage (OQL) [30]. OQL combines the high-level declarative programming of
SQL with the object-oriented programming paradigm. It is intended to be used
as an extension of some object-oriented host language, such as C++ or Java.

In this Thesis we utilize an object-relational model for modeling streams

4

with complex content. User-defined types represent both stream data sources,
i.e. the scientific instruments, and numerical stream data produced by them.
User-defined functions implement application-specific operations. Inheritance
among UDTs allows for code re-use, and encapsulation provides for data inde-
pendence of the application queries from the physical stream representations.

1.3 Distributed and Parallel DBMS
The architecture of a DBMS can be centralized or distributed. In centralized
systems all the data is stored in a single repository and is managed by a single
DBMS. In distributed database systems [64] data is stored in multiple repos-
itories and is managed by a set of cooperating homogeneous DBMSs. The
distributed DBMSs provide improved performance and reliability at the price
of higher complexity. The distribution is manual and very often appears natu-
rally as a consequence of distributed business activities, for example, a bank
has one or several branches in different cities and countries and it is conve-
nient to store and process branch-related data locally instead of in a single
central database.

Parallel DBMSs [29] are a special kind of distributed database systems with
transparent data distribution usually in one location to achieve better perfor-
mance through parallel execution of various operations. The development of
the parallel databases is in response to demands of applications that query ex-
tremely large databases or perform extremely large number of transactions per
second, which the centralized DBMSs cannot handle.

The efficiency of parallel systems is evaluated by their speedup and scaleup.
The speedup measures the ability of a parallel system to run a given task in
less time by increasing the degree of parallelism. The scaleup measures the
ability to process larger tasks in the same elapsed time by providing more
resources. A parallel system has linear speedup when it executes a given task
N times faster when having N times more resources. If the speedup is less than
N the system is said to demonstrate sublinear speedup. A parallel system can
also show super linear speedup when the increased number of resources leads
to finer granularity of the subtasks so that, e.g., data fit into the cache and save
time from intermediate I/O operations.

Two kinds of scaleup can be measured in a parallel DBMS [29]. The batch
scaleup is the ability to execute large tasks when the database size increases.
The transaction scaleup measures the ability to scale with the increase of both
the database size and the rate of the transactions.

The utilization of parallelism in database systems is connected mostly with
the relational data model and SQL. The set-oriented relational model and the
declarative high-level query language allow for SQL compilers to automati-

5

cally exploit parallelism. The database applications do not need to be rewrit-
ten in order to benefit from the parallel execution provided implicitly by the
underlying parallel DBMS. This parallel transparency makes them different
from many other applications for parallel systems.

In this Thesis we utilize distributed and parallel DBMS technology to pro-
vide for scalable execution of queries with computationally expensive user-
defined functions on data streams.

1.3.1 Parallel Database Architectures
Parallel architectures used for parallel database systems can be divided in
three main classes: shared-memory, shared-disk, and shared-nothing.

In a shared-memory architecture processors have access to common mem-
ory, typically via a bus or an interconnection network. The advantage of this
architecture is the extremely fast communication between processors via shared
memory. However the scalability is limited since the bus or the intercon-
nection network becomes a bottleneck. Large machines of this class are of
NUMA (nonuniform memory access) type. The memory is physically distrib-
uted among the processors, but a shared address space and cache coherency
are supported by the hardware, so that the remote memory access is very ef-
ficient. NUMA architectures require rewriting the operating system and the
database engines.

In a shared-disk architecture processors have private memories, but access
common set of disks via an interconnection network. The scalability is better
than in the shared-memory architecture, but is limited by the common in-
terconnection to the disks. The communication between processors is much
slower than in shared-memory architectures since it goes through the commu-
nication network.

In a shared-nothing architecture each node of the machine consists of a
processor, memory, and one or more disks. The processors communicate via
a high-speed interconnection network. This architecture provides better scala-
bility since it minimizes resource sharing and interference between proces-
sors. Memory and disk accesses are performed locally in a processor and
only the queries and answers with reduced data sizes are moved through the
network. Shared-nothing machines are furthermore relatively inexpensive to
build. The main drawback is the high cost of communication between proces-
sors. Data are sent in messages that have considerable overhead associated
with them.

The so-called hierarchical architecture combines some of the above ar-
chitectures in several levels. The highest level consists typically of shared-
nothing nodes connected via an interconnection network. Each of the nodes
in its turn is a shared-memory or shared-disk machine. Thus, the hierarchical

6

architectures combine the performance of shared-memory with the scalability
of shared-nothing architectures.

Even though the shared-memory architecture provides better performance
due to more efficient interprocessor communication, the shared-nothing archi-
tecture is most commonly used for high-performance database systems, not at
least because of its better cost-efficiency [29].

In the present work we use a shared-nothing architecture for stream data
management where GSDM servers communicate over TCP/IP. This facilitates
parallel processing on shared-nothing cluster computers, but also enables uti-
lization of distributed resources, including resources on the Internet.

1.3.2 Types of Parallelism for DBMS
DBMSs can exploit different types of parallelism. Inter-query parallelism
means execution of multiple queries generated by concurrent transactions in
parallel. It is used to increase the transactional throughput, i.e. the number of
transactions per second, but the response times of the individual transactions
are not shorter than they would be if the transactions were run in isolation.

Intra-query parallelism decreases the query response time. In can be inter-
operator parallelism, when operators in the query execution plan are executed
in parallel on disjoint sets of processors, and intra-operator parallelism, when
one and the same operator is executed by many processors, each one working
on a subset of the data. The inter-operator parallelism can be independent or
pipelined. In both cases the degree of parallelism is limited by the number of
operators in the query plan that are independent or allow pipelining, which is
typically not very large.

Intra-operator parallelism requires parallel implementation of the opera-
tors in the query plans. An operator is decomposed into a set of indepen-
dent sub-operators, called operator instances. Data are assigned to different
operator instances using some data partitioning strategy. Typical data parti-
tioning strategies used in parallel implementations of the relational operators
are Round Robin, hash and range partitioning [64]. The intra-operator data
partitioned parallelism is the most important source of parallelism for the re-
lational DBMSs.

Several factors in parallel query execution decrease the benefits of the par-
allelism. Among them are the processes’ startup costs, the interference, when
the processes compete for shared hardware or software resources, and load
imbalance. In an ideal situation a task will be divided into exactly equal-sized
subtasks. In reality, the sizes of subtasks are often skewed and the time of the
parallel execution is limited by the time of the slowest subtask.

The extensibility of object-relational DBMSs with new UDTs and user-
defined functions (UDFs) allows to utilize new techniques for data partition-

7

ing and parallel query processing. In addition to the parallel techniques for
the relational DBMSs, inter-function and intra-function parallelism are pos-
sible in ORDBMS [63]. The inter-function parallelism allows independent or
pipelined UDFs in a query to be executed in parallel. The intra-function par-
allelism allows a UDF over a single value to be broken into multiple instances
that operate on parts of the value simultaneously. For example, a function over
a single image can be written to work on a set of pixel rows. Therefore, intra-
function parallelism requires to partition single valued data with respect to
the UDF. Furthermore, the data partitioning techniques for intra-operator par-
allelism can be extended by using the result of a function or collection type
values as a basis for hash or range partitioning. Such partitioning functions
can utilize knowledge about the distribution or the structure of the data.

In this Thesis we provide a generic and declarative way to specify intra-
function parallelism through stream data partitioning for computationally ex-
pensive functions on data streams defined through UDTs.

1.4 Data Stream Management Systems (DSMSs)
During the last couple of years the attention of the database research com-
munity has been attracted by a new kind of applications that require on-line
analysis of dynamic data streams [10, 17, 22, 27, 53, 56, 81].

Examples include network monitoring applications analyzing Internet traf-
fic, financial analysis applications that monitor streams of stock data reported
form various stock exchanges, sensor networks used to monitor traffic or en-
vironmental conditions, or analyses of Web usage logs and telephone call
records. The target problem of this thesis is on-line analyses of streams gener-
ated from scientific instruments and simulators, which is an another example
of a data streaming application.

The applications get their data continuously from external sources, such
as sensors, software programs or scientific instruments, rather than from hu-
mans issuing transactions. Typically the stream sources push the data to the
applications. Usually data must be processed on-the-fly as it arrives, which
puts high constraints on the processing time and memory usage, especially
for streams with high-volume or bursty rates. Very often the applications are
trigger-oriented where a human operator must be alerted when some condi-
tions in the data are fulfilled.

A data stream is an ordered and continuous sequence of items produced in
real-time [10, 36]. The stream can be ordered implicitly by the items’ arrival
times or explicitly by timestamps generated at the source. The streams are con-
ceptually infinite in size and hence they cannot be completely stored, but once
processed a stream item is discarded or archived. Since streams are produced

8

continuously in real-time, the total computational time per data item must be
less than the average inter-arrival times between items in order for the process-
ing to be able to keep pace with the incoming data streams. The real-time
requirements necessitate main-memory stream processing where data can be
spooled to disk only in the background. The system has no control over the
order in which the data items arrive, either within a stream or across mul-
tiple streams, and must react to the arrivals [19]. Re-ordering of data items
for processing purposes is limited by the storage limitations and the real-time
processing requirements.

Queries over streams run continuously over a period of time and incremen-
tally return new results as new data arrive. Therefore, they are named contin-
uous queries(CQs), or also long-running or standing queries [10, 36].

The specific characteristics of streams and continuous queries put the fol-
lowing important requirements on a data stream management system (DSMS):

• The data model and query semantics must allow operations over sub-streams
of a limited size, called windows;

• The data stream management system must provide a support for approxi-
mate answers of queries. The inability to store complete streams necessi-
tates to represent them by approximate summary structures. Furthermore,
data can be intentionally omitted by sampling or dropping data items to
reduce the processing load for high volume or bursty streams, which also
leads to approximate answers.

• Query plans for stream processing may not use blocking operators that
require the entire input to be present before any results are produced.

• On-line stream algorithms are restricted to one pass over the data due to
performance and storage constraints.

• Long-running queries may encounter changes in system conditions and
stream properties during their execution lifetime. Therefore, an efficient
stream management system should be able to automatically discover the
changes and adapt itself to them.

• The presence of long-running queries and on-the-fly processing necessi-
tates shared execution of multiple queries to ensure scalability. The shared
execution mechanism must allow to easily add new queries and to remove
old ones over time.

• Many applications have more strict real-time requirements where unusual
values or patterns in the stream must be quickly detected and reported.
Query processing in those cases aims to minimize the average response
time, or latency, measured by the time a data item has arrived to the system
until the moment when the result stream item is reported to the user.
Several DSMSs have been designed during the last years, mainly as aca-

demic research projects, and DSMSs are still rare in the commercial world.

9

Examples include Aurora [2], CAPE [70], Gigascope [27], NiagaraCQ [22],
STREAM [59], Nile [41], Tribeca [81], and TelegraphCQ [19]. Gigascope and
Aurora are examples of DSMS prototypes that are in production use. We will
present the related DSMS projects in more details in Chapter 7.

Most of the existing prototypes are based on extensions of the relational
model where stream data items are transient tuples stored in virtual relations.
In object-based models [81] data sources and items are modeled as hierarchi-
cal data types with associated methods. In all the cases windows on streams
are supported that can be classified in the following way:
• Depending on how the endpoints of a window move along the stream two

sliding endpoints define a sliding window, while one fixed endpoint and
one moving define a landmark window.
• When the window is defined in terms of a time interval it is time-based

while count-based windows are defined in terms of number of items.
• Windows can be also distinguished based on the update frequency: eager

re-evaluation updates the window upon arrival of each new data item, while
lazy re-evaluation creates jumping windows updated at once for a number
of arrived items.

The query languages of the systems based on the relational model have SQL-
like syntax and support windows processed in stream order [6]. There are also
procedural languages: e.g. in Aurora [2] the users construct query networks
by connecting operator boxes via a graphical user interface.

Non-blocking stream processing is provided by three general techniques:
windowing, incremental evaluation, and exploiting constraints. Any operator
can be made non-blocking by limiting its scope to a finite window that fits in
memory. Operators must be incrementally computable to avoid re-scanning
the entire window or stream. Another mechanism to provide for non-blocking
execution is to exploit schema or data constraints [13]. Schema-level con-
straints are for example pre-specified ordering or clustering in streams, while
data constrains are special stream items referred to as punctuations [86] that
specify dynamic conditions holding for all future items.

Ordering of stream data is defined through timestamps [79]. There are two
general ways in which timestamps are assigned to stream items:
1. Elements are timestamped on entry to the DSMS using its system time;
2. Elements are timestamped at the sources before sending them to the DSMS

using a notion of application time.
As an alternative to timestamps order numbers can sometimes be used.

Timestamps associated with streams have an important role in stream query
processing. For example, they can be used to determine which operator in the
query plan to be scheduled next or to decide what data can be expired from
the internal operator states. Furthermore, the system timestamps can be used
at the end of the processing to compute the response time (latency) that an

10

item has spent in the system in order to check how well the application’s QoS
requirements are met [2].

Temporal databases also operate with system-supported timestamps. There
are three notions of time defined in temporal database [47, 78]: a valid time of
a fact is the time when the fact is true; a transaction time of a database fact is
the time when the fact is stored in the database; and user-defined time is a do-
main of time values in which an attribute is defined and which is uninterpreted
by the DBMS.

There is no notion of arrival time of data in the temporal databases. The
arrival (or system) time in a DSMS is somewhat similar to the transaction time
in sense that after that time the data item may be retrieved. The application
time in a DSMS is similar to the valid time notion in a temporal DBMS, e.g. a
sensor reading that is timestamped at the sensor can be interpreted as the valid
time when this reading is true.

Temporal databases store temporal information associated with other data
focusing on maintaining the full history of each data value over time. DSMS
store temporarily the recent past of the stream and are more concerned to
provide on-the-fly processing of new data items.

Sequence databases [72, 73] provide support for data over ordering do-
mains such as time or linear positions. Thus, operators exploiting logical or-
dering of the data are analogous to stream operators, e.g. moving average over
time-based windows. One important difference is that sequence databases as-
sume having control over the order in which single and multiple sequences are
processed, e.g. random access to individual elements based on their positions
is provided. Since stream systems keep only the recent past of the streams
rather than the entire sequences, the query processing is limited to be carried
out as data arrive to the system.

In this Thesis we designed and implemented a main-memory continuous
query engine for stream processing in real-time. The engine executes in a
push-based manner operators over streams, which are window-based, order-
preserving, and non-blocking. The GSDM is the first functioning DSMS proto-
type providing for scalable parallel processing of computationally expensive
queries over stream data.

1.5 Summary of Contributions and Thesis Outline
We present the design, implementation, and evaluation of an object-relational
data stream management system [44, 69, 48] for scientific applications with
the following distinguishing properties:
• On system architecture we designed and implemented a distributed ar-

chitecture consisting of a coordinator server and a number of working

11

nodes that run in a shared-nothing computer architecture. High-volume
disk-stored databases traditionally limit the query processing to be per-
formed close to the data and usually on dedicated resources. Main-memory
stream processing releases this limitation and opens new opportunities and
challenges for dynamic resource allocation. The GSDM system architec-
ture allows for dynamic configurations on undedicated resources given that
tools for dynamic resource allocation are provided.

• The system is built upon an object-relational model that allows specify-
ing user-defined types for numerical data from scientific instruments and
implement operations over them as user-defined functions.

• The object-relational model is used to represent types of stream sources or-
ganized in a hierarchy. The basic system functionality concerning streams
is implemented in terms of a generic stream type from which stream sources
of particular types inherit properties. The access to stream data on different
communication and storage media is encapsulated in stream interfaces with
a uniform set of methods. The system treats uniformly external streams,
inter-GSDM streams, and local streams inside a GSDM node.

• We provide a framework for high-level specifications of data flow graphs
for scalable distributed execution of CQs. In particular, we provide parti-
tioned parallel execution of computationally expensive CQs. The parallel
execution is customizable by specification of user-defined stream partition-
ing strategies.

• Two general strategies for partitioned parallelism were investigated, win-
dow split and window distribute. The window split strategy is an innovative
approach that is a form of user-defined intra-function parallelism through
object partitioning. Through the customization users provide the system
with knowledge about the semantics of a user-defined function to be par-
allelized for the purposes of more efficient execution. Both partitioning
strategies are specified in a uniform way by declarative data flow distribu-
tion templates.

• The core of a working node is a CQ execution engine that processes CQs
over streams. Query processing is based on a data-driven data flow para-
digm implemented in a distributed environment. The operators constituting
the CQ execution plan run in a push-based manner.
• Different stream partitioning strategies are evaluated in a parallel shared-

nothing execution environment using example queries from space physics
applications over real data from scientific instruments [55].

• On query optimization, we develop a profile-based off-line optimization
framework and apply it to automatically generate optimized parallel plans
for expensive stream operations based on a data flow distribution template
for partitioned parallelism.

12

The rest of the Thesis is organized as follows. Chapter 2 presents the soft-
ware architecture of GSDM. Modeling of stream data, specification of con-
tinuous queries, and specification of distributed and parallel CQ execution
through data flow distribution templates is given in Chapter 3. The two main
stream partitioning strategies for scalable execution of expensive CQs are pre-
sented and experimentally evaluated in Chapter 4. Chapter 5 presents techni-
cal details related with definition and management of continuous queries at
the GSDM coordinator, while Chapter 6 describes details about continuous
query execution at working nodes. Chapter 7 analyses the requirements and
possibilities for utilizing a data stream management system in computational
GRID environments in a more general way than in a single shared-nothing
cluster computer. Chapter 8 presents an overview of related research areas
and prototype systems and puts the GSDM prototype in this context. Chapter
9 summarizes the Thesis and discusses future work.

13

2. GSDM System Architecture

This chapter presents the architecture of the Grid Stream Database Manager
prototype - an extensible distributed data stream management system. We start
with an example scenario illustrating how the distributed system components
interact in order to execute users requests. The software architecture of the
GSDM coordinator and working node servers is presented.

2.1 Scenario
Figure 2.1 illustrates an example of user interaction with the distributed GSDM
system. The user submits a continuous query (CQ) specification to the coordi-
nator through a GSDM client. The CQ specification contains the characteris-
tics of stream data sources such as data types and IP addresses, the destination
of the result stream, and what stream operations to be executed in the query.
The stream data source in the example is a scientific instrument that contains a
specially designed 3-poled antenna for radio signals connected to a server with
capabilities to broadcast the signal to a number of clients [55]. The CQ con-
tains application-specific stream operations to compute properties of the radio
signal that are interesting for the scientists. The result stream of the query is
sent to an application that visualizes the computed properties of the signals.

Given the CQ specification, the coordinator constructs a distributed exe-
cution plan where GSDM working nodes (WN) execute operators on streams.
The coordinator requests resources from available cluster computers and starts
dynamically GSDM working nodes on the cluster nodes. Next, it installs the
distributed execution plan on the nodes, starts the execution, and supervises it.

Each working node executes a part of the execution plan that is assigned to
it and sends intermediate result streams to the next working nodes in the plan.
In the example, WN1 partitions the radio signal stream into two sub-streams
sent to WN2 and WN3, respectively. WN2 and WN3 perform an application
stream operator on the sub-streams in parallel, and WN4 combines the result
sub-streams and sends the final result stream to the specified destination ad-
dress, where the visualization application is listening for a stream with specific
data format.

The name server in the figure is a lightweight server that keeps track of
the GSDM peers locations. In the scenario all working nodes run on a cluster

15

Working
Node 1

CoordinatorClient

Radio
Signal

Cluster

CQ

Name Server

Working
Node 2

Working
Node 4

Working
Node 3

Legend:
Data flow

Client request

Control flow

Application

Figure 2.1: GSDM System Architecture with an example data flow graph

computer, while the client, the coordinator, the name server, and the applica-
tion run outside the cluster. Alternatively, the coordinator and the name server
can be also set up to run on the cluster.

2.2 Query Specification and Execution
The user specifies operators on stream data as declarative stream query func-
tions (SQFs), defined over stream data units called logical windows. The SQFs
may contain user-defined functions implemented in, e.g., C and plugged into
the system. New types of stream data sources and SQFs over them can be
specified.

The GSDM system utilizes an extensible object-relational data model where
entities are represented as types organized in a hierarchy. The entity attributes
and the relationships between entities are represented as functions on objects.
In this model, the stream data sources are instances of an abstract system type
Stream and stream elements are objects called logical windows that are in-
stances of a user-defined type Window. A logical window can be an atomic
object but is usually a collection, which can be ordered Vector (sequence) or
unordered Bag. The elements of the collections can be any type of object.
Different types of logical windows are represented as subtypes of the Window

16

S2
FFT3

S1

WN1

Polarize

WN2

Legend:

Data flow graph vertex

Logical site
assignment

Stream

Figure 2.2: An example data flow graph

super-type and the stream sources with particular types of logical windows are
represented as subtypes of the type Stream.

A stream query function (SQF) is a declarative parameterized query that
computes a logical window in a result stream given one or several input streams
and other parameters. SQFs are defined as functions in the query language of
the system, AmosQL [5, 68].

An SQF is a stream producer with respect to its result stream and a stream
consumer with respect to its input streams. We say that two SQFs have a
producer-consumer relationship if the result stream of one of them is an input
stream for the other.

A continuous query (CQ) is a query that is installed once and executed on
logical windows of the incoming stream data to produce a stream of outgoing
logical windows. A CQ is expressed in GSDM as a composition of SQFs
connected by stream producer-consumer relationships. The composition has
structure of a directed acyclic graph that we shall call a data flow graph. Figure
2.2 illustrates an example graph of two vertices annotated with two SQFs,
named fft3 and polarize respectively, and connected by a producer-consumer
relationship.

Since GSDM is designed for distributed stream processing, it provides the
user with a generic framework for specifying distributed execution strategies
by data flow distribution templates (or shortly templates). They are parame-
terized descriptions of CQs as distributed compositions of SQFs together with
a logical site assignment1 for each SQF in the strategy. The typical template
parameters are the SQFs composing the CQ and their arguments. For exten-
sibility, a data flow distribution template may be used as a parameter of an-

1A logical execution site is a GSDM working node that will execute as a process on a computer,
a physical execution site.

17

other template, which allows to construct complex distributed compositions
of SQFs.

Each template has a constructor that creates a distributed data flow graph.
Each vertex in the data flow graph is annotated with an SQF and the parame-
ters for its execution. Each arc of the graph is a producer-consumer relation-
ship between two SQFs. The SQFs are assigned to, possibly different, logical
execution sites as specified by the template. We provide a library of templates
specifying central execution, parallel execution, and pipelined execution of
SQFs, as well as partitioning of a stream through a user-provided partitioning
SQF. More details about the library will be presented in Chapter 3.

In order to specify a CQ the user chooses a template and calls its construc-
tor providing the SQFs and their arguments as parameters of the call. For
instance, the following call to a pipe template constructor creates the graph in
Figure 2.2:

set p = pipe("fft3",{},"polarize",{});

The constructor will assign the two SQFs to two different logical execution
sites, WN1 and WN2, for pipelined parallel execution. In this case the func-
tions do not have non-stream parameters, which is denoted by {}2.

The templates specify compositions of SQFs that are not connected to par-
ticular stream sources. Therefore, the user has to specify the characteristics of
the stream data sources and the result stream. For each input stream the user
provides its type, the source address of the program or instrument sending the
stream, and stream interface to be used. Further, the user specifies the destina-
tion address to which the result stream should be sent and the stream interface
to be used. For example:

set s1 = register_input_stream("Radio","1.2.3.4",
"RadioUDP");

set s2 = register_result_stream("1.2.3.5",
"Visualize");

In the example the user registers one input stream of type Radio accessible
by a stream interface called RadioUDP from server with address “1.2.3.4”.
The user also specifies a result stream that should be sent to a visualizing
application on a given address using a stream interface called Visualize.

A complete CQ specification in GSDM contains both a data flow graph,
specifying an abstract composition of SQFs, and input and output streams to
which the graph shall be bound. For example:

set q = cq(p, {s1}, {s2});

2The notation {...} is used for constructing vectors (sequences) in GSDM.

18

creates a continuous query executing the SQFs specified in the data flow graph
p over the input stream s1 to produce the result stream s2.

Semantically, the result of an SQF is one output stream, but the system
allows it to be replicated to many consumers. If multiple output streams are
given in the CQ specification, the result of the CQ will be replicated to several
applications.

Given the CQ specification, the CQ is then compiled in order to create an
execution plan containing compiled SQFs and stream objects connecting each
pair of SQFs for which a producer-consumer relationship has been defined.
The compilation is done by a procedure compile, e.g.:

compile(q);

In order for a query to be executed computational resources need to be
allocated. Using knowledge about the available computing resources, the co-
ordinator allocates resources and provides information about them in a system
function resources to be used during the execution.

Next, the CQ execution is started by a procedure run, e.g.:

run(q);

Since continuous queries run continually, the system needs knowledge about
when to stop a CQ. By default the CQ runs until stopped explicitly by the user.
Alternatively the user can specify some stop condition. We provide for two
kinds of stop conditions: a count-based when the CQ runs until the specified
number of logical windows from the input streams are processed, or time-
based condition when the CQ runs during a specified time interval. The stop
condition is provided when the CQ is started. For example, the following call
specifies that the query should run for two hours:

run(q, "TIME", 120);

Finally, the execution of a CQ can be stopped by a deactivation, which
might be initiated locally at the working nodes or from the coordinator. For
example, if a CQ is specified to run without stop condition, it can only be
stopped when the user issues an explicit command:

stop(q);

The system allows to resume the CQ execution later on by calling the run
procedure again, perhaps with a different stop condition.

2.3 GSDM Coordinator
Figure 2.3 shows the software architecture of the coordinator. It is a special
server that handles requests for CQs from the GSDM clients and manages

19

User Interface

CQ Compiler

CQ Manager

Resource

Manager

CQ Specifications,

Meta-queries

Coordinator

Commands

to WNs

Meta- data

Requests for

resources

Start &

Terminate WNs

Statistics

Collector

Collect

statistics

Figure 2.3: Coordinator Architecture

CQs and GSDM working nodes. The user interface module provides prim-
itives to users at a GSDM client to specify, start, and stop CQs. The users
can also submit meta-queries to the coordinator about, e.g., CQ performance
or execution location. Given the CQ specification, the CQ compiler produces
distributed execution plans.

The resource manager module is responsible for communication with the
resource managers of cluster computers in order to acquire execution resources.
It also manages dynamically the GSDM working nodes. The coordinator starts
new working nodes when preparing the CQ execution and terminates them
when the query is stopped. The architecture allows for starting additional
working nodes when necessary during the query execution, e.g., to increase
the degree of parallelism.

The CQ manager controls the distributed execution plans by sending com-
mands to the GSDM working nodes. The interface between the coordinator
and the working nodes includes a set of communication primitives, illustrated
in Figure 2.4. Resource manager commands are illustrated in Figure 2.4 as
thick dashed arrows. There are also communication primitives used by the
statistics collector module to gather periodically statistical information from
working nodes in order to analyze the CQ performance.

The coordinator stores in its local database meta-data about continuous
queries, streams, execution plans, and working nodes. The meta-data are ac-
cessed and updated by all the modules in the coordinator.

20

Coordinator Working
Node

Start node

Activate SQF

Deactivate SQF

Terminate node

Install SQF

Install stream

Figure 2.4: Coordinator - Working node communication primitives

2.4 GSDM Working Nodes
Figure 2.5 shows the architecture of a GSDM working node. The CQ manager
handles the coordinator requests for initializing of execution plans.

All compiled SQFs installed on a working node are stored in a hash-table,
installed operators. In order to start the execution of a CQ the CQ manager at
the working node activates the SQFs involved in the execution plan by adding
them to a list of active operators.

The GSDM engine executes continuously SQFs over the incoming stream
data. It consists of four modules: a scheduler, query executor, statistics col-
lector, and buffer manager. The scheduler assigns processing resources to dif-
ferent tasks. It scans the active operators and schedules them according to a
chosen scheduling policy. It checks for incoming messages containing stream
data or commands arriving on TCP or UDP sockets.

The query executor is called by the scheduler to execute an SQF one or
several times depending on the scheduling policy. The executor first prepares
the data from the SQF’s input streams, calls the SQF, and then inserts the
result windows from the execution into the SQF’s result stream. The executor
accesses stream data by calling methods from stream interfaces, which are
code modules encapsulating different implementations of streams.

The statistics collector measures various parameters of CQ performance,
such as processing times of SQFs, stream rates, and times spent in inter-
GSDM data communication. The statistics modules are called either from the
scheduler or the query executor to update internal statistical data structures.
Statistics are periodically reported to the coordinator’s statistics collector.

One of the GSDM design considerations was to provide for physical data

21

CQ Manager Working Node

Commands from
Coordinator

Scheduler

Query Executor

Statistics Collector
Active

Operators

Installed
Operators

Stream
Buffers

GSDM Engine

Stream
Interfaces

Buffer Manager

Data Messages Data Messages to WNs

Figure 2.5: GSDM Working Node Architecture

independence to the applications (Section 1.2), which here means to enable
specification and execution of CQs independent on the physical communica-
tion media of the streams. Hence, the access to stream data for each kind of
stream is encapsulated in a stream interface. It includes the methods open,
next, insert, and close. These methods have side effects on the state of the
stream and are not called in SQF definitions, but by the query executor. The
next method reads the next logical window from an input stream while insert
emits a logical window to an output stream. The open method prepares the
data structure or the communication used by the stream, and the close method
cleans up when the stream will not be used any more.

We shall use the term input stream for a stream that is an input for some
SQF. The system maintains a buffer for each input stream together with a
cursor for each SQF that uses it as an input. When the next method reads
the next logical window it also moves the cursor forward as a side effect.
The system allows for sharing an input stream buffer among many SQFs by
supporting an individual cursor for each of them. The buffer manager cleans
automatically data in stream buffers no longer needed by any SQF.

Streams on different kinds of physical media are implemented by buffers,
cursors, and interface methods for each kind. GSDM provides support for
streams communicated on TCP and UDP protocols, local streams stored in
main memory, streams connected to the standard output, or to visualization

22

Data Flow

Construction

Compilation

Run

CQ Specification

Deactivation

Data Flow Graph

Execution Plan

Running CQ

At Coordinator

At Working Node

on command from

Coordinator

Figure 2.6: Life cycle of a CQ

programs. For the purposes of repeatable experiments, we also implemented
a special player stream that gets its data from a file containing a recorded
stream segment. GSDM can be used for continuous query processing of, e.g.,
multimedia data streams by providing an implementation of buffers, cursors,
and interface methods for them.

Local streams in main-memory are used when SQFs connected by a producer-
consumer relationship are assigned at the same execution site. Inter-GSDM
streams provide the communication between GSDM working nodes. In order
to provide loss-less and order-preserving communication they are currently
implemented using TCP/IP. External streams provide the communication be-
tween GSDM and data sources or applications. Local and external streams are
implemented as an object of type Stream. For each inter-GSDM stream the
system creates two dual stream objects: an output inter-GSDM stream on the
working node where the stream-producer SQF is executed, and an input inter-
GSDM stream on the downstream node where one or more stream-consumer
SQFs are executed.

2.5 CQ Life Cycle
After a CQ is specified by the user it goes through several phases in its life
cycle as shown in Figure 2.6. This section describes the phases using an ex-
ample.

23

S2
FFT3

S1

WN1

S1 S3_WN1 Polarize

WN2

S3_WN2 S2
S3

Legend:

Data flow graph vertex

Logical site
assignment

Stream

Si

Si

Stream object
for input stream

Stream object for
output stream

Figure 2.7: A compiled data flow graph

2.5.1 Compilation

The main purpose of the compilation is to create a description of an execution
plan given a data flow graph, and input and output streams. It includes the
following steps:
• Create stream objects implementing the producer-consumer relationships

between SQFs. The stream objects are also assigned to logical sites deter-
mined by the site assignment of the SQFs they connect.

• Bind the SQFs to the stream objects implementing the input and result
streams.
For the above example query q in Figure 2.2 the compilation will perform

the following steps to produce the compiled graph in Figure 2.7:
• Bind the input of the first SQF, fft3, to the stream object representing the

input stream s1 of q.
• Create a pair of objects of type stream to implement the producer-consumer

relationship between fft3 and polarize SQFs. The first object, S3_WN1, is
an output inter-GSDM stream assigned to WN1 and bound to the output
of the producer SQF fft3. The second object, S3_WN2, is an input inter-
GSDM stream assigned to WN2 and bound to the input of the consumer
SQF polarize.
• Finally, the output of polarize will be bound to the stream object s2 repre-

senting the output stream of the CQ.

2.5.2 Execution

The run procedure executes the execution plan for a CQ by performing the
following steps:
1. The resource manager maps the logical execution sites in the plan to the

24

allocated resources and starts the GSDM working nodes. The resources
are nodes of a cluster computer or some other networked computer.

2. The CQ Manager at the coordinator installs the execution plan on the work-
ing nodes. The plan is distributed according to the execution site assign-
ments. If a stop condition is specified, it is also installed as part of this stage.

3. Finally, the CQ Manager activates the plan by adding SQFs to the active op-
erators list and performing initialization operations, such as creating stream
buffers and opening TCP connections.

Installation
The purpose of the installation is to create runnable execution plans at the
working nodes, without actually starting their executions. Using the descrip-
tion of an execution plan, the coordinator dynamically creates and submits to
the working nodes a set of commands containing installation primitives. The
primitives create stream objects and data structures at the working nodes.

For the example query the following installation commands are generated
at the coordinator and sent for execution to the working nodes:

WN1: install_stream("Radio","s1","1.2.3.4",
"WN1","RadioUDP");

install_SQF("Q1","fft3",{"s1"},{});
install_stream("Radio","s3_WN1","Q1",

"WN2","TCP");
WN2: install_stream("Radio","s3_WN2","WN1",

"WN2","TCP");
install_SQF("Q2","polarize",{"s3_WN2"},{});
install_stream("Polarized","s2","Q2",

"1.2.3.5","Visualize");

The installation on different nodes is independent of each other. Locally
at each node it follows the order of input streams, SQF, and result stream
for each SQF, since the implementation of the installation primitives requires
the installation of the input streams before the installation of the SQF that
process them.

Activation
The purpose of a CQ activation is to start its execution. The activation of a CQ
is conducted by activation of all SQFs in its execution plan. The activation of
an SQF includes the following steps:
• The SQF is prepared by opening its input and result streams and creating

the data structures it uses.
• The SQF is added to the list of active operators, which are tasks scheduled

by the GSDM scheduler.

25

Since each SQF pushes its result stream to its downstream consumers, the
consumers of a stream need to be activated before its producer, so that the
consumers are listening to the incoming data messages when the producers
are activated. Thus, correct operation is provided by activating the data flow
graph in a reverse stream flow order, starting from the SQF(s) producing the
result stream(s) of the query and moving upstream to the SQFs operating on
the source streams.

Again, the coordinator creates and submits to the working nodes a set of
commands containing activation primitives. For the example query the activa-
tion is performed in the following order:

1. WN2:activate("Q2");
2. WN1:activate("Q1");

When all the SQFs in the execution plan are activated, the CQ execution
starts. The execution at each working node is scheduled by the GSDM sched-
uler. It executes a loop in which it scans the active operator list and schedules
tasks executing SQFs from the list. When an SQF is scheduled it executes on
the windows at its current cursor positions in its input streams and produces
logical windows in the result stream. The computed result windows are in-
serted into the result stream and the cursors of the input stream buffers are
moved forward by the system. By scheduling SQFs execution in a loop the
GSDM engine achieves continuous execution of SQFs over the new incoming
data in the input streams.

For the example query the following SQF calls are scheduled and exe-
cuted:

WN1: fft3(s1);
WN2: polarize(s3_WN2);

where s1 and s3_WN2 denote the stream object with names "s1" and "s3_WN2",
respectively.

2.5.3 Deactivation
The deactivation of an SQF, which is an inverse of the activation, includes
deleting the SQF from the active operators list and performing clean-up oper-
ations, such as closing the input and result streams 3 and releasing memory.

The deactivation might be initiated either locally at the working node or
from the coordinator. If a CQ is specified to run without stop condition, the
coordinator initiates the deactivation on command from the user. If the CQ
has an associated stop condition, the schedulers at the working nodes check it
and issue a deactivation command when the condition evaluates to true.

3If an input stream is used by other SQFs, it is not actually closed, but instead only the buffer
cursor for the deactivated SQF is deleted.

26

3. An Object-Relational Stream Data
Model and Query Language

This chapter presents stream data modeling and specification of continuous
queries on streams in GSDM. Modeling of stream data is based on an object-
relational data model where both stream sources and data items are repre-
sented by objects. Continuous queries are specified as distributed composi-
tions of stream query functions (SQFs), which are constructed through data
flow distribution templates. The concepts of SQFs and templates were intro-
duced in chapter 2. This chapter describes how SQFs are specified and data
flow graphs constructed through a library of template constructors.

3.1 Amos II Data Model and Query Language
The GSDM prototype leverages upon the data model, query language and
query execution engine of Amos II [67, 68]. The kernel of Amos II is an
object-relational extensible database system designed for high performance in
main memory. Next, we will introduce the main concepts of the Amos II data
model and query language which are utilized in GSDM for the purposes of
stream modeling and querying.

The Amos II data model is an object-oriented extension of the Daplex [76]
functional data model. It is based on three main concepts: objects, types, and
functions. Objects model all entities in the database. Objects can be self-
described literals which do not have explicit object identifiers (OIDs), or sur-
rogates that are associated with OIDs. Literal objects can be collections of
other objects. The system supported collections are bags (unordered sets al-
lowing duplicates) and vectors (order-preserving collections).

Each object is an instance of one or several types. Types are organized in
a super type/subtype hierarchy supporting multiple inheritance. The set of all
instances of a type forms its extent. When an object is an instance of a type it
is also an instance of all the super types of that type. The extent of a subtype
is a subset of the extent of its super types. A type set of an object is the set of
all types that the object is an instance of. One of the types, called most specific
type, is the type specified when the object is created.

Functions model object attributes, methods, and relationships between ob-

27

jects. A function consists of a signature and an implementation. Function sig-
natures define the types of the arguments and the result. The implementation
specifies how to compute the result of a function given a tuple of argument
values. Depending on the implementation functions are classified into four
groups. Stored functions represent attributes of objects. The extent of stored
functions, i.e. the set of tuples mapping function’s arguments and results, is
stored in the database. They correspond to attributes in object-oriented data-
bases and tables in relational databases. Derived functions are defined in terms
of queries over other functions. They correspond to views in relational data-
bases and methods without side effects in object-oriented databases. Foreign
functions are implemented in some other programming language and corre-
spond to methods in object-oriented databases. They provide interfaces for
wrapping external systems and storage structures. Database procedures are
functions defined using a procedural sublanguage. They correspond to meth-
ods with side effects and constructors in object-oriented databases. Functions
can be overloaded, i.e. a function can have different implementations depend-
ing on the types of its arguments.

The query language of Amos II, AmosQL, is developed from the functional
query languages OSQL and Daplex. AmosQL has nested sub-queries, aggre-
gation operators and is relationally complete. General queries are formulated
through the select statement as in SQL:

select <result>
from <type extents>
where <condition>

3.2 Stream Data Model
We extended the object-relational data model of Amos II with two system
types: Stream represents stream sources, and Window represents stream data
items called logical windows (Fig. 3.1)1. The name function defined on type
Stream identifies the stream source, and source and dest functions specify
stream source and destination addresses, respectively. The interface function
specifies the stream interface implementation introduced in Section 2.4.

Figure 3.1 illustrates that logical windows are represented as instances of
subtypes of type Window. Stream sources with different types of logical win-
dows are represented as subtypes of the type Stream. The streams in the ex-
ample application [55] are radio signals produced by digital space receivers
represented by type Radio. The instrument produces three signal channels,

1We use the term logical window for a single data item to distinguish from the term window
commonly used in other DSMSs for sequence of data items.

28

Stream

Radio

name

source

dest

Window

RadioWindow

x

y

z

currentWindow

Is-a
Is-a ts

interface

slidingWindow n1

1 1

currentWindow

slidingWindow n1

1 1

Figure 3.1: Meta-data of Radio Signal Stream Source

one for each space dimension, and a time stamp. Thus each logical window
of type RadioWindow has the functions ts, x, y, and z, where ts is a time stamp
and x, y, and z are vectors of complex numbers representing sequences of
signal samples.

3.2.1 Window Functions
As we described in Chapter 1, continuous queries need to be executed in an in-
cremental non-blocking manner. One of the common means to provide this is
windowing, i.e. the stream operations execute on sub-streams called windows.
We provide this feature through a library of window functions that given a
stream return one or more logical windows from the stream relative to the
current cursor position. We have the following built-in window functions:

• The generic function
currentWindow(Stream s)-> Window w
returns the current logical window w at the cursor of an input stream s.

• Count-based windows on streams [36] are implemented by the function
slidingWindow(Stream s, Integer sz,

Integer st)-> Vector of Window w
It returns a vector of sz next logical windows in a stream s. The parameter
st is the sliding step.

• A stream can either be timestamped or not. Timestamped streams have a
distinguished attribute storing the time. The value of the time attribute can
be either explicitly set in the logical window (application time in terminol-
ogy of [79]) or obtained by calling a system function to get, e.g., the arrival
time of the window to the current GSDM server (system time according to

29

[79]). Time-based windows on timestamped streams are implemented by
the function
timeWindow(Stream s, Real span)->

Vector of Window w
It combines all logical windows with timestamps in the interval [ts−span, ts]
defined by the time span span and the timestamp ts of the logical window
at the current cursor position in the stream s.
The window functions are overloaded for each user stream subtype and

generated automatically by the system when a new stream type is created.
As we described in Section 2.4 the access to data in the stream buffers is

performed through stream interface methods, which have side effects on the
state of the stream. However, in order to allow for non-procedural specification
of SQFs, we need to ensure referential transparency of functions. The concept
of referential transparency means that whenever the function is called with
the same argument it gives the same result [40]. In our case this means that
all functions used in SQF definitions, including the window functions, should
give the same result during the execution of the current SQF on the current
state of the input streams. Therefore, the stream interface methods cannot be
directly called in a declarative SQF, but instead the side-effect-free window
functions are used that access stream data relative to the cursor positions for
the currently executed SQF.

The system maintains for each pair of SQF and input stream a local buffer
of references to current logical windows in the stream. The window functions
operate on these local buffers and thus do not have side effects. Hence, when-
ever a window function is used in a declarative SQF it returns the same data
during the current SQF execution. Since the stream state changes in between
consecutive executions of SQFs, what is provided is termed local referential
transparency within each SQF execution.

The query executor module manages the contents of the local buffers of
input streams by calls to the stream interface methods that actually move the
stream cursors. It also inserts result logical windows from the SQF execution
into the output stream.

3.2.2 Stream Types
The system is extensible with new stream data sources with new types of
logical windows and operations over them. All types and functions mod-
eling a new type of stream source are created by a system procedure, cre-
ate_stream_type, with the following signature:

create_stream_type(Charstring tpname,
Vector of Charstring attrnames,
Vector of Charstring typenames) -> Type tp;

30

where tpname is the name of the new type of stream, attrnames is a vector
of attribute names, and typenames is a vector of attribute type names. For
example, the types and functions in the application specific part of Figure 3.1
are generated by the following call:

create_stream_type("RADIO",
{"ts","x","y","z"},
{"timeval",
"vector of complex",
"vector of complex",
"vector of complex"});

Given this information, the system procedure creates two types: one for
the stream source Radio and one for the logical windows of this stream type
RadioWindow as follows:

create type Radio under Stream;
create type RadioWindow under Window;

The system procedure also creates three groups of functions: constructors
for logical windows of type RadioWindow, attribute functions extracting at-
tributes ts, x, y, and z from the logical windows, and overloads the built-in win-
dow functions currentWindow, slidingWindow, etc. over the new types Radio
and RadioWindow. For example, the generated constructor for type RadioWin-
dow has the signature:

radioWindow(timeval ts,
vector of complex x,
vector of complex y,
vector of complex z) -> RadioWindow

The attribute functions for type RadioWindow have the signatures:

ts(RadioWindow v) -> Timeval ts
x(RadioWindow v) -> Vector of Complex x
y(RadioWindow v) -> Vector of Complex y
z(RadioWindow v) -> Vector of Complex z

The only requirement in order to introduce a new stream type is that data
types of the attributes must be previously defined in the system. Due to the
extensibility of the object-relational data model new base types can also be in-
troduced for representation of application data. For instance, we extended the
base type system with the type Complex in order to represent signal samples
that are complex numbers.

31

3.2.3 Registering Stream Interfaces

Stream interfaces encapsulate access to stream data on different communi-
cation and storage media providing a unified set of methods to the rest of
the system. A new stream type can use some of the generic stream interfaces
already available in the system. For example, the stream interfaces for inter-
GSDM streams, local streams, and standard output streams are generic and
can be used for all new stream types without changes. New stream interfaces
can also be registered for a stream type by the means of a system procedure,
register_stream_interface, with the following signature:

register_stream_interface(Charstring tpname,
Charstring intname,
Charstring openfn,
Charstring nextfn,
Charstring insertfn,
Charstring closefn)
-> Boolean;

The first parameter tpname specifies the stream type for which the interface
can be used and the second, intname, is the name of the interface. The last
four parameters are names of the functions implementing the stream interface
methods open, next, insert, and close. For example, the following call registers
an interface named RadioUDP for the Radio stream type using UDP commu-
nication protocol:

register_stream_interface("Radio","RadioUDP",
"openUDP", "nextUDP",
"insertUDP","closeUDP");

When a new stream source is registered to the system, the value of its inter-
face attribute is used to determine what interface implementation to be used
for it. In this way different stream interfaces are supported for the same stream
type and can be used by different stream objects of this type.

3.3 Query Language
As we defined in Chapter 2, continuous queries in GSDM are specified as
data flow graphs with vertices that are SQFs, and arcs that are producer-
consumer relationships between SQFs. In this section we present the speci-
fication of SQFs.

32

3.3.1 Defining Stream Query Functions
An SQF is defined on one or more input streams and can also have other,
non-stream parameters. There are two kinds of SQFs: transforming SQFs that
transform a single input stream, and combining SQFs combining multiple in-
put streams.

The transforming SQFs have as a first parameter the input stream on which
they operate. The specification contains calls to window functions to extract
current logical windows from the input stream and constructors to create new
logical windows. All attribute functions returning components of logical win-
dows can be used in the definition. Furthermore, the SQF specification may
contain any built-in or user-defined operations on attributes or entire logical
windows. User-defined operations are implemented as foreign functions in,
e.g., C or Java, and plugged into the system. The select clause must return
logical windows of the result stream type.

The SQF fft3 below is defined on Radio stream type and computes the Fast
Fourier Transform (FFT) on each of the three channels of the current logical
window of the radio stream:

create function fft3(Radio s) -> RadioWindow
as select radioWindow(ts(v),fft(x(v)),

fft(y(v)),fft(z(v)))
from RadioWindow v
where v = currentWindow(s);

The from clause defines v to be of type RadioWindow. The where clause
binds v to the current logical window of the stream s returned by the current-
Window function. The fft function is a foreign function that computes the FFT
over a vector of complex numbers2. The function has the following signature:

fft(Vector of Complex x) -> Vector of Complex y

The function is called for each of the signal channels and a result logical win-
dow is created by the system generated constructor radioWindow called in the
select clause.

3.3.2 SQF Discussion
The SQF specifications are asymmetric in sense that they are defined on streams
but produce a window, not a stream. If an SQF were to return a stream object,
the insert method of the stream interface must be called in the select clause,

2We chose FFT as an illustration example since it is commonly used in signal processing appli-
cations and is computationally expensive.

33

which would lead to a side effect in SQFs and violate the referential trans-
parency. Therefore, we leave the insertion of the result logical window(s) into
the output stream to the query executor. The select clause can construct a
single logical window, a bag of logical windows, or sequences of logical win-
dows.

The SQFs have to be defined over streams rather than logical windows in
order to allow for aggregation of multiple subsequent data items in the input
streams, as it is done by slidingWindow or timeWindow functions.

3.3.3 Transforming SQFs
The transforming SQFs provide functionality for streams similar to the func-
tionality of the unary relational algebra operators project and select. In addi-
tion, aggregation and arbitrary transformations can be performed. To demon-
strate this, next we present some more examples of SQFs used in the radio
signal application.

The SQF xchannel extracts only the time stamp and the x channel of a radio
signal stream analogous to the project operator in the relational algebra. It
calls a channelWindow constructor to construct a new logical window out of
the two selected components from the logical window of the input stream:

create function xchannel(Radio s) -> ChannelWindow
as select channelWindow(ts(v),x(v))

from RadioWindow v
where v=currentWindow(s);

A simple sampling on the stream extracting randomly one logical window
out of a sequence of n is specified by the following sample function, defined
on the stream type:

create function sample(Stream s, Integer n)-> Window
as select w[rand(0,n-1)]

from Vector of Window w
where w = slidingWindow(s,n,n);

This function can provide functionality of load shedding by random dropping
of stream items similar to the drop operator in [2]. More complex sampling
algorithms implemented as functions can be plugged into the system and used
by substituting the expression in the select clause.

Partitioning of streams for the purposes of parallel execution of SQFs is im-
plemented as a set of partitioning SQFs, each extracting the logical windows
for each partition. For example Round Robin partitioning is implemented
through an SQF RRpart that specifies a single Round Robin partition on any
stream s of logical windows:

34

create function RRpart(Stream s,
Integer ptot, Integer pno) -> Window

as select w[pno]
from Vector of Window w
where w = slidingWindow(s,ptot,ptot);

The function is parameterized on the order number pno of the partition (start-
ing with 0) and the total number of partitions ptot.

Selecting a sub-stream of elements fulfilling a predicate is illustrated in the
next SQF. The result stream contains only logical windows of Radio source
that have maximum magnitude of the x channel bigger than some threshold
thr that is a parameter of the function:

create function xmagn(Radio s, Real thr)
-> RadioWindow

as select v
from RadioWindow v
where v = currentWindow(s) and

max_magn(fft(x(v)))>thr;

The max_magn is a function computing the maximum magnitude of a signal
applied on the x-channel of the radio stream.

The following function polar computes the parameters of the polarization
ellipse of the Radio signal that characterizes the direction of the electromag-
netic field. The example illustrates how the user can encapsulate several ap-
plication operations on the stream data in one SQF:

create function polar(Radio s) -> PolarWindow
as select polarWindow(polarization(ts(v),

fft(x(v)),fft(y(v)),fft(z(v))))
from RadioWindow v
where v = currentWindow(s);

Here polarization is a function computing six vectors of real numbers that
characterize the polarization ellipses for a range of frequencies. The polar
SQF returns logical windows of type PolarWindow that contain a timestamp
and six vectors of real numbers.

Aggregations of stream data can also be expressed as SQFs that call appro-
priate aggregate operations over the logical windows. Let aggregate_window
be a used-defined function that aggregates n RadioWindows with signature:

aggregate_window(Vector of RadioWindow w)
-> RadioWindow

In order to aggregate the stream using jumping, i.e. non-overlapping win-
dows of size n, we specify the following SQF:

35

create function agg_stream(Radio s,Integer n)
-> RadioWindow

as select aggregate_window(slidingWindow(s,n,n));

The same aggregation can be performed over sliding overlapping windows
of the stream by adding a parameter for the overlapping step st:

create function agg_stream_sliding(Radio s,
Integer n, Integer st) -> RadioWindow

as select aggregate_window(slidingWindow(s,n,st));

3.3.4 Combining SQFs
Combining SQFs are defined over more than one input stream and perform
some kind of union or join to combine the stream data. To allow definitions
over any number of input streams, the first parameter of combining SQFs is
of type Vector of Stream. For the purposes of partitioned parallel execution of
SQFs we define two combining SQFs, S-Merge and OS-Join. Other functions
using different combining patterns can be defined to meet the requirements of
the application.

S-Merge merges a number of input streams ordered on an ordering attribute
into a single ordered stream. The ordering attribute in our implementation is
the distinguished time stamp attribute, which all timestamped streams have. S-
Merge is analogous to the relational union operator and in addition it preserves
the stream order.

Since S-Merge compares logical windows from multiple streams, it may
block if a stream stales and its buffer is empty. In order to provide non-
blocking behavior S-Merge has a time-out parameter. The time-out is the time
the system waits for a logical window from a stream if the stream buffer is
empty, before assuming that the window is lost. The function signature is
as follows:

S-Merge(Vector of Stream s, Real timeout) -> Window

The OS-Join SQF is an analogue to the relational join operator on the stream
ordering attribute, which in addition allows a function-parameter to be spec-
ified that combines the logical windows with the same value of the ordering
attribute. The function-parameter must be window transforming function, or in
other words it must be defined on logical windows and return logical windows.
The function signature is as follows:

OS-Join(Vector of Stream s, Function combinewin)
->Window;

where combinewin has the signature:

combinewin(Vector of Window v) -> Window;

36

3.4 Data Flow Distribution Templates
As described in Chapter 2, distributed execution strategies for CQs are speci-
fied through a generic framework of data flow distribution templates.

Each template has a constructor creating a data flow graph where the ver-
tices called nodes are annotated with SQFs and the parameters for their exe-
cution. The nodes in the graph are assigned to sites which denote the logical
execution places for the nodes. By assigning the nodes to different sites, a
template specifies a distribution pattern. An arc between two nodes represents
a producer-consumer relationship between the SQFs annotating the nodes.

Data flow graphs are represented as instances of a type Dataflow. Hence,
the template constructors are functions returning an object of type Dataflow.
Each data flow has properties arity and width describing the number of input
and output streams of the graph, respectively.

Data flow graphs are defined using the concept of producer-consumer rela-
tionships rather than streams. During the compilation of the graph the CQ
compiler analyses the producer-consumer relationships between SQFs and
their site assignments. Based on this the compiler creates internal GSDM
streams and binds them to the corresponding SQFs. In this way the stream
parameters are deduced and added automatically by the system during the
compilation. Therefore, when the template constructors are called only non-
stream parameters of SQFs are specified.

To allow more complex compositions of SQFs a data flow distribution tem-
plate may be used in place of an SQF parameter of another template. In this
case, the template constructor creates a sub-graph in the result data flow graph.
The system has an built-in library of several basic templates for central, par-
tition, parallel, and pipe data flow graphs. Using the library the users can
construct more complex data flow graphs in AmosQL, as we will show for the
definition of the generic template for partitioned parallelism, PCC.

In the following we present an overview of the built-in templates and will
describe the implementation details in Chapter 5.

3.4.1 Central Execution
Executions of SQFs on one central node are specified by a template named
central. Given an SQF, its non-stream parameters, and its number of input
streams, the constructor creates a graph with a single node annotated with
the specified SQF and assigned to an execution site. The constructor has the
signature:

central(Charstring fun, Vector args,
Integer inp) -> Dataflow d;

37

Central

FFT3()
OSIS

Legend:

Data flow graph

Logical site
assignment

Input stream

Output stream

IS

OS

WN1
OS

Figure 3.2: Data flow graph for cental execution

Partition

IS0

partfun(n,0)
OS0

OS1

partfun(n,n-1)

partfun(n,1)

OSn-1

Parallel

IS1

fun(args)
OS0

OS1

fun(args)

fun(args)

OSn-1

IS0

ISn-1

Legend:

Data flow graph

Logical site
assignment

Input stream k

Output stream k

ISk

OSk

WN1 WN1

WN2

WNn

a) b)

Figure 3.3: Partition data flow distribution template. All operators are assigned to a
single logical site

The SQF can process more than one input stream. The inp parameter specifies
the number of input streams. The constructor is overloaded for the common
case of SQFs with one input stream and without non-stream parameters. For
example, the following call generates the central data flow graph shown in
Fig. 4.6 for execution of the fft3 SQF:

set c = central("fft3");

3.4.2 Partitioning
The partition template creates a graph that splits a stream into n partitions
using a user-provided partitioning function. The template has the signature:

partition(Integer n, Charstring partfun)
-> Dataflow d;

38

The template creates a graph, illustrated in Figure 3.3a, with arity one and
width n, where n is the total number of partitions. The graph contains n nodes
and each node is annotated with the same partitioning function partfun but
with different parameters (n, i), i∈ [0,n−1], where i is the order number of the
partition. The nodes selecting partitions are independent of each other, share
the common input stream, and are assigned to the same logical execution site.

The partitioning function that is the partfun parameter of the partition tem-
plate has the following signature:

partfun(Stream s, Integer n, Integer pno)
-> Window

where pno is the order number of the partition (starting with 0) and n is the
total number of partitions. These parameters are automatically set by the par-
tition template when the nodes of the partitioning graph are created.

If the partitioning function needs to be defined with additional parameters
besides the above total number of partitions and order number, they are spec-
ified as a third parameter of type Vector, i.e. the partfun has the signature:

partfun(Stream s, Integer n, Integer pno,
Vector params) -> Window

For this purpose, the partition template is overloaded to accept such additional
parameters of the partitioning function. In this case the template has the fol-
lowing signature:

partition(Integer n, Charstring partfun,
Vector params) -> Dataflow d;

3.4.3 Parallel Execution
The parallel template creates a graph specifying a number of parallel compu-
tations. It has the signature:

parallel(Integer n, Charstring fun,
Vector params)-> Dataflow d;

The constructor creates a graph, illustrated in Figure 3.3b, with n input and re-
sult streams and n nodes annotated with the same function fun and parameters
params. The nodes are connected to different input and result streams of the
graph. The function fun will be executed in parallel on different sub-streams
by assigning nodes to n different execution sites. There are no dependencies
between the parallel nodes.

If the function needs to be executed with different parameters on different
parallel branches, the order number of the branch is provided as a special pa-
rameter in params with value #. The parallel template substitutes this special

39

S2
Combine

S1
Partition Compute

Compute

Compute

Figure 3.4: PCC: A generic data flow distribution template for partitioned parallelism

parameter with the order number of the partition when the parameters of the
parallel branch are set.

3.4.4 Pipelined Execution
The pipe template specifies distributed pipelined execution of SQFs as we
showed in Figure 2.2. The constructor takes as parameters two data flow
graphs and connects them by setting producer-consumer relationships be-
tween the nodes in the graphs. More specifically, the nodes associated with
the result streams of the first graph are connected to the nodes associated with
the input streams in the second graph. Hence, the width attribute of the first
data flow graph must be equal to the arity attribute of the second one. The
signature of the constructor is:

pipe(Dataflow comp1, Dataflow comp2) -> Dataflow d;

For convenience the pipe constructor is overloaded to take as parameters
SQFs. In that case, the central template is called first to create a central data
flow graph with a node annotated with the SQF:

pipe(Charstring fun, Vector params, Integer inp,
Dataflow comp2) -> Dataflow d

as select pipe(central(fun,params,inp),comp2);

3.4.5 Partition-Compute-Combine (PCC)
In order to provide for scalable execution of CQs containing expensive SQFs
we define a generic template for customizable data partitioning parallelism.
The template, called PCC (Partition-Compute-Combine), specifies a lattice-
shaped data flow graph pattern as shown in Figure 3.4. In the partition phase
the input stream is split into sub-streams, in the compute phase an SQF is
applied in parallel on each sub-stream, and in the combine phase the results

40

of the computations are combined into one stream. The signature of the PCC
constructor is as follows:

PCC(Integer n, Charstring partfun,
Charstring fun, Vector params,
Charstring combfun, Vector combparams)
-> Dataflow d;

The parameters specify the following properties of the three phases: i) the
degree of parallelism (n); ii) a partitioning SQF (partfun); iii) an SQF to be
computed in parallel (fun); iv) the SQF parameters (params); v) the combining
method (combfun); and vi) the parameters of the combining method (comb-
params).

Using the defined above templates, we define the PCC template for parti-
tioned parallelism as a pipe of three stages: partition, compute, and combine,
as follows:

create function PCC(Integer n, Charstring partfun,
Charstring fun, Vector params,
Charstring combfun, Vector combparams)
-> Dataflow d

as select pipe(pipe(partition(n,partfun),
parallel(n,fun,params)),
central(combfun,combparams,n));

The following PCC call constructs a graph for partitioned parallelism for
the fft3 function using Round Robin partitioning and combining the result
after the parallel processing by the S-Merge SQF (Fig. 3.5):

set wd = PCC(2,"RRpart","fft3",{},"S-Merge",0.1};

In the next chapter we will use the PCC template to implement the main
stream partitioning strategies in the thesis.

3.4.6 Compositions of Data Flow Graphs
In order to provide construction of more complex data flow graphs, template
constructors can be used in place of SQF parameters in calls to other template
constructors. For example, the parallel template (and hence PCC too) accepts
as its fun parameter another template, as in the following call:

set p = PCC(2,"fft3part",
"PCC",{2,"fft3part","fft3",{},

"OS-Join",{"fft3combine"}},
"OS-Join",{"fft3combine"});

41

S2S-Merge(0.1)

FFT3()

FFT3()

S1
RRPart(2,0)

RRPart(2,1)

Partition WN1

WN3

WN2

WN4

Figure 3.5: Round Robin partitioning in 2

S-Merge(0.1)

FFT3()

FFT3()

S1
RRPart(2,0)

RRPart(2,1)

Partition WN1

WN3

WN2

WN4

S2
Polarize()

WN5

Figure 3.6: A combination of partitioned with pipelined parallelism

By specifying the PCC template in place of the fun parameter, the paral-
lel template creates a graph of n = 2 parallel sub-graphs, that compose the
compute phase of PCC. The above call is used to create a tree-structured dis-
tribution pattern to be shown in the next chapter (Fig 4.8). Notice, that this is
different than a direct call to a template constructor that would create a single
graph instead of n subgraphs.

Distributed execution patterns combining partitioned and pipelined paral-
lelism can be specified using a combination of pipe and PCC templates. The
next example creates the distributed execution pattern shown in Figure 3.6,
where the fft3 SQF is computed in two parallel branches, followed by the po-
larize SQF assigned to another execution site.

set pp = pipe(PCC(2,"RRpart",
"fft3",{},"S-Merge",{0.1}),

"polarize",{}};

42

4. Scalable Execution Strategies for
Expensive CQ

Many classes of scientific continuous queries contain computationally expen-
sive stream operators. Consequently, the real-time processing requirement for
such CQs puts high demands for system scalability. In this chapter we address
the scalability problem by investigating different strategies for partitioned par-
allelism for an expensive SQF. We begin with a formulation of the require-
ments for stream partitioning strategies and define two overall strategies: SQF
dependent window split (WS) and SQF independent window distribute (WD).
The implementation of the strategies in GSDM is described and an experi-
mental evaluation of their scalability is presented. The scalability is measured
in terms of two factors: scaling the maximum throughput and scaling the size
of the logical windows with respect to the SQFs. Finally, a formal analysis of
system throughput is presented and compared with the experimental results.

4.1 Window Split and Window Distribute
We can formulate the following requirements for stream data partitioning
strategies to parallelize expensive SQFs:
1. Partitioning must preserve the semantics of the SQF.
2. Partitioning must be order preserving and non-blocking.
3. Partitioning has to provide as good as possible load balancing.

While requirements 1) and 3) are generally valid for any data partitioning
strategy, the second requirement is specific for stream partitioning and follows
from the general requirements for stream processing as described in Chapter 1.

We define two overall stream data partitioning strategies, window split and
window distribute that fulfill the requirements stated above.

The window split strategy splits a single logical window into sub-windows
that are distributed to corresponding partitions. In this way a stream operator
can be executed in parallel on the sub-windows of smaller size, which allows
for achieving scalable execution of expensive SQFs. Since the logical window
is an object that is a single data unit from the SQF point of view, window split
strategy provides intra-function parallelism [63] for computationally expen-

43

z
1

[0-255]

y
1

[0-255]

x
1

[0-255]
ts

1

z
2

[0-255]

y
2

[0-255]

x
2

[0-255]
ts

2

z
3

[0-255]

y
3

[0-255]

x
3

[0-255]
ts

3

a) WS

b) WD

z
1

[0-255]

y
1

[0-255]

x
1

[0-255]
ts

1

z
3

[0-255]

y
3

[0-255]

x
3

[0-255]
ts

3

z
2

[0-255]

y
2

[0-255]

x
2

[0-255]
ts

2

z
1

[0-127]

y
1

[0-127]

x
1

[0-127]
ts

1

z
2

[0-127]

y
2

[0-127]

x
2

[0-127]
ts

2

z
3

[0-127]

y
3

[0-127]

x
3

[0-127]
ts

3

z
1

[128-255]

y
1

[128-255]

x
1

[128-255]
ts

1
z

2
[128-255]

y
2

[128-255]

x
2

[128-255]
ts

2
z

3
[128-255]

y
3

[128-255]

x
3

[128-255]
ts

3

Figure 4.1: Partitioning of Radio stream logical windows (a)Window Split; (b)Window
Distribute

sive functions (SQFs). Fig. 4.1a illustrates window split on a stream of type
Radio into two partitions.

Window split is particularly useful when scaling the processing for big log-
ical window sizes. For example, in the Space Physics application [55] the FFT
operation needs to be applied on large vector windows. The bigger the size of
the vectors the more precise is the result in the frequency domain and wider
range of frequencies are covered further away from the central frequency that
is a parameter of the instrument.

Since SQFs are executed on entire logical windows, the window split strat-
egy needs to take care to preserve the SQF semantics when creating and com-
bining sub-windows. There are no general rules applicable to all SQFs, but
instead the system needs specific knowledge about application data types and
SQF semantics. This knowledge is provided in GSDM by parameterizing the
window split strategy with SQF-dependent window splitting and combining
functions. This also means that the window split strategy is applicable only
for SQFs for which window splitting and combining functions are provided.

How well the load balancing requirement is fulfilled by the window split
strategy for a particular SQF depends on the concrete SQF-dependent window
splitting function that is a parameter of the strategy.

The requirement for non-blocking and order preserving stream processing
concerns the implementation of the strategy. In GSDM it is fulfilled by an

44

SQF, operator dependent stream join (OS-Join) that implements the combine
phase of window split.

Window distribute distributes several logical windows among different par-
titions. The routing of windows can be based on any well-known partitioning
strategy, such as Round Robin and hash partitioning [64], or can utilize some
user-defined partitioning function. The concrete routing strategy is a parame-
ter of window distribute. As an example of the window distribute strategy we
provide a Round Robin stream partitioning (RR) strategy where logical win-
dows in their entirety are distributed among partitions based on their ordering
attribute. Fig. 4.1b illustrates window distribute in two partitions by RR ap-
plied on a Radio stream.

Since window distribute dispatches entire logical windows, it does not af-
fect the semantics of the parallelized SQF. Therefore, in contrast to window
split, the partitioning and combining phases of window distribute strategy are
SQF-independent and the strategy is applicable to any SQF.

In the combine phase of window distribute, the result sub-streams are merged
on their order identifier1. In our implementation this is provided by a non-
blocking and order preserving SQF stream merge (S-Merge). Thus, the Round
Robin partitioning for streams is an extension of the conventional Round
Robin partitioning that provides ordering in the result stream after the par-
allel execution.

The load balancing of the window distribute depends on the chosen parti-
tioning function that is a parameter of the strategy. Our choice to use Round
Robin for routing windows was based on the fact that it provides good load
balancing. Other strategies, such as hash partitioning, are content-sensitive,
i.e. the decision where to distribute a window is based on the content in the
window. They usually introduce load imbalance due to the data skew. For
some applications this disadvantage can be compensated by the benefits for
queries such as join or grouping on the partitioning key. Such benefits cannot
be expected for the class of the example signal processing applications.

4.2 Parallel Strategies Implementation in GSDM
In an object-relational database system the user can extend the system by
defining new data types and operations on them. In order for the data and
the query processing over them to be really incorporated into the system, it
is necessary to be able to extend different modules of the system, e.g. to add
access methods appropriate for the new data or user-defined aggregation oper-
ations [80]. In the same course of reasoning, the system should be extensible
with parallel execution strategies applicable for the new operations.

1E.g., in our application a time stamp is used.

45

We provide such extensibility in GSDM through customizable data flow
distribution templates defined in Chapter 3.

In particular, the generic template for partitioned parallelism PCC, is para-
meterized with partitioning and combining functions, which in their turn ac-
cept parameters specifying a particular partitioning strategy. This allows the
system to be extended in a generic way for new applications not only with new
data types and operators, but also with data partitioning strategies appropriate
for the user-defined operators.

Both window split and window distribute strategies are implemented using
the PCC template with corresponding parameters: the partitioning and com-
bining methods. The partitioning phase implemented by the partition template
takes as a parameter a partitioning function with the following signature:

partfun(Stream s, Integer ptot, Integer pno)
-> Window

The function returns the next logical window of a stream s for the partition
with order number pno given the total number of partitions ptot.

The combining function is defined on a vector of streams and eventually
other parameters and returns one or more logical windows of the combined
result stream:

combfun(Vector of Stream s, ...) -> Window

We will illustrate the parallel strategies implementation using as an example
the SQF fft3 defined in the previous chapter.

4.2.1 Window Split Implementation
In order to use the window split strategy for a particular SQF the correspond-
ing SQF-dependent partitioning and combining functions need to be provided.
The partitioning function specifies how a sub-window is extracted from the
original logical window while preserving the SQF semantics. In the combin-
ing phase the sub-windows belonging to the same original logical window are
selected and combined according to the SQF semantics.

For the example SQF fft3 we have implemented a partitioning SQF fft3part.
It transforms the current window of the Radio stream into a sub-window by
extracting those parts of the vector components that correspond to the partition
number pno:

create function fft3part(Radio s,
Integer ptot, Integer pno) -> RadioWindow

as select radioWindow(ts(w),
fftpart(x(w),ptot,pno),

46

fftpart(y(w),ptot,pno),
fftpart(z(w),ptot,pno))

from RadioWindow w
where w=currentWindow(s);

fftpart is a foreign function that partitions a vector according to the FFT-
Radix K [50] algorithm where K is a power of 2. The fftpart function signature
is as follows (K = ptot, i.e. the total number of partitions):

fftpart(Vector of Complex v, Integer ptot,
Integer pno) -> Vector of Complex;

When K = 2 the FFT-Radix 2 algorithm computes FFT for vector of size N
by computing FFT on 2 sub-vectors of size N

2 formed from the original vec-
tor by grouping the odd and even index positions, respectively. Therefore,
fftpart(v,2,0) returns a vector of those v elements that are in the even index
positions, while fftpart(v,2,1) returns a vector of the elements in the odd in-
dex positions.

The combine phase of window split is implemented by an SQF, operator de-
pendent stream join (OS-Join). It selects sub-windows, one from each parallel
SQF computation that match on the ordering attribute, and combines them
into one logical result window by applying a window transformation function.
The window transformation function specifies how logical result windows are
computed from sub-windows while preserving the SQF semantics. Hence, it
is an SQF-dependent parameter of OS-Join. The functions have the following
signatures:

OS-Join(Vector of Stream s, Function combinewin)
->Window;

combinewin(Vector of Window v) -> Window;

OS-Join is a form of equi-join on the ordering attribute of sub-streams,
which in addition combines the matching sub-windows and preserves the or-
der of the result windows by processing sub-windows according to the order-
ing attribute.

For the example SQF fft3 we defined an FFT-specific window transforma-
tion function, fft3combine, with the signature:

fft3combine(Vector of RadioWindow v) -> RadioWindow;

It implements the last step of the FFT-Radix K algorithm in order to com-
pute vector components of the result logical window from sub-vectors in the
FFT-computed sub-windows.

The window split strategy for the SQF fft3 is implemented by using fft3part,
OS-Join, and fft3combine functions as arguments of the PCC constructor. The

47

S2S-Merge(0.1)

FFT3 256

FFT3 256

b)

S21

S20
S1 RRPart(2,0)

RRPart(2,1)

S10

S11

Partition WN1

WN3

WN2

WN4

S2OS-Join(”fft3combine”)

FFT3 128

FFT3 128 S21

S20
S1 fft3part(2,0)

fft3part(2,1)

S10

S11

Partition WN1

WN3

WN2

WN4

a)

Legend:
Stream operator

Logical site
assignment

SQFname(non-stream args)

Figure 4.2: Parallel strategies with partitioning in 2. (a)Window Distribute with Round
Robin; (b)Window Split with fft3part and fft3combine

following call creates the parallel data flow graph in Figure 4.2a with degree
of parallelism two:

PCC(2,"fft3part","fft3",{},
"OS-Join",{"fft3combine"});

The subscripts in Fig. 4.2 denote vector sizes in the logical windows processed
by fft3 for input logical windows of size 256.

The SQFs in the graph created from the PCC constructor are connected by
producer-consumer relationships. When the graph is compiled into an exe-
cution plan, these relationships are implemented by internal data streams be-
tween the SQFs, denoted in the figure by s10, s11, etc. When the execution
plan is installed on the GSDM working nodes, the query executors will exe-
cute the following actual calls to SQFs:

WN1: fft3part(s1,2,0);
fft3part(s1,2,1);

WN2: fft3(s10);
WN3: fft3(s11);
WN4: OS-Join({s20,s21},

functionnamed("fft3combine"));

48

4.2.2 Window Distribute Implementation
In order to implement window distribute by Round Robin we defined a par-
titioning function RRpart. It is an SQF that specifies a single Round Robin
partition on any stream of logical windows:

create function RRpart(Stream s,
Integer ptot, Integer pno) -> Window

as select w[pno]
from Vector of Window w
where w = slidingWindow(s,ptot,ptot);

The combining SQF, S-Merge, has the signature:

S-Merge(Vector of Stream s, Real timeout) -> Window

combines the result sub-streams after the compute phase preserving the order
defined by the order identifiers, timestamps in our implementation. S-Merge
assumes that the sub-streams are ordered on the time stamp and thus it is a
variant of merge join on the stream ordering attribute extended with an ad-
ditional parameter - a time-out period. The time-out is needed since the par-
titioned sub-streams are processed on different execution nodes, which intro-
duces communication and/or processing delays at the merging node. Since the
merge algorithm needs to be non-blocking for continuous stream processing,
it has a policy how to handle delayed or lost data. Our policy is to introduce
the time-out. It is the time period that the S-Merge waits for a logical win-
dow to arrive in a stream with empty buffer before assuming that data in the
stream has been lost or delayed, in which case the processing continues with
the remaining streams. Other policies, such as replacement or approximation
of missing windows are also possible.

The following call to the PCC constructor creates the parallel data flow
graph in Figure 4.2b using window distribute partitioning by Round Robin in
two partitions:

PCC(2,"RRpart","fft3",{},"S-Merge",0.1);

When the graph is compiled and installed on the working nodes, the actual
calls to the SQFs are as follows:

WN1: RRPart(s1,2,0);
RRPart(s1,2,1);

WN2: fft3(s10);
WN3: fft3(s11);
WN4: S-Merge({s20,s21},0.1));

49

4.3 Experimental Results
In this section we present the experiments we conducted in order to inves-
tigate how the two stream partitioning strategies scale and when it is favor-
able to use operator dependent window split that utilizes knowledge about the
SQF semantics.

4.3.1 Performance Metrics
The main purpose of the strategies for partitioned parallelism is to provide
scalable execution of expensive functions on high-volume streams. The scal-
ability is desirable with respect to two factors: high total data volume and big
size of logical windows. The second factor originates in a requirement for sci-
entific computations to scale with the increase of the logical window size, e.g.,
in order to improve the precision of the results. Therefore, we measured the
scalability of the parallel strategies in terms of two criteria: total maximum
throughput and size of the logical windows with respect to the SQFs.

The scalability measured with respect to the logical window sizes corre-
sponds to the batch scalability since it investigates how the system scales with
the increase of the size of the processing tasks. Since each arrival of a stream
data item triggers a chain of transactions, the scalability measured when the
input stream rate increases can be thought of as transactional scalability [29].

We measured the throughput by the time to process a stream segment of
fixed size containing 2MB signal samples for each of the three channels. The
amount of communicated data was approximately 50MB using binary encod-
ing for the vectors of complex numbers. The size of the stream segment was
chosen in such a way that even the fastest strategies run long enough so that
the slow start-up of TCP communication is stabilized. To investigate peak
throughput the tests were run with increasing input stream rates until the point
where the idle time of the most loaded nodes became under a threshold of 3%.
All the diagrams presenting execution times show the times for such maxi-
mum throughput.

In order to investigate the scalability with respect to the window size, seven
different logical window sizes from 256 to 16384 signal samples were used in
all of the experiments.

We observe that metrics for parallel stream processing are somewhat dif-
ferent than for other parallel algorithms. Traditionally parallel algorithms are
designed and evaluated assuming some initial distribution of data among the
processors and distribution of the results after the processing is completed
[50]. Therefore, the input data distribution and combining of the results are of-
ten not considered when the performance of parallel algorithms is measured.
In a parallel stream system the data comes continuously from stream sources
and has to be distributed, processed, and combined in near real time. There-

50

FFT3 256

FFT3 256

S22

S20

S1

RRPart(4,0)

RRPart(4,1)

S10

S12

Partition WN1 WN3

WN2

FFT3 256

WN4

FFT3 256

WN5

RRPart(4,2)

RRPart(4,3)

S13

S11

S23

S21

S2S-Merge(0.1)

WN6

Figure 4.3: Window Distribute with Round Robin: flat partitioning in four.

fore, partitioning and combining phases in the partitioned parallel stream pro-
cessing must be taken into account when measuring the performance.

4.3.2 FFT Experiments
The experimental set-up for the example SQF fft3 included three main strate-
gies. The parallel strategies are window split using FFT-dependent parameters
for split and combine functions (Figure 4.2a) and window distribute using
Round Robin (Figure 4.2b)2. The central execution on a single node is a refer-
ence strategy used as a basis to measure the speed-up of the parallel strategies.
In all parallel strategies the measurements include the partitioning and com-
bining phases.

The parallel strategies WD and WS were tested for degree of parallelism 2,
4 and 8. Figures 4.3 and 4.4 show the data flow graphs for degree of paral-
lelism four.

The experiments were done on a cluster computer with processing nodes
having Intel(R) Pentium(R) 4 CPU 2.80G-Hz and 2GB RAM. The nodes were
connected by a gigabit Ethernet. The communication between GSDM work-
ing nodes used the TCP/IP protocol. The data was produced by a digital space
receiver. For efficient inter-GSDM communication complex vectors were en-
coded in binary format when sent to and received from TCP/IP sockets.

The execution of distributed scientific stream queries combines expensive
computations with high volume communication. In order to investigate the im-
portance and impact of each of them on the total system performance, we ran

2We will use the shorter names WS and WD for window split and window distribute, respec-
tively.

51

FFT3 64

FFT3 64

S22

S20

S1

fft3part(4,0)

fft3part(4,1)

S10

S12

Partition WN1 WN3

WN2

FFT3 64

WN4

FFT3 64

WN5

fft3part(4,2)

fft3part(4,3)

S13

S11

S23

S21

S2OS-Join(”fft3combine”)

WN6

Figure 4.4: Window Split with fft3part and fft3combine: flat partitioning in four.

two sets of experiments - one with a highly optimized fft3 function implemen-
tation and one with a slow implementation, where we deliberately introduced
some delays in the FFT algorithm. Figure 4.5 shows the execution times of
FFT implementations for logical windows of different sizes.

Figure 4.6 illustrates the increase of the total elapsed time with the increase
of the logical window size for the central strategy and both parallel strategies
with degree of parallelism two, and in both fast and slow experimental sets.
For all the strategies the FFT processing nodes are most loaded and therefore
the total maximum throughput is determined by the FFT operation complex-
ity, O(n logn). The WS2 strategy is faster than the WD2 strategy, since the
parallel FFT processing nodes work on logical windows with vectors having
size smaller by a factor of two than the vector size in WD2 strategy. Given
the complexity of FFT this results in less total time in the dominating com-
pute phase. We will present a formal analysis of this property at the end of
this Section.

We observed an exception of WS2 performance for the smallest window
size of 256 in the fast experimental set. The strategy has bigger total overhead
than WD2 strategy due to memory management and communication of logical
windows since the amount of windows it processes is bigger by a factor of two
compared to the WD2 strategy, while their size is smaller by a factor of two.

Figure 4.7 illustrates the results from the slow experimental set for a degree
of parallelism four. Here we compare three strategies: WD4 and WS4 with flat
partitioning, i.e. in a single node, and WS4-Tree with tree partitioning.

Figure 4.8 illustrates the tree partitioning strategy, where the partition and
combine phases have a distributed tree-structured implementation. The tree
structure in the example has two levels where each partitioning node creates
two partitions and, analogously, each combine node recombines the results

52

 0

 0.5

 1

 1.5

 2

 2.5

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

1
lo

gi
ca

l w
in

do
w

Logical window size

Processing Times for FFT Function

Fast implementation
Slow implementation

Figure 4.5: Times for FFT implementations

from two partitions. A potential advantage of such tree-structured partitioning
is that it allows for scaling the partition and combine phases with higher degree
of parallelism in cases when the cost in these phases limits the flow.

The load of FFT processing nodes in WD4 strategy dominates the load of
the partition and combine nodes and determines the maximum throughput for
all logical window sizes. The load balancing between different phases of the
distributed data flow is illustrated by the diagram in Figure 4.9 which shows
the total elapsed time spent in communication, computation, and system tasks.

The load of FFT processing nodes also dominates in WS-Flat strategy for
logical windows of size 1024 and bigger. Hence, the processing time curve for
these sizes again follows the FFT complexity behavior. However, for window
sizes smaller than 1024 we observe an increase of the total execution time.
This performance decrease is caused by the fact that the WS4-Flat combining
node becomes most loaded (Fig. 4.9). We found two factors contributing for
the high load at the combining node: first, it performs user-defined combin-
ing of windows, and second, there is a high overhead related with window
maintenance. Next, we analyze these factors.

As it can be seen on the diagram (Fig. 4.9) both the partitioning and com-
bining nodes of WS4-Flat strategy are much more loaded than the corre-
spondent nodes in WD4. The WS4 strategies have in general more expensive
user-defined splitting and combining SQFs. For example, the fft3part function
copies vector elements in order to create partitioned logical windows and the
OS-Join function computes result windows using fft3combine that executes the
last step of the FFT-Radix K algorithm. The computations involve one mul-

53

 0

 20

 40

 60

 80

 100

 120

 140

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

50
M

B
 s

tr
ea

m
 s

eg
m

en
t

Logical window size

FFT times - fast implementation

Central
WS in 2
WD in 2

(a) Fast implementation.

 0

 50

 100

 150

 200

 250

 300

 350

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

50
M

B
 s

tr
ea

m
 s

eg
m

en
t

Logical window size

FFT times - slow implementation

Central
WS in 2
WD in 2

(b) Slow implementation.

Figure 4.6: FFT times for central and parallel in 2 execution

tiplication and one sum of complex numbers for each element of the vector
components of the result window.

The second source of higher load of WS nodes is that they manage big-
ger number of logical windows with smaller sizes compared to WD strategy.
Therefore, the total overhead due to the management of logical windows is
bigger for WS4-Flat than for WD4 strategy.

To summarize, higher computational cost and window maintenance over-
head cause bigger load of WS4-Flat partitioning and combining nodes com-
pared to the load of corresponding WD4 nodes. For window sizes smaller than
1024 the load of the combine node dominates the load of the FFT-computing
nodes and limits the throughput. Even though the compute phase of WS4-Flat
is more efficient than the compute phase of WD4, the system cannot bene-
fit from this, because of the combine phase limitation. As a result, for those
logical window sizes the WD4 strategy shows higher total throughput than
WS4-Flat strategy.

The the WS4-Tree strategy overcomes the problem with the dominating
load of the combine node for size 512 by distributing the load of the par-
tition and combine phases into tree-structures. The overhead is smaller for
WS4-Tree strategy than for WS4-Flat strategy since its outermost partition
and combine nodes manage smaller number of logical windows with size big-
ger by a factor of two. Hence, WS4-Tree is the best strategy for size 512 at the
price of bigger number of processing nodes. However, for the smallest size of
256 the strategy experiences the same problem as WS4-Flat and its throughput
becomes below the throughput of window distribute strategy.

Figure 4.10 illustrates the results from the experimental set with fast FFT
implementation for degree of parallelism four. Here we compare four strate-
gies: WD4 and WS4 with flat partitioning, and WD4-Tree and WS4-Tree with
tree partitioning.

54

 0

 20

 40

 60

 80

 100

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

50
M

B
 s

tr
ea

m
 s

eg
m

en
t

Logical window size

FFT times - slow implementation

WS4-Flat
WS4-Tree
WD4-Flat

Figure 4.7: FFT times for parallel in four execution. Slow FFT implementation

The crossing point after which the WS4-Flat strategy becomes preferable
over the WD4 is shifted here to the logical windows of size 8192. Again,
the load of the combine phase of WS4-Flat is high and prevails the FFT-
processing load for all logical window sizes (Fig. 4.11).

Which of the strategies has higher throughput in this situation depends on
the proportion between the most loaded compute nodes in WD4 strategies and
the dominating combine node in WS4-Flat strategy. Figure 4.11b illustrates
that WS4-Flat strategy becomes preferable for logical windows of size bigger
than or equal to 8192, while WD4 strategy has higher throughput for smaller
window sizes, e.g. as shown for the size 2048 in Fig. 4.11a.

Similarly to the slow experimental set, the WS4-Tree strategy has less loaded
distributed combine nodes than the central WS4-Flat combine node. For all
window sizes bigger than 512 the throughput is limited by the FFT-computing
nodes and the strategy is best for those sizes since the total load of its FFT-
computing nodes is smaller than the dominating FFT-computing load in WD4.
However, this best performance strategy utilizes more resources than the strate-
gies with flat partitioning. We also observe that the improvement gained by the
user-defined partitioning with respect to the RR partitioning is smaller for the
fast FFT implementation than for the slow implementation, correspondingly
to the FFT costs.

Both parallel strategies provide good load balancing between parallel bran-
ches assuming a homogeneous cluster environment where parallel nodes have

55

OS-Join

("fft3combine")

FFT3 64

S31

S30
S20

S21

Partition WN2

WN5

WN4

WN8

fft3part(2,1)
FFT3 64

S10
S40

fft3part(2,0)

FFT3 64

S33

S32

S22

S23

Partition WN3

WN7

WN6

fft3part(2,1)
FFT3 64

S11 S41fft3part(2,0)

Partition WN1

fft3part(2,1)

fft3part(2,0) S2S1

OS-Join

("fft3combine")

WN9

OS-Join

("fft3combine")

WN10

Figure 4.8: Window Distribute with tree partitioning in four

0

10

20

30

40

50

60

70

Partition FFT Combine

WD-Flat

WS-Flat

WS-Tree

Size 512

Slow set

Figure 4.9: Times for window size 512, slow FFT implementation

equal capacity. Window distribute achieves this by Round Robin, while win-
dow split utilizes a user-defined splitting of a window into sub-windows of the
same size. However, the experiments show that in order to achieve maximum
throughput it is not sufficient to provide efficient and well balanced compute
phase, but it is also necessary to achieve good load balancing between the
partition, combine, and compute phases.

Table 4.1 illustrates the proportion between elapsed processing and commu-
nication times in the partition, compute, and combine phases of both strate-
gies. The measurements are taken for the fast experimental set, logical win-
dows of size 8192, and degree of parallelism two. We observe that WD par-
titioning and combining nodes as well as WS partitioning node spent most
of the time communicating data. However, a substantial amount of time in

56

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 16384 8192 4096 2048 256

T
im

e
in

 s
ec

 fo
r

50
M

B
 s

tr
ea

m
 s

eg
m

en
t

Logical window size

FFT times - fast implementation

WS4-Flat
WS4-Tree
WD4-Flat

WD4-Tree

Figure 4.10: FFT times for parallel in four execution. Fast implementation

WS combining node is spent in processing of the user-defined combining
of sub-streams.

The speed-up of the parallel strategies for an expensive function (slow FFT
implementation) and size 8192 is presented in Figure 4.12. It clearly illus-
trates the cases when it is beneficial to utilize user-defined partitioning based
on the SQF semantics. If the function is expensive enough (slow implemen-
tation), resources are limited (e.g., four or six nodes), and the user-defined
partitioning provides more efficient dominating compute phase, the window
split strategy provides better speed-up. For example, when resources are lim-

0

5

10

15

20

25

30

35

40

Partition FFT Combine

WD-Flat

WD-Tree

WS-Flat

WS-Tree

(a) Logical window of size 2048.

0

5

10

15

20

25

30

35

Partition FFT Combine

WD-Flat

WD-Tree

WS-Flat

WS-Tree

(b) Logical window of size 8192.
Figure 4.11: Real time spent in partition, FFT, and combine phases of the parallel-4
strategies, fast implementation.

57

Part Comp Comb

WS Proc 0.42 57.66 13.8

WS Comm 15.94 2.82 5.17

WS Comm % 95% 4.6% 26.7%

WD Proc 0.04 62.95 0.09

WD Comm 7.56 2.72 5.01

WD Comm % 93.9% 4.1% 91.2%

Table 4.1: Communication and computational costs in different PCC phases

Figure 4.12: Speed up of parallel FFT strategies for window size 8192.

ited to six computational nodes, two of which are dedicated to split and join,
WS4-Flat achieves a speed-up of 4.72, while WD4-Flat has a speed up of 4.
For bigger number of nodes, e.g. 10 in the diagram, window distribute us-
ing RR shows better speed-up since the throughput of window split is limited
by the user-defined computations and per-window overhead in the combine
phase. The WS4-Tree strategy shows worst speed-up since it utilizes more
resources than the flat partitioning strategies.

4.3.3 Analysis

The experiments show that the window split strategy achieves better perfor-
mance in the compute phase than the window distribute strategy by utilizing
an FFT-dependent partitioning. In this section we analyze the throughput of

58

the parallel branches of both strategies for the fft3 SQF to complement the
experimental results.

The throughput of a node can be expressed as the ratio of the size of a
logical window over the total time it takes to process it.

The total processing time T for a logical window of size N includes the
following components:
• Time TSQF(N) for executing an SQF assuming that only one SQF is exe-

cuted on the node (the common case for the parallel branches);
• Communication time Trecv(N) to receive an input logical window;
• Communication time Tsend(N) to send a result stream window;
• Time Tsys for performing system tasks, such as buffer management and

scheduling

T (N) = Trecv(N)+TSQF(N)+Tsend(N)+Tsys (4.1)

In the model above we assume that the SQF has a fan-out factor of one, i.e.
produces one result window for each input logical window.

Let us consider the throughput of one partition of a strategy with degree of
parallelism k and logical windows of size N. The maximum throughput of one
Round Robin partition is:

T hrRR =
N

T (N)
(4.2)

For the same initial logical window size the window split partitioning processes
k logical windows of size N

k . Hence, the maximum input throughput of one
parallel window split partition is:

T hrWS =
N
k

T (N
k)

=
N

kT (N
k)

(4.3)

In order for the user-defined window split partitioning to have higher through-
put than the RR partitioning, the following condition must be fulfilled:

N
kT (N

k)
>

N
T (N)

(4.4)

or
T (N) > kT (

N
k

) (4.5)

Trecv(N)+TSQF(N)+Tsend(N)+Tsys > k(Trecv(
N
k

)+TSQF(
N
k

)+Tsend(
N
k

)+Tsys)
(4.6)

Under the assumption that the system overhead and the communication

59

times are approximately the same, the computational complexity of the SQF
determines the strategy with the best throughput. Under the above assumption
the window split is better than the window distribute if and only if:

TSQF(N) > kTSQF(
N
k

) (4.7)

The fft3 SQF executes FFT with complexity O(n logn). If we ignore the
low-order terms in the complexity formula for big enough N the above re-
quirement takes the form:

cN logN > kc
N
k

log
N
k

= cN(logN− logk) (4.8)

The last inequality is fulfilled for all values for the number of partitions k≥ 2.
Here we need to take into account the following factors that might cause

unexpected behavior in the real experiments.
• For small values of N the low-order terms might prevail and change the

inequality.
• Even when the SQF complexity analysis shows an advantage for window

split, the total real advantage is smaller since communication and system
tasks costs also affect the total throughput. In situations with relatively
cheap SQFs and relatively expensive communication costs, such advantage
might be negligible.

• As it can be seen from equation 4.7 whether user-defined partitioning would
have advantage in terms of total throughput depends on the computational
complexity of the SQF as well as on the existence of a particular, more effi-
cient, method for parallel computation to be used. For example, we can ex-
pect similar results for sort algorithms with complexity O(n logn), such as
merge-sort, but we cannot expect throughput improvement for SQFs with
linear complexity.

60

5. Definition and Management of Continuous
Queries

In this chapter we present the definition and management of continuous queries.
First we describe the meta-data used for representation of continuous queries
and data flow distribution templates at the coordinator. We present the imple-
mentation of the built-in library of templates constructors.

Long-running continuous queries require different management from stream
management systems than the management of one-time queries in DBMSs.
We describe the CQ management tasks performed by the coordinator dur-
ing the life cycle of queries. Finally, we describe a profile-based optimization
framework for automatic generation of optimized parallel plans for expensive
query functions.

5.1 Meta-data for CQs
Figure 5.1 shows the meta-data describing continuous queries at the coordi-
nator. Queries are instances of type CQ. Stream objects at working nodes are
described at the coordinator by objects of type Mstream (a meta-stream). The
Mstream properties source, dest, and interface represent the corresponding
properties of the stream objects (Sec. 3.2). In addition the stype property stores
the most specific type of a stream object, e.g., “Radio”, which is needed when
a stream object is created at a working node. The functions inputs and outputs
are defined on type CQ and return vectors (ordered sequences) of meta-stream
objects representing the stream on which the query is executed.

The following system procedures register input and output streams to the
system, respectively.

register_input_stream(Charstring stype,
Charstring source, Charstring interface)
-> Mstream s;

register_result_stream(Charstring dest,
Charstring interface) -> Mstream s;

For each input stream the user specifies its type stype, the source address of
the program or instrument sending the stream, and stream interface to be used.

61

inputs

CQ

1 n

Dataflow

Mstream

name

source

dest

interface

outputs

n1

stype
plan

1

1

Figure 5.1: Meta-data for continuous query representation

The type of the stream must be some of the stream types defined in the system,
and the interface must be valid for this stream type. The stream properties
that are not specified in the above procedures, are inferred by the system. For
instance, the destination of an input stream will be set to the working node
where the SQFs operating on it are assigned. The name of the stream is an
identifier, generated automatically when an Mstream object is created.

The user specifies the destination address dest to which the result stream
should be sent and the stream interface to be used. Notice, that the type of
the result stream does not need to be specified, since the system will derive it
from the CQ specification. The above procedures create in the coordinator the
objects of type Mstream representing the streams and set their attributes.

The plan function specifies an object of type Dataflow that represents the
data flow graph for query execution. We describe the meta-data about the
graphs in the next section.

The following system procedure is a constructor for CQ objects given the
data flow graph, and the input and output streams:

cq(Dataflow d, Vector of Mstream ins,
Vector of Mstream outs) -> Cq q;

An example query specification is given below:

set s1 = register_input_stream(
"Radio","1.2.3.4","UDP");

set s2 = register_result_stream(
"1.2.3.5","Visualize");

set wsplit = PCC(2,"fft3part","fft3",{},

62

Site

assigned_to

flowDataflow

width
arity

1

Node

params

fn

id

location

n

n

1

level

id

id

inputs
outputs

Figure 5.2: Metadata for specification of distributed data flow graphs

"OS-Join",{"fft3combine"});
set q = cq(wsplit, {s1}, {s2});

Here the user explicitly specifies the distributed execution strategy for the
query through the PCC template, providing the system with information about
the degree of parallelism two and the partitioning strategy to be used, defined
through the fft3part and fft3combine functions. To provide transparency to the
user, the system can also automatically enumerate and select an optimized
execution plan for a given query. We will address this problem at the end of
the Chapter.

5.2 Data Flow Graph Definition
Figure 5.2 shows the meta-data describing data flow graphs. The graphs are
represented by a type Dataflow with properties arity and width describing
the number of input and output streams of the graph, respectively. It is as-
sumed that the input and output streams are numbered starting from zero. The
Dataflow type has a number of other attributes that describe, e.g., execution
statistics of the graph, and are supported automatically by the system. Here
we skip these attributes and present only the properties important for the data
flow graph construction.

Vertices in the graph are instances of type Node with properties id that is
an automatically generated unique identifier, fn that is the name of the SQF
annotating the node, and params that is a vector of non-stream parameters of

63

the SQF. The function flow defined on the Node type specifies the data flow
graph in which the node participates.

Inputs and outputs are special attributes that describe producer-consumer
relationships between SQFs or a binding of SQFs to the input and output
streams of the data flow graph. The inputs function returns a vector of ele-
ments that are either other nodes or input stream numbers. The Outputs func-
tion returns a vector of elements that are either other nodes or output stream
numbers. When two nodes, n1 and n2, are connected through a producer-
consumer relationship, node n2 has in its inputs function value an element
equal to n1, while node n1 has n2 among the elements of its outputs function.

If a node does not consume the result of any other node in the data flow
graph, it has in its inputs function only order numbers of input streams of
the graph. We call such a node an input point of the graph. We use the term
output points in a graph for nodes, such that there is no other node in the graph
consuming their results. Since one node logically produces one result stream,
an output point has in its outputs function only one order number of the output
stream of the graph that the node produces.

However, when a graph g1 is connected by a pipe to another graph g2, it is
possible to connect multiple nodes from g2 to consume the result stream from
a single output point of g1. As a result the outputs function of the connected
output point will contain references to all the consuming nodes in g2. Notice,
that after g1 and g2 are connected, the output points in g1 are not any more
output points for the composed graph.

The derived attribute level is used to store the level of a node in the topolog-
ical ordering defined by the inputs function. The level of a node is computed
as a sum of one and the maximum level of the nodes in the inputs function
of the node. If a node is an input point, i.e. the inputs function contains only
input stream numbers, the level of the node is set to zero.

The logical execution sites are instances of type Site with properties id, a
unique identifier generated automatically by the system, and location, which
specifies the name of the computing node to which the logical site is mapped.
The mapping is performed by the system after the resources for the query
have been allocated. A distributed execution is achieved by assigning graph
nodes to different logical execution sites. The assignment is specified through
the assigned_to function defined on the Node type returning an object of the
type Site.

5.3 Templates Implementation
In this section we present the implementation of the data flow distribution
templates from the built-in library.

64

1: function CENTRAL(f n, params,n)
2: d← data f low(n,1)
3: s← site()
4: nd← node(f n, params,vector(0,n−1),{0},d,s)
5: return d
6: end function

Algorithm 1: Central template constructor

1: function PARTITION(n, tmpl, params)
2: d← data f low(1,n)
3: s← site()
4: for i← 0,n−1 do
5: APPLY_TEMPLATE(tmpl,{n,i,params},{0},{i},d,s)
6: end for
7: return d
8: end function

Algorithm 2: Partition template constructor

5.3.1 Central Execution
The central template constructs a central data flow graph of one node as shown
in Algorithm 1.

We use the following functions in Algorithm 1:
• dataflow(arity, width) is a constructor of a dataflow object setting its proper-

ties arity (number of input streams), and width (number of output streams).
The central data flow in the algorithm has n input streams as the number of
input streams of the SQF, and one output stream.

• site() is a constructor of Site objects;
• node(fn, params, inputs, outputs, flow, assigned_to) is a node constructor

setting the attributes of the node with the corresponding names.
• vector(0,k) is a vector constructor that returns a vector of ordered elements

in the interval [0,k].

5.3.2 Partitioning
The partition template constructs a partitioning graph as in Figure 3.3a. The
pseudo code is given in Algorithm 2. Algorithm 2 uses the dataflow construc-
tor as in algorithm 1, but here the data flow graph has arity one and width n.
n nodes are created and connected to different output streams of the graph to
produce different partitions.

The template uses a system procedure apply_template (Algorithm 3) that
creates a data flow graph by applying a template in its first parameter on a

65

1: procedure APPLY_TEMPLATE(tmpl, params, inputs,out puts,d,s)
2: if template(tmpl) then . Expand compute template
3: cd← apply(tmpl, params)
4: BIND_INPUTS(cd,inputs)
5: BIND_OUTPUTS(cd,outputs)
6: for all nd ∈ nodes(cd) do
7: f low(nd)← d
8: if s 6= nil then
9: assigned_to(nd)← s

10: end if
11: end for
12: else
13: APPLY_TEMPLATE(“central”,{tmpl,params,count(inputs)},

inputs, outputs,d,nil)
14: end if
15: end procedure

Algorithm 3: Expand template or SQF invocation

vector of template parameters in the second parameter. The created nodes are
included in a container graph d and assigned to a site s, the last parameters of
the procedure. The inputs and outputs functions of the nodes in the graph are
assigned correspondingly to the inputs and out puts parameters of the proce-
dure.

The procedure contains a call to the predicate template(fn) that returns true
if the parameter fn is a name of a template constructor. The apply_template
procedure uses two procedures to bind the nodes of the new graph to the in-
puts and outputs of the container data flow graph d. Bind_inputs substitutes
those elements in the inputs functions of the nodes in a graph d that are order
numbers of input streams (hence, the predicate numeric(k)) with the stream
order numbers specified in the inp parameter. Bind_outputs in Algorithm 5
has similar functionality, but for the output points. The function nodes(d) that
returns all nodes in a data flow graph d. It is an inverse of the flow function. If
the tmpl parameter is an SQF function, the procedure calls the central template
to create a graph with one node annotated with the SQF.

5.3.3 Parallel execution

The Algorithm 6 presents the pseudo code of the parallel template constructor
that creates s a parallel graph as shown in Figure 3.3b. Each of the parallel
branches is created by a call to the apply_template procedure.

66

1: procedure BIND_INPUTS(d, inp)
2: for all nd ∈ nodes(d) do
3: v← inputs(nd)
4: for i← 0,count(v)−1 do
5: if numeric(v[i]) then
6: v[i]← inp[v[i]]
7: end if
8: end for
9: inputs(nd)← v

10: end for
11: end procedure

Algorithm 4: Binding inputs

1: procedure BIND_OUTPUTS(d,out p)
2: for all nd ∈ nodes(d) do
3: v← out puts(nd)
4: for i← 0,count(v)−1 do
5: if numeric(v[i]) then
6: v[i]← out p[v[i]]
7: end if
8: end for
9: out puts(nd)← v

10: end for
11: end procedure

Algorithm 5: Binding outputs

5.3.4 Pipelined execution

The pipe template takes two data flow graphs and creates a new data flow
graph by copying the nodes and sites in the component data flow graphs and
connecting the copies of the input points from the second component graph to
the corresponding copies of the output points from the first component graph.
Algorithm 7 shows the pseudocode. The following functions are used in the
algorithm:

• copy_nodes(d,map) creates copies of all nodes and sites in the data flow
graph d. The map parameter is a data structure that holds the mapping be-
tween an original node and its copy. Algorithm 8 presents it’s pseudocode.

• get_output(d,i) is a function that returns the i-th output point of the data
flow graph d, i.e. the node for which the value of the outputs function is set
to {i}.

67

1: function PARALLEL(n, tmpl, params)
2: d← data f low(n,n)
3: for i← 0,n−1 do . Create branch i
4: APPLY_TEMPLATE(tmpl,params,{i},{i},d,nil)
5: end for
6: return d
7: end function

Algorithm 6: Parallel template constructor

• input_points(d) is a function that returns all nodes that are input points of
the data flow graph d.

• thecopy(nd,map) is a function that returns the copy of the node nd as spec-
ified by the mapping map.

5.4 CQ Management
Continuous queries require different management from a DSMS than the man-
agement of one-time queries in DBMS. Traditionally, a one-time query in a
database finishes when the entire result set is produced having all input data
processed. Since input data in stored databases are finite in size, the result
is expected to be produced in a limited time. However, in the case of con-
ceptually infinite stream data a continuous query can also run infinitely, as
required for some monitoring applications such as monitoring plant environ-
ments. There are also cases when the user needs a query to run for a limited
amount of time, for instance to monitor traffic conditions only in rush-hours.
Therefore, a DSMS must allow a continuous query to run for a specified time
interval or unconditionally. It also must provide an interface for explicit termi-
nation of CQs, which we call deactivation. The CQ management thus includes
the following tasks:
1. Compilation of a data flow graph into an execution plan;
2. Starting the execution that includes installation and activation;
3. Monitoring the execution;
4. Deactivation of execution.
We will present each of these tasks in separate subsections.

5.4.1 CQ Compilation
Given the data flow graph and the input and result streams, the coordinator
compiles the data flow graph into a distributed execution plan. The compila-
tion algorithm contains the following main steps as shown in Algorithm 9:

68

1: function PIPE(d1,d2)
2: d← data f low(arity(d1),width(d2))
3: map← nil
4: for all nd ∈ copy_nodes(d1,map) do
5: f low(nd)← d
6: end for
7: for all nd ∈ copy_nodes(d2,map) do
8: f low(nd)← d
9: end for

. Connect copies of input points of d2 to the copies of output points of d1
10: for all nd2 ∈ input_points(d2) do
11: v← inputs(nd2)
12: for i← 0,count(v)−1 do
13: nd1← get_out put(d1,v[i])
14: cnd1← thecopy(nd1,map)
15: cnd2← thecopy(nd2,map)
16: inputs(cnd2)[i]← cnd1
17: out puts(cnd1)← out puts(cnd1)+ cnd2
18: end for
19: end for
20: return d
21: end function
Algorithm 7: Pipe

1. Determine node dependencies. The dependencies between nodes specified
through inputs and outputs functions are analyzed and stored as a value of
the level attribute of node.

2. Bind the nodes that are input points of the data flow graph to the input
streams of the query. The binding uses the input stream numbers in the
inputs function.

3. For each node, starting from the input points of the graph and following
an increasing order of the level function values, compile the node. The
compilation of a node is given below.

4. Connect the SQFs that are output points of the data flow graph to the result
streams of the CQ.

The Algorithm 9 uses the following functions and procedures:

• max_level(d) returns the maximum among the levels of the nodes in a data
flow graph d;
• result_streams(n) is a multi-value function that stores the result stream ob-

jects created for the node n

69

1: function COPY_NODES(d,map)
2: for all s ∈ sites(d) do
3: news← copy_site(s,map)
4: end for
5: for all nd ∈ nodes(d) do
6: newnd← copy_node(nd,map)
7: assigned_to(newnd)← thecopy(assigned_to(nd),map)
8: return newnd
9: end for

10: end function
Algorithm 8: Copying of a data flow

The compilation of a node presented by the pseudocode in Algorithm 10
has the following steps:
1. Perform a type check of the parameters of the SQF in order to derive the

type of the result stream (line 2). The stream parameters are specified in
inputs function, while non-stream parameters are given in the params at-
tribute of the node. The type check requires that the input streams of the
node are already bound when the node is processed. We ensure this by start-
ing with the data flow input points with level value equal to 0 and following
the SQF dependencies, i.e. increasing level values. The compiler infers the
type of the result stream from the SQF definition. The type is needed by
the result stream constructor.

2. Group the consumers of the compiled node according to their site assign-
ments. For each group create a logical stream connecting the current node
to the group of consumers. In this way the consumers in the group share
the input stream produced by the node.

3. If both the node and the group of its consumers are assigned to the same
site, the logical stream is implemented by a stream object with a main-
memory stream interface assigned to the same site (lines 8-14).
If the group of consumers is assigned on a different logical site than the
current node, the logical stream is implemented by a pair of dual stream ob-
jects using inter-GSDM stream interface (lines 15-24). One of the streams
(line 16), assigned to the current node’s site, sends data from the current
node to the site where the consumers group is assigned. The second stream
object (line 17) is assigned to the consumers’ site and receives data from
the current node.

Algorithm 10 uses the following functions and procedures:
• derive_result_type(n) checks the types of the SQF parameters and returns

the type of the result stream using the definition of the SQF annotating
the node.

70

1: function COMPILEDFG(d)
2: cq← plan_o f (d)
3: LEVELS(d)

. Connect all input points to the input streams
4: BIND_INPUTS(d,inputs(cq))
5: success← true
6: for i← 0,max_level(d) do
7: for all n ∈ nodes(d) do
8: if level(n) = i∧ success then
9: success← compile(n)

10: end if
11: end for
12: end for
13: if success then

. Connect the output point to the CQ result streams
14: n← get_out put(d,0)
15: for all outs ∈ out puts(cq) do
16: result_streams(n)← result_streams(n)+outs
17: end for
18: end if
19: return success
20: end function
Algorithm 9: Algorithm for compilation of a data flow graph (DFG)

• consumer_sites(n) is a derived function that returns all objects of type Site
to which some node is assigned that is a consumer of the argument node n;

• nextstreamid() is the system generator of stream identifiers;
• mm_stream(name,stype,st) is a stream constructor using the default para-

meters for streams in main memory inside a working node. The parameters
specify the stream name, type, and a Site object representing the site where
the stream object will be created;
• inGSDM_stream(name,stype,st,src) and outGSDM_stream(name,stype,st,-

dest) are stream constructors using the default parameters for inter-GSDM
streams. The first three parameters are as described above. The last para-
meter is a source address for an input stream and a destination address for
an output stream object. Notice, that the dual streams have the same name
but are assigned to different sites;

• subst(v,n,s) is a procedure that substitutes the object n with the object s in
the vector v. It is used to bind a node to an input stream produced by the
node producer by the call subst(inputs(n),nprod,s2).

71

1: function COMPILE(n)
2: stype← derive_result_type(n)
3: if stype then
4: st prod← assigned_to(n)
5: for all st ∈ consumer_sites(n) do
6: name← nextstreamid()
7: if st = st prod then . Create stream in main memory
8: s1← mm_stream(name,stype,st prod)
9: result_streams(n)← result_streams(n)+ s1

10: for all n1 ∈ out puts(n) do
11: if st = assigned_to(n1) then
12: SUBST(inputs(n1),n,s1)
13: end if
14: end for
15: else . Create inter-GSDM stream of two dual stream objects
16: s1← outGSDM_stream(name,stype,st prod,name(st))
17: s2← inGSDM_stream(name,stype,st,name(st prod))
18: result_streams(n)← result_streams(n)+ s1
19: for all n1 ∈ out puts(n) do
20: if st = assigned_to(n1) then
21: SUBST(inputs(n1),n,s2)
22: end if
23: end for
24: end if
25: end for
26: return true
27: else
28: return f alse
29: end if
30: end function
Algorithm 10: Node Compilation

72

• result_streams(n) is a multi-value function that stores the result streams of
a node n. It is used later on by the installation. The function contains a
stream object for each group of consumers on different site.

5.4.2 Mapping
The compilation of a data flow graph creates an execution plan where dis-
tribution is specified in terms of logical execution sites. In order to start the
execution, logical sites have to be mapped to physical computing nodes allo-
cated by the resource manager of the coordinator. Here we assume that the
computing resources have been allocated, so that the coordinator has on its
disposal list of available computing nodes to be used for the query execution.

The mapping between logical sites and nodes is created by a system proce-
dure that sets the location attribute of all Site objects in the data flow graph.
Currently we always do one-to-one mapping between a logical site and a com-
puting node to maximize the parallelism. Other mappings will be investigated
as a future work.

1: procedure START(d)
2: for all g ∈ sites(d) do . All logical sites in d
3: START_WN(location(g), id(g))
4: end for
5: end procedure

Algorithm 11: Starting Working Nodes

When the mapping is set, the resource manager starts GSDM working nodes
on the allocated computing nodes (Algorithm 11). When a working node
starts it first registers itself to the name server and to the coordinator, and then
starts its server loop in which it listens for the commands from the coordinator
and data messages.

5.4.3 Installation
The installation of a continuous query consists of creating data structures and
objects representing an executable plan at the working nodes. Algorithm 12
shows the main steps in the installation. There is no specific order of instal-
lation between working nodes, but internally at each node it follows node
dependencies downstream (for loop in line 5).

The installation procedure is overloaded for the case when a stop condi-
tion is associated with the query. In this case, the condition is installed only
at the input points of the data flow graph since the deactivation propagates
downstream.

73

1: procedure INSTALL(d)
2: for all g ∈ wn(d) do
3: maxlev← maxlevel(d,g)
4: minlev← minlevel(d,g)
5: for l← minlev,maxlev do
6: for all v ∈ nodes(d) do
7: if level(v) = l∧assigned_to(v) = g then
8: for all s ∈ inputs(v) do
9: INSTALL_STREAM(s)

10: end for
11: INSTALL_SQF(v)
12: for all s ∈ result_streams(v) do
13: INSTALL_STREAM(s)
14: end for
15: end if
16: end for
17: end for
18: end for
19: end procedure
20: procedure INSTALL(d,kind,value)
21: INSTALL(d)
22: for all v ∈ input_points(d) do
23: INSTALL_STOP(v,kind,value)
24: end for
25: end procedure

Algorithm 12: CQ Installation

5.4.4 Activation
During the activation the SQFs in the execution plan are initialized and added
to the list of active operators scanned by the scheduler. Algorithm 13 shows
the activation steps. Since a node result stream is pushed to the consumers,
the system must ensure that the consumers are already listening when a node
starts producing data. This is achieved by activating the nodes in an order that
is inverse to the node dependencies, i.e. upstream.

5.4.5 Deactivation
Deactivation of a continuous query consists of synchronized stopping of all
SQFs in the query plan. The deactivation can be triggered by a stop condition
associated with the query or performed on explicit command from the user.

Since the data flow graph runs in a distributed environment, we have devel-

74

1: function ACTIVATE(d)
2: success← true
3: for i← max_level(d),0 do
4: for all v ∈ nodes(d) do
5: if level(v) = i∧ success then
6: success← activate(v)
7: end if
8: end for
9: end for

10: return success
11: end function
Algorithm 13: CQ Activation

oped a mechanism for synchronizing the deactivation on different nodes. It is
initiated on all the input points of the data flow graph. Once they are deacti-
vated, they propagate the deactivation to the consumers downstream, which
on their turn are deactivated and propagate the deactivation until it reaches the
output points of the execution plan.

5.5 Monitoring Continuous Query Execution

One of the important characteristics of continuous queries is that they are
long-running by definition. Hence, it is highly probable that the system will
experience changes in the execution environment during the runtime of a CQ
due to changing rates of the source streams, changing availability of resources,
or registering of new CQs that share resources with the existing ones.

Therefore, to provide efficient processing of CQs, the system should moni-
tor the execution and adapt, if possible, the execution plans to fit better to the
changed conditions. GSDM has a monitoring subsystem consisting of statis-
tics collector modules in the working nodes and the coordinator. The query ex-
ecutor and the scheduler of working nodes invoke various statistics primitives
to update the statistical meta-data. The most important parameters for moni-
toring in a distributed stream processing system are stream rates, CPU times
for SQF executions, memory availability, memory utilization by the stream
buffers, and communication costs. The statistics collector module of the co-
ordinator periodically gathers statistical information from working nodes and
performs analysis of the overall CQ performance.

75

5.6 Data Flow Optimization
The purpose of data flow optimization is to create an optimized data flow
graph for a given continuous query. The optimization provides higher degree
of transparency than the specification of queries through templates where the
degree of parallelism and the partitioning strategy are specified explicitly. The
optimizer automatically generates distributed execution plans and selects an
optimized plan using some optimality metric. Traditionally database query
optimizer functionality consists of plan enumeration, generating plans in the
space of possible plans, and a cost estimation model on which the selection of
an optimized plan is based.

We have developed a CQ optimizer for PCC with limited functionality
that optimizes parallel execution plans for a single expensive SQF. Next, we
shortly describe the components of the current CQ optimizer. The optimiza-
tion of the individual SQFs relies on traditional query optimization.

5.6.1 Estimating Plan Costs
Traditional cost models rely on relatively accurate estimates of the costs of
individual operators that are used to estimate the cost of the entire plan. How-
ever, in an extensible system such as GSDM executing user-defined functions
over user-defined data, the cost model of individual functions might be hard to
define or obtain from the author of the code. Furthermore, to allow utilization
of processing resources allocated on-demand among computers with differ-
ent performance parameters, the system would need to support a separate cost
model for each architecture.

Therefore, the CQ optimizer selects an optimized plan based on trial runs
that collect execution statistics rather than based on a cost estimate model. The
optimizer collects statistics about the utilization time of working nodes, which
is a sum of the SQF’s processing times, the communication time, and the
time spent in system tasks. The working node with maximum utilization time
limits the throughput achievable by the data flow graph and hence we define
an optimality metric (cost) of a plan as the maximum utilization time among
the utilization times of working nodes is the plan. We select an optimized plan
by selecting the plan with the lowest utilization time. In order to compare the
statistics of several plans, the trial runs use the same cluster and work on a
stream segment with equal size.

5.6.2 Plan Enumeration
A naive plan enumeration for PCC has been implemented as follows:
1. The maximum degree of parallelism is specified as a system parameter.

76

Plan Enumeration

Compilation

Run

CQ Specification

Deactivation

Data Flow Graph

Execution Plan

Running CQ

Trial Run

Plan Selection

Optimized

Execution Plan

Statistics

CQ Optimizer

Figure 5.3: Life cycle of an optimized CQ

2. Plans for partitioned parallelism are generated using the PCC template con-
structor.

3. A function registry contains meta-data about the valid parallel strategies
and their parameters for a given SQF. Both the valid stream partitioning
strategies and the valid degrees of parallelism are specified in the registry.

4. The enumerator generates different plans by using the PCC template and
varying the strategy (i.e. window split or window distribute) and the valid
degrees of parallelism. The enumeration of plans for a given strategy stops
when a plan has been generated such that either the maximum degree of
parallelism or the resource limit is reached.
Each of the graphs is compiled, run in a trial mode, and statistics about the

execution is stored in the coordinator’s metadata by the statistics collector.
The CQ optimizer then chooses an optimized data flow graph using the sta-
tistics collected and the above model for optimality. The life cycle of the CQ
optimized in this way is shown in Figure 5.3.

The optimizer is implemented as a function with the following signature:

opt(Charstring templ, Charstring fun,
Vector params, Vector inpstr) -> Dataflow d;

77

It takes as parameters the function fun to be executed, its parameters, and input
streams inpstr. The first parameter is a template to be used for plan enumer-
ation and currently only PCC is supported. The optimizer assigns automati-
cally an output stream to collect statistics from trial runs. The result of the opt
function is an optimized data flow graph for the provided parameter function
fun. Using the CQ optimizer functionality, the continuous query on page 63 is
specified by an alternative template constructor as follows:

set q = cq(opt("PCC","fft3",{},{s1}), {s1}, {s2});

The optimized plan is set by the cq constructor to the plan property of the
query and used when the run(q) procedure starts the execution.

In the example above, plans with RR and user-defined stream partitioning
are generated with different degrees of parallelism and the plan with best exe-
cution time from the trial runs is selected. In this way transparency is provided
to the user, so that only the SQF fft3 needs to be specified in the query, rather
than all explicit parameters of the PCC template as in the example on page 63.

The current CQ optimizer provides automatic optimization of paralleleliz-
able expensive SQFs using the PCC pattern. The experiments show that the
optimization framework with trial runs and statistics collection is feasible, but
it needs to be generalized in several important directions:
• Sophisticated plan enumeration. Since the naive enumeration of plans might

create very big space of possible data flow graphs, in order to make the op-
timization efficient it is important to develop heuristics about which plans
to generate and what order to follow during the generation. For example,
enumeration strategies such as random walk of search space, binary search,
or greedy can be investigated. The importance of such heuristics is even
bigger in our setting than for cost-based optimization, because rather than
computing the cost, the CQ optimizer runs a plan in a trial mode.

• Optimality model. Alternatively to the maximum throughput metric, other
metrics such as latency and precision can be used. Furthermore, multi-
criteria optimality model combining several metrics might show to fit better
some applications.

• The optimization framework needs to be generalized to use different distri-
bution templates besides the PCC template. For example, if a user specifies
a pipeline of two SQFs, the CQ optimizer has to enumerate plans where
each stage of the pipe is parallelized independently of the other by, possi-
bly, different degrees of parallelism and partitioning strategies, and plans
where the stages in the pipeline are executed together by defining a meta-
SQF that encapsulates them, which on its turn is parallelized by some data
partitioning.

78

6. Execution of Continuous Queries

This chapter presents the execution of continuous queries at working nodes.
First, we describe the implementation of operators executing SQFs and inter-
GSDM communication. Next, we present the scheduling policies used by the
scheduler. Finally, we describe important observations concerning the system
performance.

6.1 SQF Execution
The main execution primitive is an execute operator that sets up the envi-
ronment and applies an SQF over its input streams and other parameters to
produce logical windows in the SQF’s result stream. Thus, the execution plan
is composed of instances of the execute operator, each executing a particu-
lar SQF.

6.1.1 Operator Structure
For each SQF assigned to a working node the installation procedure creates
an internal data structure (an operator) that contains the characteristics of the
SQF as needed for execution by the execute operator. The structure is shown
in Figure 6.1. The id slot stores the unique identifier of the SQF. The identi-
fiers are generated automatically by the coordinator when the nodes in the data
flow graph are created. The SQF slot is a pointer to an object of type Function
representing the SQF to be executed. A paramlist stores a list of all parameters
of the SQF. An inputstreamlist contains a list of stream objects that are para-
meters of the SQF, where for each stream there is an internal local buffer of
pointers to the current logical windows in the stream. As we described in sec-
tion 3.2.1 this buffer is accessed by the window functions in the SQF definition
providing for SQF referential transparency.

The outputstreamlist holds a list of result streams of the SQF as determined
during the compilation. Typically, the list contains one result stream object,
but it is also possible to have more than one if the SQF has several consumers
and they are assigned to different execution sites. In the latter case a differ-
ent result stream object is created for each execution site where some SQF-

79

repetitionstop

condition

output

stream

list

stat

input

stream

list

paramlistSQFid

timecount
last

exec

first

exec

Operator

Statistics

state

Figure 6.1: Operator structure

consumer is assigned (Algorithm 10). The logical windows from the SQF
execution are inserted into each of the streams in the outputstreamlist.

The execution of long-running CQs is usually monitored by collecting and
analyzing execution statistics. For each SQF there is a statistics data structure
storing the initial and last time of execution, the number of executions, and
the total processing time. The stat slot in the operator structure is a pointer to
the corresponding statistics structure.

The stopcondition slot stores the stop condition associated with the SQF.
Three kinds of stop conditions are supported in the current implementation:
time-based, count-based1 and unconditional. The time-based and count-based
stop conditions are installed during the CQ installation by setting the stopcon-
dition slot.

The repetition slot is used to set up an upper bound for the number of exe-
cutions scheduled in one scheduling period. It is determined by the schedul-
ing policy (to be explained below). The real number of executions might be
smaller since it also depends on the data available.

Some SQFs, such as S-Merge, need to keep state in between subsequent
executions. The state slot in the operator structure allows to store such state.
To provide state initialization and clean-up, a pair of operations initialization
and cleaning-up can be associated with the SQF. The operations are called
during the activation and deactivation of the SQF, respectively.

An SQF can be in one of the following three states, illustrated in Figure 6.2:
uninstalled, installed, and active, where a state transition is performed on a
command from the coordinator or from the scheduler. As described in Chapter
2, all operator structures for SQFs installed at a working node are stored in a
hash table installed operators with key the SQF’s id. The active operators

1We used a count-based stop condition to provide an equal stream segment size for all experi-
ments.

80

Uninstalled Installed

Active

Install SQF

Activate
SQF

Deactivate
SQF

Figure 6.2: SQF states

list, used by the scheduler, contains pointers to the operator structures for the
active SQFs. Assigning different states to the SQFs allows for flexibility in
the execution plans. For example, changes of the execution plan on the fly are
enabled by temporary deactivation of an SQF, change of its parameters, and
activation or replacement with another SQF.

6.1.2 Execute operator
When the scheduler decides how many times to execute an SQF, it invokes
the execute operator. The execute operator prepares an SQF for execution over
the current input stream windows and executes it by a regular database query
execution module to produce the next windows in the result stream.

The preparation of SQFs and the update of their result streams involve calls
to the side-effect interface methods (Sec. 2.4) and, hence, are performed inside
the execute operator.

In order to prepare an SQF for execution, the execute operator calls the
next method of the stream interface for each of the input streams and sets
up the content of the stream local buffers in inputstreamlist slot. In order to
determine how many times the next method needs to be called, the system
uses the parameters of the window functions in the SQF’s definition, or values
set by the initialization operation of the SQF if it needs state information.

For example, let an SQF is defined on a jumping window over a stream s,
implemented as a sliding window of size n and step n (slidingWindow(s,n,n)).
The execute operator prepares the stream s by calling the next method on it n
times in order to obtain the pointers to the next n logical windows starting
from the current cursor position. After the execution n pointers are dropped
from the local buffer.

81

If an SQF is defined using a sliding window, i.e. slidingWindow(s,n,1), it
will be similarly prepared for the first execution by n calls to the next method
on the stream s, but only one pointer will be dropped after the execution. All
the following executions will be prepared by one call to the next method, since
the rest n−1 pointers are remaining in the buffer after the previous execution.
In both cases the sliding window function will return a vector of n logical
windows relative to the current cursor position.

SQFs with time-based sliding window functions are prepared based on the
time stamp characteristics of data. If an SQF is defined using a time-based
sliding window, i.e. timeWindow(s,span), the execute operator calls the next
method to retrieve the pointer to the next available logical window with time
stamp ts and drops from the local buffer all pointers to data with a time stamp
smaller than ts− span.

After the data from the input stream is prepared in the local buffers, the exe-
cute operator executes the SQF by the regular database query engine in Amos
II, providing function parameters from the paramlist slot of the operator struc-
ture. The produced result logical windows are added to the registered result
streams of the SQF by calls to the corresponding insert interface methods.

If an SQF is scheduled when there is not enough stream data, the window
functions return nil and the call to the SQF does not create result windows.

6.1.3 Implementation of S-Merge SQF
The semantics of S-Merge SQF is to merge data from many streams preserv-
ing the order determined by an ordering attribute, in our case a time stamp.
Assuming that the order is preserved inside each of the merged streams, the
execution is just a selection of the logical window with the smallest time stamp
among the current logical windows of all the merged streams.

S-Merge is designed to merge arbitrary number of streams and hence its
first parameter is of type Vector of Stream.

The semantics of S-Merge requires all the merged streams to have data in
order to compute the smallest time stamp. However, delays due to distrib-
uted processing and communication, loss of data, or end-of-stream condition
may create a situation when some of the stream buffers are empty. In order
to provide non-blocking behavior in such a situation, the operator is associ-
ated with a time-out parameter. If data on a stream is not available, S-Merge
waits for time-out time period after the first attempt to obtain it. If data is still
not available after this period, S-Merge assumes that data has been lost and
selects the logical window with the smallest time stamp among the streams
with non-empty buffers. If a delayed logical window comes later on, S-Merge
ignores it to preserve the order of already produced result stream. The S-Merge
pseudocode is shown in Algorithm 14.

82

1: function S-MERGE(vs, timeout)
2: res← nil
3: empty← check_empty_bu f f ers(vs)
4: if (empty∧ timer = nil) then
5: timer← now() . Start timer if empty buffer is detected
6: else if (¬empty)∨ (empty∧ timeout_exp(timer, timeout)) then
7: ts← min_ts(vs)
8: s← stream_min_ts(vs, ts)
9: MARK(s)

10: timer← nil
11: if ts≥ last_ts then
12: res← currentwindow(s)
13: last_ts← ts
14: end if
15: end if
16: return res
17: end function
Algorithm 14: S-Merge Algorithm

The algorithm uses the following functions and procedures:
• check_empty_buffers(vs) is a predicate that checks that all the buffers of

streams in the vector vs contain data.
• timeout_exp(timer, timeout) is a predicate that checks for time-out expira-

tion.
• min_ts(vs) finds the minimum time stamp among the time stamps of the

current logical windows in the streams vs;
• mark(s) puts a marker to the stream from which the logical window with

minimum time stamp is chosen. The execute operator uses the mark to
delete the pointer in the local buffer for this stream when S-Merge finishes;

The selected logical window with minimum time stamp is emitted only if
its time stamp does not violate the result ordering (lines 11-14). Values of
timer and last_ts are kept in the S-Merge state in the state slot of the operator
structure.

6.1.4 Implementation of OS-Join SQF

The semantics of the OS-Join SQF is to join data from multiple streams on
their ordering attribute time stamp and to apply a combining function on the
joint data preserving the order in the result stream. The first parameter is of
type Vector of Stream, and the second is the combining function to be applied.

83

1: function OS-JOIN(vs,combine f n)
2: res← nil
3: n← count(vs)
4: lw← currentWindow(vs[0])
5: if lw then
6: for i← 1,n−1 do
7: lwi← currentWindow(vs[i])
8: if lwi then
9: PUT(hash(vs[i]),ts(lwi),lwi)

10: MARK(vs[i])
11: end if
12: end for
13: params[0]← lw
14: t← ts(lw)
15: for i← 1,n−1 do
16: params[i]← get(hash(vs[i]), t)
17: end for
18: if ¬empty(params) then
19: res← combine f n(params)
20: for i← 1,n−1 do
21: DELETE(hash(vs[i]),t)
22: end for
23: end if
24: end if
25: return res
26: end function
Algorithm 15: OS-Join Algorithm

OS-Join needs a policy to provide non-blocking behavior in case some of
the logical windows are missing. Since a result window is produced by com-
bining sub-windows from all streams, there are two alternatives in case of
missing data: either the system waits until data come with the potential dan-
ger of blocking, or OS-Join waits for a time-out time period and produces a
partial result using, e.g., replication of old data or approximation.

In the current implementation OS-Join waits for the data to come, which
in practice shows non-blocking behavior. The reason is that OS-Join com-
bines inter-GSDM streams created by splitting an original stream and com-
municated on TCP that guarantees loss-less and order-preserving receiving of
streams. The pseudocode of OS-Join is presented in Algorithm 15. The algo-
rithm uses the first stream as a probing source and keeps a hash table for each
other stream from the vector of streams vs in the OS-Join internal state.

84

The following functions and procedures are used in Algorithm 15:
• hash(s) is a function that given a stream object returns the hash table for

the object in the internal state of OS-Join.
• put(h,k,val) inserts the value val in the hash table h using the key k
• get(h,k) retrieves the element with key k.
• delete(h,k) deletes the element with key k.
• empty(v) is a predicate that checks if the vector v has elements with nil

values.
In order to implement the time-out alternative that is non-blocking in gen-

eral without the above assumptions holding in our case the time-out parameter
should be added as in S-Merge. In addition there is a need for specification of
partial results computations, e.g., by an additional parameter partcombine, that
is a function called to compute the partial results.

6.2 Inter-GSDM communication
The communication between GSDM servers is message-based where the mes-
sages contain commands to be executed at the receiving server. GSDM servers
can send messages synchronously or asynchronously. When a message is sent
synchronously, the server executes the command contained in it and sends the
result of the execution back to the server sending the request. The requesting
server waits for the result before continuing its work.

When an asynchronous message is sent to a server, the sending server con-
tinues its work without waiting for the result. The message is annotated with
information whether the result of the execution should be stored at the re-
ceiver to be retrieved later on. The command in the message is executed at the
receiving server and the result is stored locally if specified so.

The coordinator commands to the working nodes are implemented as syn-
chronous messages. The predefined primitives include, e.g. the installation
and activation commands:

install_stream(Charstring stype, Charstring sname,
Charstring srcaddr, Charstring destaddr,
Charstring interf)-> Stream

install_SQF(Charstring id, Charstring SQFname,
Vector strargs, Vector args)-> Boolean

install_stop(Charstring id, Charstring cond,
Number val) -> Boolean

activate(Charstring id)-> Boolean

Furthermore, arbitrary commands can be sent to the working nodes, e.g. for
setting some system parameters such as the size of the database image in main

85

memory. By sending coordinator commands as synchronous messages status
information is atomically provided to the coordinator.

Stream data are pushed between working nodes using asynchronous mes-
sages without waiting for the result of message execution. They contain a
call to the insert method of the stream interface for the corresponding remote
inter-GSDM stream object and the data to be inserted.

6.3 Scheduling
The work of the CQ engine is controlled by its scheduler. It executes a loop
where in each iteration the active SQFs are executed on the current stream
data. Through this loop the CQ engine achieves continuous execution of CQs.

The scheduling policy affects substantially the system performance. It is
determined by two components: how periods of work (loop iterations) are or-
ganized and how SQFs are scheduled inside a period. We call one iteration of
the scheduler loop scheduling period. In each scheduling period the scheduler
allocates resources for three groups of tasks:
• Communication: the system checks for incoming inter-GSDM messages

with commands or data.
• SQFs: the active operators list is scanned and each SQF there is checked

and eventually scheduled and started.
• System tasks: for example management of stream buffers is performed pe-

riodically and SQFs are checked for deactivation.

6.3.1 Scheduling periods
Two scheduling policies with respect to the length of the scheduling period
were implemented, evaluated, and shown to fit in different situations.

The first scheduling policy has fixed length of the scheduling periods, where
the length is called turn-around time. Its purpose is to control the maximum
rate at which data is consumed from the external input streams and to prevent
in this way overload situations at down-stream working nodes. It also provides
regular inter-arrival intervals for the stream data at the consuming servers.

The policy is implemented by a special sleep task that causes idling of the
processor to the end of the scheduling period. If the execution time for all
the tasks in a period is bigger than the period turn-around time, the sleep
is skipped and the scheduler sends a message to the coordinator notifying it
about overload.

The second scheduling policy does not have fixed length scheduling period
and hence we call it variable-length. The length of a given scheduling period
depends on the active SQFs and the amount of unprocessed stream data. When

86

the engine finishes with the processing tasks in the current period, it starts
a new period, checks for new data, and schedules their processing. In other
words, the new period starts immediately after the work in the current period
finished, so that data that has come in the meantime does not need to wait
unnecessarily. By contrast, with fixed-length period new data has to wait until
the beginning of the next period even if the current processing has finished
and the system is idling.

6.3.2 SQF Scheduling
In the time frame of one scheduling period different policies are possible with
respect to the execution order among the SQFs and the number of executions
for each SQF. We call this SQF scheduling policy.

Currently, the execution order among several SQFs is determined by their
order in the active operators list. Scheduling problems concerning ordering
of stream operators are active area of research of stream processing engines
[9, 18]. Most projects work in the context of a large number of relatively cheap
operators installed at the same server, which makes the ordering of operators
an important part of the scheduling. By contrast, we do not address SQF or-
dering problem and use a simple queue-based ordering since our focus are
expensive SQFs split into multiple instances for parallel processing. In this
settings, most of the servers execute a single expensive SQF over a data parti-
tion.

We implemented the following two SQF scheduling policies concerning the
number of scheduled executions:
1. Fixed-number SQF policy determines the number of SQF executions per

scheduling period as specified in the repetition slot of the SQF.
2. Greedy SQF policy checks the amount of unprocessed data in the input

stream buffers and based on that determines the number of SQF executions
for the current period.
The scheduling policy with fixed number of repetitions is applicable for all

SQFs, but is especially useful for the SQFs that are input points of the data
flow graphs. Fixing the number of executions per scheduling period together
with fixing the length of the period by the turn-around parameter allows the
system to control the execution rates of the SQFs that are input points of the
data flow graph and, hence to control the rate with which the system “con-
sumes” external stream data.

The greedy scheduling intuitively allows the system to do as much work as
it can and as soon as possible. It requires that the scheduler is able to check
the amount of unprocessed data and their time stamps. We combine greedy
SQF scheduling with variable length periods on internal working nodes to
process as much data as possible and as soon as the data has been received,

87

given that there are available processing resources. We do not use greedy SQF
scheduling in combination with fixed-length period, since in overload situa-
tions greedy scheduling might schedule a big number of executions that ex-
ceeds the turn-around time of a fixed-length period.

The scheduling period and the SQF scheduling policy are determined by
the coordinator using the above rule about the input points of the data flow
graph and their assignments to working nodes.

For each SQF in the active list, the scheduler performs the following steps:
1. Checks the stop condition of the SQF. If it is true, the SQF is not scheduled.
2. Checks if the SQF has fixed number of repetitions per scheduling period.

If so, the number of scheduled executions is set to the value of the repeti-
tion slot.

3. If the SQF does not have fixed number of repetitions, the scheduler uses
greedy policy, i.e. determines the number of scheduled executions based
on the amount of unprocessed data and the SQF parameters.

6.3.3 Scheduling of System Tasks

At the end of each scheduling period system tasks might be scheduled as fol-
lows:
• The buffer manager is called periodically to clean the stream buffers from

data that all the SQFs have processed. A system parameter determines how
often the buffer manager should be invoked.

• The scheduler checks the stop conditions of the SQFs and invokes the de-
activation procedure if needed.

6.3.4 Effects of scheduling on system performance

We conducted several experiments to investigate the effect of different schedul-
ing policies on the overall system performance. We measured the performance
by the average response time (latency) that a logical window spends in the sys-
tem, the load of the nodes, and the time spent in communication.

The purpose of the first experiment is to illustrate the effect of fixed-length
and variable-length scheduler periods on the latency. We set up a data flow
graph of two working nodes, WN1 and WN2, where WN1 sends logical win-
dows regularly to WN2, which executes a very fast identity SQF. The first
node uses fixed-length scheduling to provide regular inter-arrival intervals at
the second node. Since an identity SQF is very cheap, the load of both working
nodes is determined by the communication costs and is very low. The main
source of latency in this case is the time for communication and the waiting
time due to the scheduling policy.

88

Turn-around Rate in LW Load % Lat Fixed Lat Var

0.08 12.5 3.94 0.009 0.0044

0.1 10 3.18 0.104 0.0044

0.2 5 1.74 0.198 0.0044

0.3 3.33 1.18 0.302 0.0046

Table 6.1: Latency with fixed and variable length scheduling period

Table 6.1 shows the measured load and latency for logical windows of size
2048 and different input stream rates. When WN2 uses fixed-length schedul-
ing, we measure latency that increases proportionally to the length of the
scheduling period. The reason is that when a logical window comes to the
working node after the scheduling period has started, it waits for the next
scheduling period in order to be processed. The actual waiting time depends
on the synchronization between the data arrivals and the beginning of the
scheduling periods.

When WN2 uses variable-length scheduling period, the system checks the
TCP sockets for incoming data messages and processes them as soon as the
previous period finishes. Since the node has low load this means immediate
processing of the incoming logical windows. We measured a constant latency
of about 0.0044 sec. (last column in the table) for different input stream rates,
which can be attributed to the communication latency.

This experiment shows that the variable-length scheduling gives stable and
shorter latency than the fixed-length scheduling when working nodes have
low load.

The purpose of the second experiment is to investigate whether the advan-
tage of variable-length period still holds when the system load increases. We
choose again a logical window size of 2048 (approximately 50 KB) and a data
flow graph of two working nodes, where the second one executes the fft3 SQF
with processing cost of 0.107 sec. per logical window. We increased gradu-
ally the system load by increasing the input stream rate. The measurements for
the load and latency are shown in table 6.2. We measured the variable-length
scheduling with two versions: one with greedy SQF scheduling, and one with
a number of repetitions fixed to one. The measurements of both versions are
very similar2 and presented together in the last column in table 6.2.

Again the variable length period scheduling shows smaller and stable values

2In the case of under load the inter-arrival time is longer than the processing time for a logical
window. Hence, assuming regular inter-arrival intervals, the greedy SQF scheduling de facto
schedules the SQFs for either zero or one execution, which gives the same effect as the schedul-
ing with fixed-number repetitions equal to one.

89

Turn-around Rate(LW) Load % Lat Fixed Lat Var

0.3 3.3 36 0.115 0.110

0.2 5 57 0.31 0.111

0.15 6.6 73 0.259 0.111

0.12 8.33 94 0.169 0.112

Table 6.2: Latency with fixed and variable length scheduling period

Turn-around Rate(LW) Lat Comm WN1

0.1 10 0.553 0.266

0.09 11.1 1.149 0.266

Table 6.3: Latency at the receiver and communication overhead at the sender with
fixed-number SQF scheduling

of the latency: we measure an average latency 0.111 out of which 0.107 is the
fft3 processing cost. From this experiment we can conclude that the variable
length scheduling period indeed processes logical windows as soon as they
come, given load up to the measured 94%. Latency with fixed length period
is bigger and not proportional to the turn-around length, but varies depending
on how long logical windows need to wait until new period starts.

The goal of the third experiment is to investigate the trade-offs between
fixed-number and greedy SQF scheduling when the system is overloaded. We
increased the stream rate to values for which the average inter-arrival time is
shorter than the processing time for a window. Tables 6.3 and 6.4 show the
results for inter-arrival interval set to 0.1 and 0.09, respectively, given the fft3
processing cost of 0.107. We observe that the greedy scheduling shows shorter
latency than the fixed-number scheduling, but the communication times for
sending windows increase rapidly at the sender node WN1. The reason is that
since the processing cost is bigger than the inter-arrival time, during some
periods more than one window come and are scheduled by greedy. This in-
creases the length of the period and postpones the moment when next data is
read from the TCP sockets. In other words, the GSDM server does not con-
sume data from the TCP buffers in a timely manner, which results in filling
the buffers and activating the TCP flow control mechanism. As a result the
communication cost for sending logical windows at the first GSDM node in-
creases and the actual rate of sending decreases, e.g. to 9.47 instead of 10 as
it is set.

This experiment shows that in the case of overloading, greedy scheduling

90

Turn-around Rate(LW) Lat Comm WN1

0.1 9.47 0.393 2.77

0.09 9.58 0.43 3.66

Table 6.4: Latency at the receiver and communication overhead at the sender with
greedy SQF scheduling

would activate the TCP flow control mechanism and through it would eventu-
ally reduce the rate at the sender due to increased communication overhead.
Therefore, an important system parameter to monitor for system overload is
the communication time at sending nodes. When this time increases above
some threshold the GSDM engine should take actions to reduce the input
stream rate in a controllable way. Notice, that the overload at the downstream
working node does not cause local loss of data since TCP is used for inter-
GSDM communication. Instead, the input rate at the upstream working node
reduces, i.e. new incoming data is accumulated and eventually dropped on the
entry of GSDM before any processing cost to be spent on it.

If overload occurs with fixed SQF scheduling policy at the receiving node,
there will be periods when the number of windows scheduled for process-
ing is less than the number of windows received and not processed. Hence,
data accumulates in the stream buffers and their latency increases as shown in
Table 6.3.

Therefore the overload in this case is detected by monitoring the state of the
stream buffers for overflow. The system needs a policy to apply when stream
buffers are filled up, but such a policy has not been implemented yet. The
most common overload policy in this case is load shedding [83] which drops
some of the data without processing based on some rules. Notice, that data
loss due to the shedding would occur at the receiver node after the stream
windows have been processed by at least the GSDM-sending node. In the
current application the source streams are received using the UDP protocol
and data loss occurs at the input working nodes in case of overload.

Having investigated the effects of the scheduling on the communication and
processing, we choose to use greedy SQF scheduling with variable-length pe-
riods for the internal working nodes, including the parallel working nodes.
Under internal working nodes we mean those that do not have SQFs operating
on external streams. In case of overload, greedy scheduling causes communi-
cation overhead at the sender - the partitioning node, which allows the system
to start dropping data before it is processes by the remaining, more costly, part
of the data flow in a way that does not affect the parallel branches.

In the same situation fixed-number scheduling at parallel nodes would start

91

dropping data. However, this dropping would not be synchronized among the
parallel branches, thus causing higher percentage of dropped result windows
for window split strategy due to dropped sub-windows. Furthermore, part of
this dropping would actually happen at the combining node after the expensive
work (computational SQFs) has been done.

6.4 Activation and Deactivation
The activation of an SQF includes two steps: adding the operator structure
for the SQF to the list of active operators, and calling an init operation. The
latter opens the SQF’s input and result streams by calls to the open method of
their stream interfaces. For SQFs with foreign implementation, the associated
initialization operation is also performed that prepares the SQF internal state.

The deactivation starts at the input points of the data flow graph and prop-
agates downstream. The propagation of the deactivation in a distributed envi-
ronment is currently performed by sending a special end-of-stream message
to the stream consumers notifying that there will not be any more data on this
stream. Therefore, each SQF has an implicit stop condition that evaluates on
true if all the input streams of the SQF have empty buffers and have received
the end-of-stream control message.

At the end of each scheduling period the scheduler checks the SQF’s ex-
plicit and implicit stop conditions and issues a command for deactivation of
the SQF if some of them evaluates on true. The deactivation includes three
steps: removing the SQF from the list of active operators, sending the end-
of-stream control message to the consumers of its result stream, and calling a
clean-up operation.

The clean-up operation closes the input and result streams by calls to the
close method of their stream interfaces, and performs the associated with the
SQF cleaning-up operation. The close method for a shared stream does not
destroy the stream buffer, but only nullify the cursor in the stream buffer for
this particular SQF.

After deactivation the operator structure remains in the hash table of the
installed operators and the SQF can be activated again later on.

6.5 Impact of Marshaling
In a distributed stream processing system data communication is intensive.
The experiments with the GSDM prototype show the importance of a carefully
designed stream communication in order to achieve good system performance.

We experimented two encodings for the scientific data. In the initial im-
plementation the encoding was character based so that all numbers had to be

92

0

10

20

30

40

50

60

70

80

Partition FFT Combine

WD-Flat

WD-Tree

WS-Flat

WS-Tree

Figure 6.3: Real time spent in partition, FFT, and combine phases of the parallel-4
strategies for logical window of size 8192, fast implementation, and character mar-
shaling.

parsed. We measured the cost for marshaling and de-marshaling of logical
windows containing vectors of complex numbers into character format when
sent to and received from the TCP sockets. This cost was so high in compar-
ison with the computational costs, that the parallel execution strategies got a
bottleneck in the partition and combine nodes already with degree of paral-
lelism four. Figure 6.3 from [45] shows the saturation of the communicating
partition and combine nodes for the fast FFT implementation, logical window
of size 8192, with character marshaling, to be compared with Figure 4.11b for
the same size and implementation, but with binary marshaling.

To address this problem, we replaced the encoding of logical windows into
a binary format. As a result the size of the communicated data decreases with
approximately 50% and the time spent on (de)marshaling was substantially re-
duced by 6 to 10 times. This is illustrated in Figure 6.4 showing the times for
marshaling and de-marshaling of logical windows with binary and character
encoding. The times increase linearly with the logical window size for mar-
shaling into and from character format. We observe linear increase for mar-
shaling into binary format for sizes bigger than 1024, while for small window
sizes the overhead for calling the marshaling function for a window becomes
substantial in comparison to the marshaling operation itself. The improvement
achieved by using binary format is between 6 for small sizes to 10 times for
big logical windows. The times measured for the binary representation in-
cluded copying of a logical window from the internal GSDM format into bi-
nary format. Therefore, those times can be further improved by changing the
implementation to avoid the copying. However, the current implementation is
efficient enough to allow for data flow graphs with high degree of parallelism

93

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 8192 4096 2048 1024 256

T
im

e
in

 s
ec

 fo
r

1
lo

gi
ca

l w
in

do
w

Logical window size in number of samples

Times for marshaling and de-marshaling logical windows

Binary
Character

Figure 6.4: Times for marshaling and de-marshaling of logical windows with different
encoding

for expensive SQFs. This experience illustrates the importance of a well-tuned
communication in a distributed on-line stream processing system.

94

7. Continuous Queries in a Computational
Grid Environment

In order to execute efficiently expensive continuous queries on high-volume
data streams, GSDM needs substantial computational resources. At the same
time, resource requirements are varying in time depending on the currently
installed queries and their computational costs. The idea behind Grid middle-
ware is to provide sharing of resources, such as computers, data, and instru-
ments. In this chapter we investigate the possibilities to utilize computational
Grid resources on-demand for the needs of computationally expensive contin-
uous queries.

7.1 Overview of Grids
Grids [43, 33] enable sharing of distributed heterogeneous resources, such as
computers, databases, and scientific instruments. The term Grid was chosen
as an analogy to the electrical power grid that provides transparent, pervasive
access to electric power irrespective of its source. The purpose of computa-
tional Grid middleware software is to provide an infrastructure where users
have transparent access to computing resources irrespectively of where the
computing cycles are generated. This idea is a basis for computational mar-
kets where service provides offer computational resources and users select a
resource based on criteria including price and quality of service [65].

Several projects, such as Globus [35] and Nordugrid [61], provide tools for
building computational Grid infrastructures.

In a typical usage scenario the end users interact with the Grid middleware
by submitting requests, called jobs, for execution of an application program
on some input data sets. In order to provide transparent execution of jobs, the
middleware software must provide capabilities for dynamic discovery, selec-
tion, and allocation of grid-enabled resources. It also has to provide tools for
job description, staging the application executable, transferring the necessary
input data files, submitting jobs to the resource’s management system, moni-
toring the execution, and notifying the user and transferring the results when
the job completes. In order to fulfill this role, Grid middleware needs to solve
a number of problems. The main challenges are heterogeneity of resources

95

and technologies, scalability, multiple ownerships, preservation of autonomy,
and dynamics.

Over time the Grid community realized that the required capabilities of
Grid middleware overlapped with the developments in the web services com-
munity. As a result, a service-oriented architecture for the Grid was proposed,
known as Open Grid Services Architecture (OGSA) [32]. Based on OGSA,
the Grid middleware functionality is available through service description and
invocation standards of the web services community.

7.2 Integrating Databases and Grid
The initial driving forces for the development of the Grid were in the area
of scientific and engineering applications. Data in these initial applications
were organized as flat files and consequently the early Grid toolkits focused
on file support rather than management of structured data. As the file manage-
ment systems and registries associated with Grid became complex, DBMSs
started to be increasingly used to store the Grid meta-data. At the same time
more scientific applications emerged using the developments of, e.g., OO- and
ORDBMSs to organize their complex data. The requirement of scientific col-
laboration created a need to be able to share such databases on the Grid.

In order to integrate databases with Grid infrastructure, Grid middleware
stack needs to include service-based interfaces to databases [65]. In many
cases their functionality is similar to the existing database access interfaces
such as JDBC. However, more expressive interfaces are needed for request-
response and publish-subscribe access to data.

Database technologies and Grid can mutually benefit of each other. Data-
base management systems can benefit from unified access to computational
and storage resources, and from facilities for dynamic resource discovery and
allocation. The Grid can benefit from database technology that provides the
users with data sharing, scalable management of large data sets, and declar-
ative query languages. Data intensive tasks on Grid are typically specified as
directed acyclic graphs (DAGs) in terms of jobs, i.e. programs executed on
files. A higher level abstractions are needed to ease the specification of Grid
data-intensive tasks. Examples of projects that provide such abstraction are
GridDB and OGSA-DQP [4].

7.3 GSDM as an Application for Computational Grids
The GSDM system can benefit from Grid facilities for dynamic resource dis-
covery and allocation. The system has highly varying resource requirements.

96

When a new query is submitted, containing possibly expensive SQFs, the
system needs to provide on-line execution with high throughput. It can be
achieved by composing a parallel execution plan to run on newly incorporated
resources. When the query is stopped, the resource requirements of the system
decrease correspondingly. Therefore, dedicating a fixed number of servers to
the system can lead to over-provisioning and inefficient resource utilization
in case the current load of the system is small. At the same time, the dedi-
cated resources can still be insufficient to provide for an efficient execution of
very expensive queries. Hence, this dynamics of resource requirements makes
GSDM a good candidate for shared computational resources that are provided
on-demand by a computational Grid infrastructure.

7.3.1 GSDM Requirements for Grids
The other side of the coin is the question how GSDM fits into the profile of
the current computational Grid applications. In the following we analyze what
requirements GSDM puts to a computational Grid and how they are fulfilled
by the current Grid middleware.
• Requirement I: High communication bandwidth to the processing nodes.

Traditionally database systems store high-volume data on disks. Hence,
data locality is an important factor in query processing, in other words, it
is preferable to perform the processing as close to data as possible to avoid
transferring of high-volume data. In a stream processing system where
stream data are not disk-stored, but communicated in real-time, this re-
quirement changes. It is again favorable to process the stream data in prox-
imity to the stream sources, but it is more important to use resources with
high-bandwidth communication capacity for high-volume streams.

• Requirement II: Automatic staging of executables.
GSDM is a main-memory database engine for stream processing and as
such it can be started by simply starting the executable with the initial
database image file. Therefore, in order to run the system on an arbitrary
resource, staging of the executable is needed similarly to other Grid appli-
cations.

• Requirement III: Support for parallel long-running jobs with guaranteed
short start-up time.
Distributed execution plans for computationally expensive continuous queries
require multiple nodes to work simultaneously. Therefore, parallel jobs
need to be supported. CQs are also often long-running. At the same time,
when a user submits a continuous query she expects short start-up time in
order to analyze the data currently produced by an instrument, sensor, etc.
A start-up with an indeterminate delay means unprocessed stream data and
may lead to missed important discoveries.

97

• Requirement IV: IP Connectivity of individual computing nodes.
Processed data are not locally stored on disks, but comes continuously from
external sources, such as instruments and software on the Internet. There-
fore, individual computing nodes need to have IP addresses accessible for
data delivery from outside. Resources where all the communication goes
through a single front-end node cannot manage high-volume streams com-
munication.
The above requirements are not completely satisfied by the current state of

computational Grids and Grid middleware. True staging of executables is not
automatically provided by the current Grid middleware. Consequently, today’s
Grid applications are limited to use only Grid resources where the application
executables have been prepared in advance, typically in a manual way.

Resource management of parallel computing resources is typically per-
formed by batch-oriented systems, such as PBS for cluster computers. When
a job is submitted, the batch system puts it to a batch queue according to job’s
priority and schedules it following some resource management policy. As a
result the job might wait long before the resources are allocated for it. Corre-
spondingly, the job submission using Grid middleware is batch oriented with
unpredictable waiting times.

The resource management systems of clusters often dedicate parts of the
resources for interactive remote-session jobs for the purposes of application
development and testing. These interactive jobs have typically short start-up
times and it is possible to acquire several nodes at once as long as there are
resources available. Interactive jobs (rather than batch jobs) could be used for
servicing GSDM queries because of their short start-up times. However, clus-
ter’s resource managers often limit interactive jobs to be started only from the
terminal sessions which prohibits programmatic startups. Furthermore, since
the interactive jobs are not considered Grid production jobs, most Grid mid-
dleware toolkits do not provide support for them.

Many computer resources accessible through the Grid infrastructure do not
currently satisfy these requirements. At the same time the number of moni-
toring applications processing streams increases and includes new domains.
It is therefore desirable to consider the requirements of such applications for
computational resources when new Grid-enabled computer resources are de-
signed.

7.3.2 GSDM Resource Allocation
In a Grid environment the GSDM resource manager module in the coordinator
would:
1. Collect information about the status of the available cluster resources where

the GSDM executable is pre-installed. Of particular importance is the abil-

98

ity to get information about the approximate waiting time for the submitted
jobs.

2. Select a cluster based on the expected number of available nodes and the
waiting time.

3. Submit a (interactive or batch) job to the cluster. The job contains a number
of nodes as a parameter. As a result a list of available computer nodes is
provided to other modules of the GSDM coordinator.

4. Multiple jobs can be submitted in a proactive way so that a minimum num-
ber of nodes is always guaranteed.

7.3.3 Multiple Grid Resources
In the presented usage scenario a CQ runs on a single cluster computer. We
can also consider an execution of a CQ distributed among several clusters.
Using techniques from distributed databases, the CQ can be decomposed into
a number of continuous sub-queries assigned on different clusters based on
their proximity to the stream sources. Such assignments would reduce the
total communication traffic. Furthermore, the overall system efficiency can
be optimized by installing a new CQ on clusters where other queries already
process the same streams.

In order to implement such a scenario for processing distributed among
several clusters, a number of problems need to be addressed, for example:
• CQ decomposition and site assignment need to take into account physical

proximity of stream sources and processing resources, as well as queries
currently running in the system.

• Running on-line stream sub-queries on different clusters requires very strict
synchronization of resource allocation among clusters, which is currently
not supported.

7.3.4 Grid Requirements for Applications
In order to run GSDM as a Grid application, the system needs to conform to
Grid standards and requirements, such as:
• Authentication and Authorization. Users of Grids acquire resources through

a grid certificate schema. The Grid applications run while utilizing the cre-
dentials of the user certificates, where the principle of a single sign-on is
applied. Hence, it is necessary to investigate a certificate utilization schema
in order to run GSDM as a Grid application. For instance, the system can
use its own grid certificate, in which case the user interface needs to be
augmented with user authentication and authorization mechanism to en-
sure that the system runs continuous queries only on behalf of authorized
Grid users.

99

• Security. Grid utilizes SSL protocol for secure communication. Hence, ac-
commodation of this protocol might be required for communication of
components of a distributed Grid application.

7.4 Related Projects on Grid
In this section we present an overview of several database and stream process-
ing projects utilizing Grid.

7.4.1 OGSA-DAI
The purpose of OGSA-DAI initiative [62] is to provide generic Grid data
services for access to and integration of data held in relational DBMSs and
in XML repositories, called data resource. A Grid Database Service (GDS)
wraps a data resource and is capable of evaluating a collection of linked ac-
tivities. The activities are one of the following kinds: database query, result
transformation or result delivery. Thus, the project provides coarse-grained
database interfaces allowing for grouping database access, data transforma-
tions and movement in a single request to the GDS.

OGSA-DAI addresses the problem for accessing stored collections of struc-
tured and semi-structured data, while GSDM deals with the problem for on-
line processing of streaming data sources under Grid.

7.4.2 OGSA-DQP
OGSA-DQP [4] is a service-based distributed query processor for the Grid.
It allows for declarative specification of complex applications accessing dis-
tributed data sources and computational resources in a uniform way. Thus,
OGSA-DQP provides functionality for declarative service orchestration com-
plementary to work-flow systems. The system relies on OGSA services to
dynamically obtain the resources necessary for distributed query evaluation.
OGSA-DQP adapts techniques from parallel databases to provide implicit par-
allelism for computational tasks in data-intensive requests.

The architecture includes two services: Grid Distributed Query Service
(GDQS) and Grid Query Evaluation Service (GQES) whose functionality re-
sembles GSDM coordinator and working nodes. The GDQS compiles, opti-
mizes, partitions, and schedules distributed execution plans over multiple exe-
cution nodes. It interacts with the appropriate grid registries to obtain metadata
about the data sources and computational resources. When a distributed query
is posted to the system, the query evaluation system is dynamically composed
from a number of GQES services. They are the execution nodes in the distrib-
uted query plan.

100

The OGSA-DQP is oriented for application that query high-volume stored
data in science and medicine. The query processing utilizes iterative model
combining push and pull-based interface between query execution modules.
By contrast, we target on-line stream processing applications and utilize data-
driven (i.e. push-based) data flow processing model.

OGSA-DQP re-uses the optimization, partitioning, and scheduling capabil-
ities of Polar* engine [77] and re-implements the query execution engine in
a service setting. It uses OGSA Grid Data Service that ensures that metadata
and data are accessed via a standard well-defined interface. It also uses OGSA
services for data transport and authentication.

Since the current Grid middleware does not support true application stag-
ing, OGSA-DQP assumes pre-installation of services software on the required
Grid nodes. The service-based system architecture is used to guarantee timely
acquisition of resources for the query execution, i.e. GDQS service providers
either have themselves enough resources or have service level agreements
with other GDS providers and computational resource providers that host
query evaluation services. Therefore, the functionality of OGSA-DQP requires
QoS guarantees for the participating in the distributed plans Grid data services
and web services. Computational resource discovery is not automatically pro-
vided but partially supported via querying indexing services about the set of
resources specified by the user.

GDQS coordinates between the query optimizer and GQES instances ex-
ecuting the distributed plan similarly to the GSDM coordinator controlling
the working nodes. In both cases a distributed query evaluation system is
constructed on the fly. However, OGSA-DQP has loosely-coupled service-
based architecture, while GSDM is a tightly-coupled system. One of the places
where this difference is noticeable is the communication between the system
components. One of the reported OGSA-DQP performance bottlenecks is the
lack of an efficient data transfer mechanism. Currently the data transport ser-
vice provides for transfer of XML documents over SOAP/HTTP. High-volume
streams of scientific data require efficient communication. Having the inter-
GSDM communication under our control allowed to optimize it to an accept-
able level where the communication is not a bottleneck.

Resource selection and scheduling algorithm that enables partitioned (intra-
operator) parallelism for distributed query execution in a Grid environment is
presented in [38]. The algorithm starts with a valid query plan with mini-
mum partitioned parallelism and in each step finds the most costly operator
for which there are available machines, increases the parallelism by one de-
gree for this operator by allocating an available machine, and assesses the
performance using a well-defined cost model. The algorithm stops when per-
formance improvement is bellow a certain threshold.

We use a similar idea to create parallel plans with different degrees of par-

101

allelism. However, we utilize training mode to find an optimized data flow
since we cannot rely on precise cost model for an extensible system with user-
defined functions running in a heterogeneous environment.

The OGSA-DQP optimizer achieves partitioned parallelism using the ex-
change operator with pre-defined partitioning method. By contrast, we pro-
vide customizable partitioning and also a user-defined partitioning, including
window split as a form of intra-object partitioning for intra-function paral-
lelism.

Recent work [37] addresses the need for generic adaptivity framework for
Grid query processing and proposes plan adaptation by changing the degree
of parallelism and the distribution vector to balance the load among heteroge-
neous resources.

7.4.3 GATES
GATES (Grid-based AdapTive Execution on Streams) [23, 24] is a Grid mid-
dleware system aimed for distributed processing of high-volume data streams.
It is designed to use the existing Grid standards and tools to the extent possible
and is build on OGSA standard and Globus Toolkit 3.0 middleware. The sys-
tem provides users with a high-level interface to specify algorithms for data
stream processing. Another important aspect of the system is its ability to
adapt the processing to achieve the best possible accuracy while maintaining
the real-time constraint on the analysis.

The application developer divides the application into stages, implements
the processing in each stage, and chooses one or more adjustment parame-
ters. The adjustment parameters provide adaptivity, e.g. allow to increase the
processing rate in order to achieve real-time processing at the price of reduced
accuracy. The application starts using an XML configuration file that describes
the application stages and their locality. The execution is performed through a
number of communicating GATES Grid services that are able to contain and
execute user-specified code and implement a self-adaptation algorithm.

The GATES Grid services resemble the GSDM working nodes in the sense
that both are distributed execution components for stream processing started
on-demand and customizable by uploading of user-defined code and SQFs.
The difference is in the level of abstraction and flexibility provided. GATES
application stages are fixed and pre-defined pieces of code created by the
application developer and stored in a configuration file. In GSDM the user
specifies continuous queries in terms of declarative SQFs and the coordinator
creates dynamically a distributed execution plan.

The GATES system is designed for applications with expected high-volume
communication and relatively cheap computations. Hence, the work focuses
on a resource allocation algorithm minimizing the communication costs be-

102

tween the nodes, while parallel processing of expensive operators on a single
stream is not considered at all. The distributed pattern of execution is limited
to multiple input streams of the same type that undergo the same chain of
operations, and are merged in the later stages of the application. We provide
high-level and general framework for specifying distributed patterns through
the data flow distribution templates.

Similarly to other Grid applications, GATES project intends to use the in-
formation services provided by Grid middleware for resource discovery. How-
ever, the problem how to simultaneously and with short start-up time allocate
multiple Grid resources needed for distributed stream processing is not ad-
dressed.

7.4.4 R-GMA
R-GMA (Relational Grid Monitoring Architecture) [66] is a data integration
system for Grid monitoring. It allows for publication of both static and dy-
namic stream data as well as specifying of continuous, history and latest-
state queries. The system utilizes “local as view” approach for data integration
through a global relational schema, providing a global view over different Grid
resources, and local data sources whose schemas are views defined over the
global schema. The requests for monitoring information are specified in SQL.

Monitoring information about dynamic characteristics of Grid resources is
provided as data streams from information providers to the information con-
sumers. Stream republishers aggregate streams from other providers using
specifications in SQL. By constructing a hierarchy of stream republishers and
using a DBMS for the latest stream values, the system allows more complex
processing including joining and aggregating of latest stream values.

The design of the system is oriented very much to providing scalability, per-
formance, and integration to handle the large amounts highly-distributed Grid
monitoring data. However, the volume of the stream data is much lower than
the volume of a scientific instrument stream, e.g. one data sample is generated
every 30 sec, and consequently the problem how to distribute a high-volume
stream for efficient parallel processing is not relevant in this context.

103

8. Related work

This chapter presents an overview of research projects related to the GSDM
system. GSDM is a prototype of data stream management system and thus we
present other DSMSs related to GSDM with respect to stream data modeling,
query languages for continuous queries, processors for continuous queries,
distributed processing of streams, and data stream partitioning strategies. In
the first section we describe the related DSMS projects and how GSDM differs
from them.

The next sections present other technology related to GSDM, namely, con-
tinuous query systems operating on stored data, parallel DBMSs providing
scalable processing of non-stream data, and DBMSs used for management
and analysis of scientific data.

8.1 Data Stream Management Systems
During the last years data stream processing has been an active area of research
for the database community and many projects and prototypes of DSMSs have
been developed and published in the literature. The earlier systems typically
have central architecture where continuous queries are processed on a cen-
tral server over possibly distributed stream sources. The DSMSs with central
architecture are related to GSDM with respect to data modeling, query lan-
guages, and query processors for continuous queries.

Over the last three years many DSMSs were augmented with distributed
and parallel processing capabilities. This capabilities are more closely re-
lated to GSDM with respect to problems such as data partitioning, distributing
the continuous query processing among multiple nodes, and load balancing.
When we describe such systems we start first with central architecture before
presenting the distributed and parallel extensions.

Most of the stream processing systems [17, 27, 57, 59, 81], including dis-
tributed ones, have fine granularity of stream data items and relatively small
cost of the stream operators per item. Hence, the distributed extensions often
address the problem of an optimal operator distribution that achieves good
load balancing among the machines. In contrast, the streams in the scientific
applications we address have big total volume and data item size, and the user-
defined functions are computationally expensive. Therefore, we address the

105

problem for scalable execution of expensive stream operators (SQFs) through
parameterizable templates for partitioned parallelism.

8.1.1 Aurora
Aurora [17, 2, 14] is a stream processing engine with central architecture de-
veloped at Brown, Brandies, and MIT. It is a data-flow system where queries
are composed utilizing a boxes and arrows paradigm from process flow and
work flow systems. Data sources, such as programs or hardware sensors, gen-
erate streams that are collections of data values with fixed schema containing
standard data types. The output streams are presented to applications, which
are designed to deal with asynchronous data delivery.

The Aurora model is based on an extension of the relational model where
stream data are of standard relational atomic data types. The cost of the op-
erators is relatively small, so that the system has to schedule efficiently cen-
tralized processing of units with fine granularity. In contrast, we address par-
allel processing of computationally expensive stream operators utilizing user-
defined partitioning of streams that may contain data of complex user-defined
types.

A distinguishing feature of Aurora is the quality of service (QoS) support
that is an integrated part of the system design. A number of convex QoS graphs
can be provided by an application administrator for each result stream. The
graphs specify utility of the result in terms of performance or quality metrics
such as delay, percentage of dropped tuples, or result values. Scheduling al-
gorithms utilize the QoS graphs and aim at optimizing the overall utility of
the system.

Aurora’s continuous queries are specified in a procedural way using a GUI.
It is possible to combine multiple continuous queries, eventually for different
applications, into one so-called query network. Thus, shared processing of
CQs is supported given a specification by the application administrators.

No arrival order is assumed in Aurora’s data model. Hence, order-sensitive
operators are designed to handle this by either ignoring tuples out of order
or introducing a slack specification, where the slack is a fixed number of tol-
erated out-of-order tuples. By tolerating partial disorder the system can give
processing priority to tuples that contribute higher QoS utility.

The last overview of the project in [14] indicates the need for supporting
different feed formats for input streams. The suggested design solution is to
provide special input and output converter boxes that are dynamically linked
into the Aurora process. These boxes are similar in functionality to the GSDM
stream interfaces but we go further by also encapsulating in them network
communication of streams. Other lessons from the Aurora experience are the
need for global accessibility to the meta-data and a programmatic interface, al-

106

lowing to script the query network. These features are available in GSDM. For
example, the coordinator creates dynamically the installation scripts to be sent
to the working nodes in order to install the distributed query execution plan.

8.1.2 Aurora*, Medusa, and Borealis
Two proposals to extend the Aurora stream processing engine for a distributed
environment were presented in [25], followed by the work on Borealis [1] as
a second generation stream processing engine.

In Aurora* multiple single-node Aurora servers belonging to the same ad-
ministrative domain cooperate to run an Aurora query network. Medusa is a
distributed infrastructure for service delivery among autonomous participants
where participant collaborations are regulated using economic principles, e.g.,
pair-wise contracts to specify a compensation for each service.

Scalable communication infrastructure is proposed using mechanisms for
global name space and discovery, routing, and message transport. To provide
scalable inter-node communication, streams are multiplexed to a single TCP
connection. A message scheduler implements a policy for connection sharing
based on QoS specifications. By contrast, in GSDM we use one TCP con-
nection to implement an inter-GSDM stream. This choice is justified by the
characteristics of the GSDM applications: high volume of data in a single
stream and the coarse granularity of the expensive user-defined functions.

The Aurora* proposal includes dynamic adjustment of processing alloca-
tion among the participating nodes. Transformations of the query network are
based on a stop-drain-restart model. Two basic mechanisms for load sharing
among the nodes are proposed: box sliding and box splitting. Box sliding al-
lows boxes on the edge of a sub-network on one machine to be moved to the
neighbor, thus reducing the load and possibly the communication.

Box splitting creates a copy of a box intended to run on another machine. In
order for a box to be split it must be preceded by a filter box with a predicate
that partitions the input stream and be followed by one or more merging boxes.
The merging boxes depend on the predicate in the filter box as well as on the
semantics of the box to be split.

The proposed concept of box splitting has some similarities to our template
for partitioned parallel execution of SQFs. The Aurora* authors point out the
challenges related with the choice of a filter predicate for stream partitioning
and the determination of appropriate merging boxes. However, the work does
not address the problem of how to automatically create filtering and merg-
ing boxes for a given box splitting, which we provide through customizable
templates. The ideas in [25] are presented at a proposal level and neither an
implementation nor experimental results on box splitting are reported in the
follow-up literature.

107

Borealis [1] is a proposal for a second generation stream processing engine
that inherits core stream functionality from Aurora and distribution function-
ality from Medusa. It extends Aurora with support for dynamic revision of
query results, dynamic query modifications, and a scalable multi-level opti-
mization framework that strives to incorporate sensor networks with stream
processing servers.

Recent work focus on two problems of distributed stream processing: load
balancing [88] and fault-tolerance [15]. Since the target applications involve
big numbers of relatively cheap stream operators, the load balancing prob-
lem consists of good distribution of operators among the nodes. The initial
distribution of a query network utilizes localities of stored data and statistics
obtained through trial runs. Further re-distribution is achieved dynamically
through box sliding and correlation-based peer-wise or global re-distribution
algorithms [88].

Several strategies for providing fault tolerance are presented in [15]. Be-
sides adapting the standard active and passive stand-by approaches to the
stream processing context, in upstream backup each server acts effectively
as a back-up server for its downstream servers. The fault tolerance problems
are not addressed currently in GSDM; this research is complementary to our
work and its results can be utilized in a future work.

8.1.3 Telegraph and TelegraphCQ
The goal of the Telegraph project at UC Berkeley is the development of an
adaptive data flow architecture. The Telegraph architecture includes three types
of modules: query processing modules which are pipelined non-blocking ver-
sions of the standard relational algebra operators such as select, join, group
etc.; adaptive routing modules, such as eddy [8], which are able to re-optimize
the query plan while a query is running; and ingress and caching modules
which are wrappers providing interface to external data sources. All the mod-
ules communicate through an inter-module communication API called fjords.

Two prototypes, CACQ [57] and PSoup [20], extend Telegraph with ca-
pabilities for shared processing over streams. In CACQ, standing for continu-
ously adaptive continuous queries, an eddy can execute a “super”-query corre-
sponding to the disjunction of all the individual continuous queries. Each tuple
maintains an extra-state that serves to determine which queries should obtain
a result tuple. In order to optimize selections for shared execution, a grouped
filter operator is introduced that indexes predicates over the same attribute.
PSoup extends the mechanisms developed in CACQ by allowing queries to
access historical data and supporting disconnected operation where users can
register queries and return intermittently to retrieve the latest results.

The goal of TelegraphCQ [19, 49] is shared, continuous data flow process-

108

ing with emphasis on adaptability. It is a result of redesign and re-implementa-
tion of Telegraph based on PostgreSQL that also uses the experiences from
CACQ and PSoup.

As a part of TelegraphCQ a flux operator [75, 74] has been designed to pro-
vide partitioned parallelism, adaptive load-balancing, high availability, and
fault tolerance. The first version of flux [75] provides adaptive partitioning on
the fly for optimal load balancing of parallel CQ processing. General parti-
tioning strategies, such as hash partitioning, are encapsulated in the flux oper-
ator. We also have a customized general partitioning and in addition handle
operator-dependent window split strategies customizable with user-defined
partitioning for scalable execution of expensive stream operators.

The main advantage of flux is the adaptivity allowing for data re-partitioning.
One of the motivations is the fact that content-sensitive partitioning schemas
as hashing can cause big data skew in the partitions and therefore need load
balancing. We do not deal with load imbalance problems since the partitioning
schemas we consider (window split with user-defined partitioning and win-
dow distribute with Round Robin), chosen to meet our scientific application
requirements, are content insensitive, i.e. do not cause load imbalance in a
homogeneous cluster environment.

The last version of flux [74] encapsulates fault-tolerance logic that allows
for constructing highly-available parallel data flows. The techniques involves
replicated computations and mechanisms for restoring failured operators states
and lost in-flight data. This work is complementary to the problems of user-
defined stream partitioning presented here.

Queries in TelegraphCQ can be specified on both static and streamed data.
For each stream there is a user-defined wrapper consisting of init, next, and
done functions that are registered to the system. GSDM stream interfaces pro-
vide similar functionality. However, by utilizing object-relational modeling
we put stream sources in a type hierarchy and associate the stream interfaces
with stream types rather than with individual stream source. Thus, we allow
to have more than one stream source using the same stream interface. Further-
more, we provide for multiple interfaces for the same stream type, so that data
can be fed into the system using different communication media.

Modules in Telegraph communicate through the fjords API [56] that sup-
ports both push and pull connections and thereby is able to execute query
plans over a combination of static and streaming data sources. In the current
implementation GSDM does not provide pull-based communication between
working nodes. However, stream query functions can access locally stored sta-
tic data in a pull-based manner through the generic capabilities of the Amos II
query processor.

109

8.1.4 CAPE
Continuous Adaptive Query Processing Engine, CAPE [70, 71], is a pro-
totype system developed at Worcester Polytechnic Institute. D-CAPE [52]
is a distributed stream processing framework based on CAPE and designed
for shared-nothing architecture. The system is designed for highly dynamic
stream environments and employs an optimization framework with heteroge-
neous-grained adaptivity. CAPE focuses on precise results computation by
employing different optimizations and does not consider load shedding and
approximation of results. CAPE utilizes punctuations [86] that are dynamic
meta-data used to model static and dynamic constraints in the stream context.
The punctuations can be exploited to reduce resource requirements and to im-
prove the response time. Stream tuples and punctuations are assumed to be
globally ordered on their timestamps recording their arrival time.

Fine-grained adaptivity is achieved by reactive query operators whose exe-
cution logic can react to the varying stream environment. An adaptive schedul-
ing framework selects one algorithm from a pool of scheduling algorithms that
best fits to the optimization goal defined as a quality of service specification
combining multiple metrics. Online re-optimization and plan migration re-
structure the query plan at runtime including plans with stateful operators. An
adaptive distribution framework allows to balance the workload among a clus-
ter of machines and maximally exploit available CPU and memory resources.
Adaptations at all levels are synchronized and invoked with different frequen-
cies and under different conditions, where the adaption intervals increase from
operator-level to the distributed processing level.

D-CAPE
In D-CAPE a number of CAPE engines perform distributed query process-
ing and one or more Distribution Manager monitor the execution and initiate
re-distribution when needed. Run-time statistics is periodically obtained and
used to assess the processors’ workload and to decide about re-allocation.
A connection manager module communicates with the processors to estab-
lish operators to be executed. A distribution decision maker decides how to
distribute the query plans using a repository of distribution patterns. Exam-
ples of distribution patterns are Round Robin, which tries to fairly assign
equal number of operators to each processor, and grouping distribution, which
tries to minimize network connections by keeping adjacent operators on the
same processor.

D-CAPE monitors query performance and redistributes operators at run-
time across a cluster of processors. The redistribution tries to alleviate the
most-loaded machines. The algorithm that picks operators to be moved gives
preferences to operators that would remove network connections in the over-
all distribution.

110

The components of the distributed GSDM architecture resembles those in
the D-CAPE architecture. The GSDM coordinator functionality is performed
by the CAPE distribution manager in sense of generating distributed plans,
installing plans on the query processing engines, and monitoring the execu-
tion. D-CAPE’s repository of distribution patterns is similar to the GSDM’s
library of distribution templates, which in both projects guide the generation
of distributed plans.

D-CAPE’s distribution patterns allow for various types of parallelism on
inter-query, intra-query, and intra-operator level. Partitioned parallelism, as
used in flux [75] and Volcano [39], is applied to query operators with large
states accumulated at run time, such as multi-way joins. By contrast, we focus
on partitioned parallelism for computationally expensive user-defined opera-
tors (SQFs). Our generic distribution template for partitioned parallelism is
parameterizable with a user-defined partitioning strategy providing for intra-
object parallelism of user-defined operators.

As in D-CAPE the GSDM architecture allows for re-optimizing parallel
plans, though this functionality is not implemented in the current prototype.
The statistics collector at the coordinator periodically gathers information
about the cost of SQFs and communication at working nodes that allows to
assess the workload.

The redistribution opportunities for plans with partitioned parallel execu-
tion of expensive operators in GSDM are somewhat limited in comparison to a
general distribution framework. For example, the operator-level redistribution
[52] assumes that an operator is small enough to fit on one machine. Hence,
our vision about the changes that are appropriate in GSDM’s partitioned par-
allel plans includes replacement of the partitioning strategy or increase of the
degree of parallelism given an ability for additional resource allocation on-
demand. The problems related with the dynamic re-optimization of parallel
partitioned plans are subject of future work.

8.1.5 Distributed Eddies

The work on distributed eddies [85] puts adaptive stream processing in a dis-
tributed environment. An eddy [8] is a tuple router at the center of a data
flow that intercepts all incoming and outgoing tuples between operators in
the query plan. Eddies collect execution statistics used when the routing deci-
sions are made. With distributed eddies each operator in the distributed plan is
augmented with eddy’s functionality, i.e. makes routing decisions and collects
and exchanges statistics with other operators. An analytical model for a dis-
tributed query plan is constructed using a queuing network. Two performance
metrics are defined, the average response time (latency) and maximum data

111

rate. An optimal routing using the queuing network model is computed and
six practical routing policies are designed and evaluated through simulation.

The ideas of box splitting and sliding suggested in Aurora* are used to
dynamically reallocate resources among operators so that more expensive op-
erators can get more resources when needed. As we discuss, box splitting
is a form of parallel processing where data partitioning among the operator
instances is done as a part of the applied tuple routing policy. The policies
are implemented as weighted distribution vectors. Such parallel processing is
similar to our window distribute, but we customize explicitly the data parti-
tioning strategy. Furthermore, we also provide order preservation of the result
stream while distributed eddies do not guarantee that the result tuples would
be ordered at the receiving sink. Finally, the GSDM window split partitioning
of big stream data items does not have analogue.

Future work will investigate the application of the analytical queuing net-
work model for generation and optimization of parallel execution plans in
GSDM. For example, one possibility is to use the model to compute the ex-
pected latency or throughput with different partitioning strategies. However,
several limitations restrain a direct application of the model to parallel execu-
tion plans in GSDM. For example, the assumption about well-known costs of
the operators in the plan does not hold in an extensible system, such as GSDM,
where the costs of user-defined functions over user-defined data types might
be hard to define or obtain from the authors of the code. Hence, we need some
form of test runs of plans for statistics collection purposes.

8.1.6 Tribeca

Tribeca [81] is an extensible stream database system designed to support net-
work traffic analysis. The system uses a data flow query language where users
can explicitly specify how the data flows from one operator to another. The
Tribeca queries have a single source stream and one or more result streams.
Hence, Tribeca is one of the first systems that practically support shared ex-
ecution of analyses over the same input stream. The operators include quali-
fications (filters), projections, aggregates, demultiplexing (demux) and remul-
tiplexing (mux). Demultiplexing partitions a stream into sub-streams based
on the data content similarly to GROUP BY clause in SQL. Remultiplexing
is used to combine the logical sub-streams produced by demux or unrelated
streams of the same data type similarly to union operator in the relational
algebra. It is not reported whether mux takes care to preserve the ordering
of elements. Tribeca also supports windows on streams and a limited form
of join.

Tribeca queries are compiled and optimized using many of the traditional

112

relational optimizations. The queries have pipelined execution and intermedi-
ate results are never unnecessarily materialized.

In GSDM stream partitioning and combining SQFs in the window distribute
strategy are similar to Tribeca’s demux and mux operators. However, Tribeca’s
partitioning is based only on data content and performed for aggregation pur-
poses in a centralized architecture, while in GSDM user-defined partitioning
is used for parallelization. Tribeca has a central architecture and queries are
limited to run over a single data stream. GSDM uses a distributed architecture
for parallel execution and allows for specifying data flow graphs with multiple
input streams.

8.1.7 STREAM
STREAM [10, 59, 6] is a general-purpose prototype of relational-based data
stream management system developed at Stanford University. The project
proposes a declarative query language for continuous queries and focuses
on problems such as adaptivity, approximation, and scheduling in a central
processing architecture.

In [6] an abstract semantics for continuous queries is defined and imple-
mented in CQL, a declarative query language extending SQL with window
specifications from SQL-99. Queries can be specified on both streams and
relations defined using a discrete, ordered time domain. The declarative con-
tinuous queries are compiled into a query plan composed of operators, queues
buffering tuples between operators, and synopses that store the operator state.
The operators belong to one of the classes relation-to-relation, stream-to-rela-
tion, or relation-to-stream. Stream-to-relation operators are based on the con-
cept of a sliding window over a stream and expressed using a window speci-
fication, such as [Rows n] for count-based windows, and [Range t] for
time-based windows.

The system has an adaptive query processing infrastructure that includes
algorithms for adaptive ordering of pipelined filters and pipelined multiway
stream joins [12]. In the area of operator scheduling STREAM uses a chain
scheduling algorithm [9] to minimize runtime memory usage. When the load
exceed the available system resources, STREAM provides approximate an-
swers of continuous queries [59]. If the CPU time is not sufficient, sampling
operators are introduced in the query plan that probabilistically drop elements
and thus save CPU time. In the case of limited memory the approximation can
be achieved by reducing the size of synopses, maintaining a synopsis sample,
using histograms or wavelets, etc.

If the resources of a central system are not sufficient, STREAM addresses
the problem by approximate query answering. In contrast, in GSDM we con-
sider instead parallel execution of expensive stream operators. We do not ad-

113

dress problems of scheduling of many cheap operators or adaptive reordering
of query plans and, thus, the work on STREAM is complementary to ours.

The problems of time management in data stream systems are addressed
in [79]. The query processor of a DSMS usually needs to process elements
in increasing time stamp order to provide semantic correctness of continuous
queries. However, when time stamps are put at multiple distributed stream
sources, the arrival order of the elements at the DSMS may differ from the
increasing application time stamp order. The problem of synchronization of
unordered distributed streams is solved by an input manager that buffers out-
of-order stream elements and presents them ordered to the query processor
through a mechanism, called heartbeats. The heartbeats are as a special kind
of punctuations that guarantee that all the future elements on streams will
have timestamps bigger than the heartbeat. The proposed algorithm for heart-
beats generation models factors influencing the synchronization of distributed
streams, such as application time skew and network latency and can be applied
in future work in GSDM for synchronizing distributed application streams.

8.1.8 Gigascope
Gigascope [27] is a high-speed stream database specialized for IP network
monitoring applications. The Gigascope query language, GSQL, provides tools
to define declarative SQL-like queries and to compose them into a more com-
plex processing chain. It is a pure stream query language, i.e. all inputs and
the output of a GSQL query are data streams. The basic supported stream
operators are selection, join, aggregation, and stream merge. Gigascope is an
extensible systems where user-defined functions can be registered in a func-
tion registry and called in the queries. In this way Gigascope supports high-
performance specialized algorithms for network analysis. Similarly we sup-
port user-defined scientific operations, e.g. FFT, for the space physics stream
applications.

Gigascope has a two-level query architecture optimized for the network
analysis applications. Low level queries (LLQs) access source streams and are
intended for data reduction. High level queries (HLQ) perform more complex
processing. When a GSQL query is defined over source streams, Gigascope
creates one LLQ for every source stream and transforms the original query
into a HLQ executing over the output streams of LLQs.

Furthermore, GSQL allows the user to associate a name with a query, which
is used to access the query result stream from an application or an another
GSQL query. In this way GSQL queries can compose more complex process-
ing chains. In terms of GSDM, the named GSQL queries correspond to de-
fined SQFs without parameters. In GSQL the name of the query identifies
the result stream, but in order to specify a similar query over another source

114

stream, the user must define and name a separate query. The LLQs allow non-
stream parameters to be defined and bound during the query instantiation.

By contrast, SQFs in GSDM are parameterized on the input streams and
eventually other parameters. This allows compact parameterized specification
of complex distributed processing, e.g. an SQF that is a template parameter
is instantiated automatically by the template constructor, which may include
multiple instantiations on different input streams. Due to the parameteriza-
tion, the name of an SQF cannot identify the result stream, but instead system
generated stream identifiers are used.

The GSQL processor generates C and C++ code implementing the queries.
LLQs are linked into the stream manager, while HLQs run as separate processes
and communicate data through shared memory. Depending on the capabilities
of the computer’s network interface card (NIC), some LLQs in Gigascope can
execute inside the NIC. In contrast, the query executor in GSDM runs SQFs
always inside of a working node following a scheduling policy.

Even though the query execution in Gigascope is composed by a stream
manager and a number of high level query processes, the architecture is de-
signed to run on a dual CPU server with shared memory communication be-
tween processes. By contrast, we address distributed and parallel execution
with potentially high degree of parallelism in a shared-nothing architecture.

In order to bound the state of the stateful operators, such as join and ag-
gregation, Gigascope uses ordering properties of the streams and predicates in
the query specification instead of explicit definition of sliding windows com-
monly used in other projects. For example a join window is determined by a
join predicate on the ordering attributes on each of the joined streams. This
approach fits better the specifics of network data streams that often contain
several timestamps and sequence numbers.

The merge operator in Gigascope is similar to our S-Merge operator. In
order to handle the danger of blocking in the absence of tuples on some of the
input streams, Gigascope injects ordering update tokens into the data stream.
Instead, we use a time-out parameter of S-Merge.

8.1.9 StreamGlobe
StreamGlobe [51] is a prototype for distributed stream processing in a peer-
to-peer infrastructure developed at Munich Technical University. XML data
streams are queried through a windowed extention of XQuery supporting
currently selection, projection, aggregation, and user-defined operations. The
main focus is multi-subscription optimization where queries over the same
stream source and with overlapping predicates share computation by sub-
sumption. As a result of sharing the network traffic and computational load
is reduced.

115

The system architecture is implemented based on OGSA where components
are collaborating Grid services. The services are available according to the
capabilities of the peers.

Continuous queries are distributedly executed given that the result streams
of other queries can be used. The queries without overlap with other queries
are executed in a centralized manner. By contrast, GSDM focuses on paral-
lel execution of queries with expensive user-defined functions, which is not
considered in StreamGlobe.

8.1.10 Sensor Networks

A number of DSMSs are oriented to process streams generated by sensor net-
works [16, 56, 28]. Typically, a large number of small-scale sensors, con-
nected through a wireless communication interface, are sensing and transmit-
ting relatively simple data units, such as temperature or pressure measure-
ments. Since the conservation of battery power is a major concern, work in
[89] proposes efficient in-network query processing capable for trading-off
costly communication for cheap local computations. By contrast, scientific
instruments in the GSDM target applications generate enormous amount of
numerical data and we focus on scalable computations through parallelism.

Nile [41] is a prototype of a stream processing engine developed at Pur-
due University. It extends an object-relational DBMS, Predator, with capabil-
ities to process continuous queries over data streams. Similarly to GSDM,
stream data sources are modeled by a stream type and data are retrieved
through stream type interfaces. Queries are specified in an extension of SQL.
The work focuses on providing windowed operators and in particular on the
in-ordered execution of time-based window joins. In contrast to GSDM, the
query processing is performed on a centralized architecture.

More recent work on Nile-PDT [3] introduces an abstract data type to rep-
resent multiple streams in sensor networks. A specialized operator Sensor Net-
work Join (SN-join) produces pairs of matching sensor streams based on some
similarity metric. SN-scan operator attaches the sensor network platform to the
query processing system and provides load shedding by more rare processing
of sensors that do not contribute to the final results of the query oriented to
phenomena detection. The operators provide relevance feedback to their pre-
decessors that guides the predecessors in giving preferences to some of the
input streams. In this way an utility-based data shedding is used to handle
overload situations for centralized processing of sensor network streams. By
contrast, we focus on scalable processing through parallelism and do not ad-
dress data shedding.

116

8.2 Continuous Query Systems
The concept of continuous queries was first introduced in [84] to name queries
that are issued once and run continuously. In this work an incremental evalua-
tion approach is used to avoid repetitive computations over append-only data
sources.

NiagaraCQ [22], developed at University of Wisconsin, supports scalable
continuous query processing over multiple, distributed XML files. It utilizes
grouping of queries based on their similarities, which leads to several bene-
fits, such as shared computations and reduced number of query invocations.
The group optimization is incremental, i.e. new queries are added to existing
query groups without having to regroup already installed queries. Incremental
evaluation of CQs is provided by considering only the changed portion of the
updated XML files.

Continuous query processing of stored data in NiagaraCQ is triggered using
an event detector that detects timer events for timer-based queries and changes
of files for change-based queries. By contrast, on-line stream processing sys-
tems, such as GSDM, typically require an active scheduling mechanism that
schedules continuous queries whenever new data has come and there are avail-
able processing resources, rather than waiting for a triggering event.

NiagaraCQ uses a centralized architecture for shared processing of rela-
tively simple continuous queries over distributed XML files. In contrast GSDM
has a distributed architecture to achieve scalable on-line stream processing in-
volving expensive SQFs.

8.3 Database Technology for Scientific Applications
Scientific applications are characterized by high volumes of data with typi-
cally complex structure and non-trivial operations. Hence, they put require-
ments for database technology that are not met well by the main-stream rela-
tional databases oriented to business application. Therefore, scientific appli-
cations were one of the major driving forces for the development of object-
oriented and object-relational DBMSs. The current ORDBMS allow for better
representation of scientific data by ability to extend the type system with new
base types and complex user-defined types together with user-defined opera-
tions over them.

The work in [87] proposes the idea to extend the concept of a database query
with numerical computations over scientific data, and the query optimizer with
transformation and implementation rules applicable to these operations. The
focal point are the advantages that the algebraic database query optimization
can provide to the scientific computations. In contrast to our work, the paper

117

does not consider on-line stream processing and assumes centralized architec-
ture.

The work points out important observations concerning the requirements
of scientific applications for database query processing. For instance, more
diverse implementation techniques are available for scientific computations
optimization criteria must be extended with numerical accuracy and stability.
In scientific computations CPU costs are much more varied than in relational
queries and often dominate the cost of specific operators (opposite to I/O cost
in traditional RDBMS). Therefore, the extensibility of the system is very im-
portant so that the optimizer can utilize user-defined transformation rules and
cost models. We go a step further by providing a generic mechanism to ex-
tend the system with user-defined partitioning utilizing semantics of scientific
computations for scalable parallel execution.

8.4 Parallel DBMS
Data partitioning strategies for parallel databases [64] are well investigated for
relational databases. Strategies, such as Round Robin and hash partitioning
can be used as parameters of our window distribute strategy. What makes our
stream partitioning strategies different is that the processing must preserve
ordering of the stream. We provide this property by special stream operators
synchronizing the parallel result streams in the combine phase.

The idea to separate parallel functionality from data partitioning seman-
tics by customized partitioning functions is similar to Volcano’s [39] support
functions parameterizing the exchange operator. In contrast, we have pairs of
partition and combine operators where the combine operator preserves the
stream order. While window distribute parameterized by, e.g., Round Robin is
similar to the exchange operator, window split is novel.

RiverDQ [7] proposes a content-insensitive partitioning for load balanc-
ing in heterogeneous execution environment. Currently, we focus on homo-
geneous environments. Future work will investigate the possibilities to apply
RiverDQ ideas in order to use GSDM on heterogeneous environments.

Data partitioning problems have been addressed in object-relational DBMSs
with the purpose to achieve efficient parallel execution of UDFs while pre-
serving their semantics [46, 60]. The work in [60] proposes a specification of
UDFs that allows generic parallelization and classifies the partitioning strate-
gies for user-defined operations. It presents the generic pattern of partition,
compute, and combine phases for UDFs. However, the idea to specify generic
and modular data flow distribution patterns through templates is to the best of
our knowledge unique.

Even though the work in [60] is based upon the stream processing paradigm

118

for query execution, it differs from our work in the assumption that the data
are stored on disk and have limited size. This assumption allows for streaming
the data from the disk in different order as appropriate for the operations per-
formed. In contrast, the on-line stream processing, including a parallel one,
must conform to the ordering of the stream and cannot afford re-ordering for
the operator purposes since it is a blocking operation. Our window split for
parallel execution of a UDF over a single logical window does not have ana-
logue in [60].

119

9. Conclusions and Future Work

In this Thesis we presented the design, implementation, and evaluation of the
GSDM prototype of an object-relational data stream management system for
scientific applications.

The system provides users-scientist with tools to express complex analyses
of streams, generated by instruments and simulators, as continuous queries
composed of user-defined operations. A distributed and parallel architecture
provides for scalable execution of continuous queries with computationally
expensive operations over high volume streams.

Using a generic framework the users can specify scalable parameterized
distributed execution strategies by the means of data flow distribution tem-
plates. Several common distribution patterns are available through a built-in
library of templates. Using the library we define a generic template for parti-
tioned parallelism, PCC.

We defined two overall parameterizable parallel strategies: the so-called
window split that divides a stream data items (logical window) into sub-win-
dows to be processed in parallel by the partitions, and window distribute that
distributes several logical windows among parallel partitions. Window split
provides for intra-object parallel execution of user-defined functions, while
window distribute provides for inter-object parallelism. Both overall strategies
are customizable with different partitioning methods in order to instantiate
a particular stream partitioning strategy. Through the customization window
split has knowledge about the semantics of a user-defined function to be par-
allelized for the purposes of more efficient execution. Our experiments show
that window split with user-defined partitioning of windows utilizing the se-
mantics of the functions can achieve higher total throughput of the system in
scenarios when expensive operations are executed on limited computational
resources.

Although the problem for parallelization of user-defined functions has been
addressed in general in the literature about object-relational DBMSs, we are
the first to provide a generic mechanism for implementation of such parallel
strategies, as well as an experimental evaluation investigating the trade-offs of
the two strategies.

We developed a basic optimization framework to provide parallel trans-
parency to the user. Utilizing meta-data about valid partitioning strategies for

121

user-defined functions, the continuous query optimizer enumerates parallel
plans and selects an optimized one using statistics collected from trial execu-
tions.

We investigated the requirements for implementation of GSDM in a Grid-
based environment.

GSDM is the first reported fully functional prototype for parallel process-
ing of continuous queries. Leveraging upon an object-relational model, we
model numerical data from scientific instruments as user-defined types and
implement operations over them as user-defined functions. Types of stream
data sources are organized in a hierarchy and inherit properties form a generic
stream type. As part of the prototype implementation many software mod-
ules have been designed, implemented, evaluated, and improved to a level of
functionality and performance that is acceptable with respect to the overall
system performance and functionality. Among these are the continuous query
engine based on data-driven data flow paradigm, compiler of high-level CQ
specifications into distributed execution plans, stream interfaces, inter-GSDM
communication primitives, statistics collector for monitoring the execution,
and protocols for installation, activation and termination of the CQ execu-
tion in distributed environment. Our experiments with real scientific streams
on a shared-nothing architecture show that in order for a distributed stream
processing to be efficient, not only stream operators and scheduling inside of
a processing node, but also stream communication between nodes, need to be
carefully designed and implemented.

Although in the work on the GSDM prototype we focus on the specific
needs of scientific applications, the system can be extended for other applica-
tions with expensive operations over streams with complex and high volume
content. For example, analysis of MPEG streams can be specified as CQ given
interface implementation for this type of streams and operation implementa-
tion to be plugged into the system.

The work on the GSDM prototype opens a number of interesting directions
for future work. In the following we will enumerate some of them.

Shared execution of continuous queries
A number of work on continuous queries emphasize the need for shared ex-
ecution of long-running CQ for the purposes of scalability and overall cost-
efficiency of the systems. The proposed solutions [57, 22] utilize similarities
in queries specifications and create shared execution plans by grouping pred-
icates on a common attribute and evaluating simultaneously the predicates
in such groups. In the presence of expensive user-defined functions we can
expect even bigger benefit from shared execution of similar queries for the
overall system performance. It should be investigated how to share plans that
are graphs of user-defined functions.

122

Adaptive CQ Processing
Adaptive query processing (AQP) [42, 11] interleaves query optimization and
execution, possibly multiple times over the running time of the query, in order
to adapt the processing to the changing execution conditions.

Long-running queries often experience during their life time changes in
the execution environment and characteristics of input streams. Hence, adap-
tive execution of CQs is an important desirable property of CQ processing.
A variety of adaptation techniques appeared recently in the literature span-
ning from the operator-level adaptation, plan migration to another execution
plan, changing the operator scheduling policy, or adapting distributed plans by
re-distributing the load among the resources currently available [71, 12, 88].

Future work will investigate possibilities for adaptation of parallel execu-
tion plans, such as changing the degree of parallelism and replacing one parti-
tioning strategy with another. Such adaptation can response to changes in the
available resources assuming relatively stable rates of streams generated by
scientific instruments.

Integration with Grid Infrastructure
The ability of computational grids to provide computational resources on-
demand can be very beneficial for GSDM running expensive CQs with vary-
ing resource requirements. The current development of Grid middleware does
not provide the resource allocation functionality as needed for the long-running
parallel GSDM jobs with guaranteed start-up time. Future work on this prob-
lem depends on the future developments of the Grid middleware.

CQ Optimization
The current optimization framework uses exhaustive parallel plan enumera-
tion for an expensive SQF. To avoid generation and evaluation of possibly
very big spaces of data flow graphs, the functionality of the optimizer needs
to be enhanced with heuristics such as random walk or binary search of the
search space.

Furthermore, methods for optimizing of CQs composed out of several SQFs
have to be developed and evaluated. For example, investigating when it is
worth to encapsulate a pipeline of two SQFs into one large SQF to be executed
in parallel and when it is better to parallelize each of them separately, possible
by using different degrees of parallelism and partitioning strategies.

Finally, the optimality metric used to select the optimized plan can be fur-
ther developed. The metric we used in the presented experiments estimates
the total throughput of the system through the maximum utilization time of
the nodes. In order to address the needs of applications with different quality
of service requirements, we plan as a future work to evaluate the distributed

123

strategies by other metrics, such as latency and result precision, as well as to
combine several metrics for multi-criteria optimization.

124

Summary in Swedish

Skalbar sökning av strömmande mätdata
Vetenskapliga instrument som satelliter, digitala antenner, digitala radiote-
leskop och simulatorer, genererar mycket stora volymer data var innehåll kan
vara komplext. Dessa instrument producerar hela tiden data i form av ord-
nade och kontinuerliga sekvenser av dataelement, s.k. dataströmmar. För att
kunna undersöka innehåll och upptäcka intressanta mönster i sådana datas-
trömmar behöver forskare utföra analyser av innehållet i dessa. Analyserna
innefattar avancerade och dyrbara numeriska beräkningar. Dataströmmarna är
i regel oändliga, och kan därför aldrig lagras i sin helhet. I stället görs bear-
betningarna över ändliga delar av strömmarna som flyttas framåt hela tiden,
vilka vi kallar logiska fönster. För att få hög precision i beräkningarna är det
ofta önskvärt att ha så stora logiska fönster som möjligt.

Databashanterare (eng. Database Management Systems, DBMS) har under
lång tid använts för hantering av stora mängder data. För att lätt och snabbt
kunna hitta data i stora databaser tillhandahåller databashanteraren ett fråge-
språk vilket är ett högnivåspråk. Frågespråk tillåter användaren att lätt söka
efter data i stora databaser utan att ange i detalj hur sökningen skall gå till.
Emellertid är existerande databashanterare inte väl lämpade för de specifika
krav som uppkommer vid bearbetning av frågor över strömmade data. Frågor
över dataströmmar kallas kontinuerliga frågor eftersom de körs kontinuerligt
över en tidsperiod under vilken de hela tiden returnerar nya frågeresultat all-
teftersom nya data anländer. Kontinuerliga frågor skiljer sig från vanliga data-
basfrågor där användaren skickar en fråga åt gången till databashanteraren
som sedan omedelbart returnerar ett ändligt svar från varje begärd fråga innan
nästa fråga bearbetas. När användare vill ha svar på en kontinuerlig fråga star-
tas en resultatdataström som inte avslutas förrän användaren begärt att frågan
skall stoppas.

I denna avhandling presenteras en ny ansats att utveckla databastekniker för
tillämpningar som bearbetar stora dataströmmar innehållande dyrbara beräk-
ningar. Vi har gjort detta genom konstruera ett utbyggbart system för generell
hantering av stora dataströmmar. Vi kallar systemet GSDM (Grid Stream Data
Manager). GSDM gör det lätt för användare att uttrycka och effektivt utföra
omfattande vetenskapliga beräkningar med kontinuerliga frågor över ström-
made data. I GSDM modelleras vetenskapliga data i termer av tillämpning-

125

sorienterade dataobjekt och funktioner över dessa objekt. GSDM är utformat
som ett distribuerat system där olika delbearbetningar kan köras samtidigt på
många olika datorer som kommunicerar med varandra via ett kommunika-
tionsnätverk. Detta möjliggör skalbarhet för både stora datavolymer och kom-
plicerade beräkningar.

GSDM ger användaren ett allmänt ramverk för att specificera strategier för
parallell körning av kontinuerliga frågor över strömmar. En strategi uttrycker
hur data och program delas upp mellan datorerna i det distribuerade systemet.
Strategierna uttrycks som dataflödesdistributionsmallar eller bara mallar. Ett
inbyggt bibliotek av mallar i GSDM tillhandahåller byggstenar för att bygga
mer komplicerade distribuerade strategier. Vi definierar en generell mall för ett
vanligt sätt att parallellt utföra dyrbara bearbetningar, kallad PCC (Partition-
Compute-Combine). Med PCC definierar vi två olika strategier för att dela
upp strömmar för skalbara, parallella och komplexa beräkningar på olika da-
torer i ett nätverk:

I den första strategin, som kallas fönsteruppdelning, kan användaren speci-
ficera hur fönstren i en ström skall delas upp i mindre fönster innan den paral-
lella bearbetningen utförs på olika datorer. Beroende på den bearbetning man
vill göra i en fråga kan det vara betydligt billigare att parallellt bearbeta min-
dre fönster än att göra motsvarade bearbetning över de stora originalfönstren.
Hur man gör sådan uppdelning av strömmar beror på tillämpningen. Använ-
daren tillhandahåller därför tillämpningsberoende funktioner för att dela upp
stora fönster i mindre. I våra experiment har vi tillämpat fönsteruppdelning
på distribuerad transformering av signaler med FFT (Fast Fourier Transform)
och visat att fönsteruppdelning för denna tillämpning ger effektiva parallella
beräkningar.

Den andra strategin, fönsterdistribution, sänder hela fönster till olika da-
torer för parallell bearbetning. I detta fall behövs ingen tillämpningsberoende
uppdelning av fönstren utan hela fönster bearbetas parallellt av olika datorer.
Fönsterdistribution påminner om strategier som används i distribuerade data-
baser. Utmärkande för fönsterdistribution i GSDM är att systemet måste ta
hänsyn till att strömmarna är kontinuerliga sekvenser av obegränsad längd
medan konventionella databaser arbetar med ändliga mängder där ordningen
inte är viktig. Det finns flera sätt att distribuera fönster till olika datorer. I
systemet kan egna distributionsfunktioner definieras.

Vi är först med att utveckla en generell och utbyggbar mekanism för skalbar
exekvering av strömmade frågor. I avhandlingen undersöks för- och nackdelar
med de olika strategierna för parallellisering. Det visar sig att den optimala
strategin bl.a. beror av tillgängliga beräkningsresurser (dvs. antal datorer som
deltar i beräkningen). Baserat på dessa resultat har vi utvecklat en optimerande
mall. Med denna mall väljer systemet automatiskt vilken strategi som skall
användas för parallellisering en kontinuerlig fråga och hur många datorer som

126

skall användas. Detta val sker genom att systematiskt variera strategierna och
mäta vilken som är bäst för en given kontinuerlig fråga.

GSDM är ett fullt fungerande system för parallell bearbetning av kontin-
uerliga frågor över dataströmmar. GSDM innehåller följande komponenter:
- En generell motor för utförande av kontinuerliga frågor baserade på mal-
lar, - En kompilator för kontinuerliga frågor som genererar exekveringsplaner
som tolkas och utförs av många kommunicerande motorer. - Programmerar-
gränssnitt för start och stopp av kontinuerliga frågor. - Ett generellt gränssitt
för att koppla upp olika sorters dataströmmar med systemet. - Övervakning av
hur de kontinuerliga frågorna utförs. - Dynamisk uppstart och nedkoppling av
GSDM noder.

Vi har gjort experiment med GSDM med verkliga vetenskapliga data från
digitala radioteleskop. Experimenten gjordes i ett distribuerat gridbaserat da-
torkluster där alla noder arbetar oberoende av varandra och inte delar data.
Våra experiment visar vikten av att ha en skalbar och distribuerad arkitektur
med effektiv kommunikation mellan noderna för att hantera strömmar med
stor datavolym och med avancerade beräkningar över stora fönster.

127

Acknowledgements

First and foremost I would like to thank my advisor Professor Tore Risch for
giving me the opportunity for doctoral studies under his supervision. I am
grateful to him for sharing his knowledge with me and being always eager to
discuss new ideas and research problems. His enthusiastic attitude and high
requirements have always stimulated me to learn more, to do better and scal-
able. I deeply appreciate his willingness to help and I am very grateful for his
valuable suggestions and comments during the writing of the thesis.

I am in debt to my fellow graduate student Timour Katchaounov who intro-
duced me to Tore while I was seeking for a PhD position. Timour was always
ready to answer my questions and give an advice. Thanks to the current and
former members of the UDBL lab, and especially to Ruslan Fomkin, Johan
Petrini, and Erik Zeitler for helping and sharing with me difficulties and glad-
ness.

I would like to thank our collaborators from the LOIS project Professor Bo
Thidé, Walter Puccio, Roger Karlsson, Jan Bergman, Lars Daldorff, and the
other members of the team, for providing scientific data and discussing with
us interesting application problems.

My appreciation to Datalogi leaders, and to Marianne Ahrne and Anne-
Marie Nilsson for their help with the administrative and financial issues. Spe-
cial thanks to Maya Neytcheva for being both a friend and an advisor in the
parallel algorithms issues. I am grateful to Ivan Christoff for being supportive
and cheering me up. Kostis Sagonas has helped me a lot with his ability to
point my attention to the right questions. My grateful thoughts to Anna Sand-
ström, Elena Fersman, Pritha Mahata, Rafal Somla, Leonid Mokrushin, Pavel
Krćal, and other colleagues at the IT Department for making the time of my
studies more enjoyable.

I am grateful to Gunilla Klaar and Eva Enefjord who were very helpful
with all the administrative and practical problems when I started my studies at
the Department of Information Science. There I was lucky to meet and make
friends with Brahim Hnich, Zeynep Kiziltan, and Monica Tavanti, who gave
an international perspective to my view of life. We shared wonderful moments
and I am grateful for their friendship and support.

I am grateful to my sister Pavlina, who embolden me to study computer
science, and her family for their love and support. Special thanks to my friend

129

Zoya Dimitrova, who encouraged me to continue with studies for doctoral
degree, and to my doctors for body and soul Mariana Angelcheva, and Ra-
dostina Miteva for their endless support, understanding, and encouragement.
I am also grateful to Natalia Ivanova, Nasko and Olga Terzievi, Nina and
Volodya Grantcharovi, Elli Bouakaz, Enny Sundell, Anna Velikova, and Sil-
via Stefanova for creating a bulgarian home atmosphere. I am forever grateful
to Violeta Danova, who was both a friend and as a mother for me during the
most difficult times, and helped me a lot with taking care of my son. Special
thanks to Kester Simm for his love, care, and support, and for calming me
down during the last stressful months. Whatever the future, I am happy we
met.

This thesis is dedicated to my parents, who have always encouraged me to
study, and to my son Yordan for his generous patience to have an always busy
mother.

This work was funded by the Swedish Agency for Innovation Systems
(VINNOVA) under contract #2001-06074.

130

References

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, et al.
The Design of the Borealis Stream Processing Engine. In Second Biennial
Conference on Innovative Data Systems Research (CIDR 2005), Asilomar,
CA, January 2005.

[2] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, et al. Au-
rora: a new model and architecture for data stream management. VLDB J.,
12(2):120–139, 2003.

[3] M.H. Ali, Walid G. Aref, Raja Bose, A.K. Elmagarmid, et al. NILE-PDT: A
phenomenon detection and tracking framework for data stream management
systems. In VLDB Conference, 2005.

[4] M. Nedim Alpdemir, Arijit Mukherjee, Norman W. Paton, Paul Watson, et al.
Service-based distributed querying on the grid. In First International Confer-
ence on Service-Oriented Computing - ICSOC, pages 467–482, 2003.

[5] Amos II user’s manual, http://user.it.uu.se/ udbl/amos/doc/amos_users_guide.html.

[6] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A language for con-
tinuous queries over streams and relations. In DBPL, pages 1–19, 2003.

[7] Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E. Culler, et al.
Cluster I/O with River: Making the fast case common. In IOPADS, pages 10–
22, 1999.

[8] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query
processing. In SIGMOD Conference, pages 261–272, 2000.

[9] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Dilys
Thomas. Operator scheduling in data stream systems. VLDB J., 13(4):333–
353, 2004.

[10] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In PODS, pages 1–16,
2002.

[11] S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In
CIDR, 2005.

131

[12] Shivnath Babu, Rajeev Motwani, Kamesh Munadata, Itaru Nishizawa, and Jen-
nifer Widom. Adaptive ordering of pipelined stream filters. In SIGMOD Con-
ference, pages 407–418, 2004.

[13] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting k-
constraints to reduce memory overhead in continuous queries over data streams.
ACM Trans. Database Syst., 29(3):545–580, 2004.

[14] Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur Çetintemel, et al.
Retrospective on Aurora. The VLDB Journal, 13(4):370–383, 2004.

[15] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-
braker. Fault-tolerance in the Borealis distributed stream processing system. In
SIGMOD Conference, pages 13–24, 2005.

[16] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems. In 2nd
Intl. Conf. on Mobile Data Management, 2001.

[17] Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, et al.
Monitoring streams - a new class of data management applications. In VLDB,
pages 215–226, 2002.

[18] Donald Carney, Ugur Çetintemel, Alex Rasin, Stanley B. Zdonik, Mitch Cher-
niack, and Michael Stonebraker. Operator scheduling in a data stream manager.
In VLDB, pages 838–849, 2003.

[19] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Franklin,
Joseph M. Hellerstein, et al. TelegraphCQ: Continuous dataflow processing for
an uncertain world. In CIDR, 2003.

[20] Sirish Chandrasekaran and Michael J. Franklin. PSoup: a system for streaming
queries over streaming data. VLDB J., 12(2):140–156, 2003.

[21] N. Chaudhry, K. Shaw, and M. Abdelguerfi (ed.). Stream Data Management.
Springer, 2005.

[22] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A scal-
able continuous query system for internet databases. In SIGMOD Conference,
pages 379–390, 2000.

[23] Liang Chen and Gagan Agrawal. Resource allocation in a middleware for
streaming data. In Proceedings of the 2nd workshop on Middleware for
grid computing, pages 5–10, 2004.

[24] Liang Chen, Kolagatla Reddy, and Gagan Agrawal. GATES: A grid-based mid-
dleware for processing distributed data streams. In HPDC, pages 192–201,
2004.

132

[25] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney,
et al. Scalable distributed stream processing. In CIDR, 2003.

[26] E. F. Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, 13(6):377–387, 1970.

[27] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: A stream database for network applications. In
SIGMOD Conference, 2003.

[28] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph M. Hellerstein, and
Wei Hong. Model-driven data acquisition in sensor networks. In VLDB, pages
588–599, 2004.

[29] David J. DeWitt and Jim Gray. Parallel database systems: The future of high
performance database systems. Communications of the ACM, 35(6):85–98,
1992.

[30] R.G.G. Cattell (ed.). The Object Database Standard: ODMG-99. Morgan
Kaufmann, 1999.

[31] Andrew Eisenberg, Jim Melton, Krishna G. Kulkarni, Jan-Eike Michels, and
Fred Zemke. SQL: 2003 has been published. SIGMOD Record, 33(1):119–
126, 2004.

[32] Ian T. Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid ser-
vices for distributed system integration. IEEE Computer, 35(6):37–46, 2002.

[33] Ian T. Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid -
enabling scalable virtual organizations. Int. J. Supercomputer Applications,
2001.

[34] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Sys-
tems. The Complete Book. Prentice Hall, Inc., 2002.

[35] The Globus project, http://www.globus.org.

[36] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. SIG-
MOD Record, 32(2):5–14, 2003.

[37] Anastasios Gounaris, Norman W. Paton, Rizos Sakellariou, and Alvaro A. A.
Fernandes. Adaptive query processing and the grid: Opportunities and chal-
lenges. In DEXA, pages 506–510, 2004.

[38] Anastasios Gounaris, Rizos Sakellariou, Norman W. Paton, and Alvaro A. A.
Fernandes. Resource scheduling for parallel query processing on computational
grids. In 5th International Workshop on Grid Computing (GRID 2004),
pages 396–401, 2004.

133

[39] Goetz Graefe. Volcano - an extensible and parallel query evaluation system.
IEEE Trans. Knowl. Data Eng., 6(1):120–135, 1994.

[40] Peter M.D. Grey, Larry Kerschberg, Peter J.H. King, and Alexandra Poulovas-
silis (Eds.). The Functional Approach to Data Management - Modeling,
Analyzing and Integrating Heterogeneous Data. Springer, 2003.

[41] Moustafa A. Hammad, Mohamed F. Mokbel, M. H. Ali, Walid G. Aref, et al.
Nile: A query processing engine for data streams. In ICDE, page 851, 2004.

[42] J. Hellerstein, M. Franklin, et al. Adaptive query processing: Technology in
evolution. IEEE Data Eng. Bull.

[43] C. Kesselman (eds.) I. Foster. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 1999.

[44] Milena Ivanova and Tore Risch. Customizable parallel execution of scientific
stream queries. In VLDB, 2005.

[45] Milena Ivanova and Tore Risch. Customizable parallel execution of scientific
stream queries. Techical Report 2005-012 from the Dept. of Information
Technology, Uppsala University, Sweden, April 2005.

[46] Michael Jaedicke and Bernhard Mitschang. On parallel processing of aggregate
and scalar functions in object-relational dbms. In SIGMOD Conference, pages
379–389, 1998.

[47] Christian S. Jensen, James Clifford, Shashi K. Gadia, Arie Segev, and Richard T.
Snodgrass. A glossary of temporal database concepts. SIGMOD Record,
21(3):35–43, 1992.

[48] Milena Koparanova and Tore Risch. High-performance grid stream database
manager for scientific data. In European Across Grids Conference, pages
86–92, 2003.

[49] Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol Desh-
pande, et al. TelegraphCQ: An architectural status report. IEEE Data Eng.
Bull., 26(1):11–18, 2003.

[50] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction
to Parallel Computing. The Benjamin/Cummings Publishing Company, Inc.,
1994.

[51] Richard Kuntschke, Bernhard Stegmaier, Alfons Kemper, and Angelika Reiser.
StreamGlobe: Processing and sharing data streams in grid-based P2P infrastruc-
tures. In VLDB Conference, 2005.

134

[52] Bin Liu, Yali Zhu, Mariana Jbantova, Bradley Momberger, and Elke A. Run-
densteiner. A dynamically adaptive distributed system for processing complex
continuous queries. In VLDB, 2005.

[53] Ling Liu, Calton Pu, and Wei Tang. Continual queries for internet scale event-
driven information delivery. IEEE Trans. Knowl. Data Eng., 11(4):610–628,
1999.

[54] LOFAR, http://www.lofar.nl/.

[55] LOIS - the LOFAR outrigger in Scandinavia, http://www.lois-space.net/.

[56] Samuel Madden and Michael J. Franklin. Fjording the stream: An architecture
for queries over streaming sensor data. In ICDE, pages 555–566, 2002.

[57] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein, and Vijayshankar Ra-
man. Continuously adaptive continuous queries over streams. In SIGMOD
Conference, pages 49–60, 2002.

[58] Jim Melton. Advanced SQL:1999. Understanding Object-Relational and
Other Advanced Features. Morgan Kaufmann Publishers, Inc., 2003.

[59] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, et al. Query
processing, approximation, and resource management in a data stream manage-
ment system. In CIDR, 2003.

[60] Kenneth W. Ng and Richard R. Muntz. Parallelizing user-defined functions in
distributed object-relational DBMS. In IDEAS, pages 442–445, 1999.

[61] NORDUGRID: Nordic testbed for wide area computing and data handling,
http://www.nordugrid.org/.

[62] Open Grid Services Architecture - Data Access and Integration,
http://www.ogsadai.org.uk/.

[63] Michael A. Olson, Wei Hong, Michael Ubell, and Michael Stonebraker. Query
processing in a parallel object-relational database system. IEEE Data Engi-
neering Bulletin, 19(4):3–10, 1996.

[64] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems. Prentice Hall, 1999.

[65] Norman W. Paton. Databases and the grid: Jdbc in wsdl, or something alto-
gether different? In First International IFIP Conference on Semantics of a
Networked World (ICSNW), pages 1–13, 2004.

[66] Relational grid monitoring architecture, http://www.r-gma.org.

135

[67] Tore Risch and Vanja Josifovski. Distributed data integration by object-oriented
mediator servers. Concurrency and Computation: Practice and Experi-
ence, 13(11):933–953, 2001.

[68] Tore Risch, Vanja Josifovski, and Timour Katchaounov. Functional Data In-
tegration in a Distributed Mediator System, pages 211–238. In [40], 2003.

[69] Tore Risch, Milena Koparanova, and Bo Thidé. High-performance grid database
manager for scientific data. In WDAS, pages 99–106, 2002.

[70] Elke A. Rundensteiner, Luping Ding, Timothy Sutherland, Yali Zhu, Brad Pi-
elech, and Nishant Mehta. Cape: Continuous query engine with heterogeneous-
grained adaptivity. In VLDB, pages 1353–1356, 2004.

[71] Elke A. Rundensteiner, Luping Ding, Yali Zhu, Timothy Sutherland, and Brad-
ford Pielech. CAPE: A Constraint-Aware Adaptive Stream Processing En-
gine, pages 83–111. In [21], 2005.

[72] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. SEQ: A model for
sequence databases. In ICDE, pages 232–239, 1995.

[73] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. The design and im-
plementation of a sequence database system. In VLDB, pages 99–110, 1996.

[74] Mehul A. Shah, Joseph M. Hellerstein, and Eric A. Brewer. Highly-available,
fault-tolerant, parallel dataflows. In SIGMOD Conference, pages 827–838,
2004.

[75] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chandrasekaran, and Michael J.
Franklin. Flux: An adaptive partitioning operator for continuous query systems.
In ICDE, pages 25–36, 2003.

[76] David W. Shipman. The functional data model and the data language DAPLEX.
ACM Trans. Database Syst., 6(1):140–173, 1981.

[77] Jim Smith, Anastasios Gounaris, Paul Watson, Norman W. Paton, et al. Distrib-
uted query processing on the grid. In Third International Workshop on Grid
Computing, 2002.

[78] Richard T. Snodgrass and Ilsoo Ahn. Temporal databases. IEEE Computer,
19(9):35–42, 1986.

[79] Utkarsh Srivastava and Jennifer Widom. Flexible time management in data
stream systems. In PODS, pages 263–274, 2004.

[80] Michael Stonebraker and Paul Brown. Object-Relational DBMSs. Morgan
Kaufmann Publishers, Inc., 1999.

136

[81] Mark Sullivan and Andrew Heybey. Tribeca: A system for managing large data-
bases of network traffic. In USENIX, pages 13–24, 1998.

[82] Alexander S. Szalay, Jim Gray, Ani Thakar, Peter Z. Kunszt, et al. The SDSS
skyserver: public access to the sloan digital sky server data. In SIGMOD Con-
ference, pages 570–581, 2002.

[83] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and
Michael Stonebraker. Load shedding in a data stream manager. In VLDB, pages
309–320, 2003.

[84] Douglas B. Terry, David Goldberg, David Nichols, and Brian M. Oki. Con-
tinuous queries over append-only databases. In SIGMOD Conference, pages
321–330, 1992.

[85] Feng Tian and David J. DeWitt. Tuple routing strategies for distributed eddies.
In VLDB, pages 333–344, 2003.

[86] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting
punctuation semantics in continuous data streams. IEEE Trans. Knowl. Data
Eng., 15(3):555–568, 2003.

[87] Richard H. Wolniewicz and Goetz Graefe. Algebraic optimization of compu-
tations over scientific databases. In 19th International Conference on Very
Large Data Bases, pages 13–24, 1993.

[88] Ying Xing, Stanley B. Zdonik, and Jeong-Hyon Hwang. Dynamic load distrib-
ution in the Borealis stream processor. In ICDE, pages 791–802, 2005.

[89] Yong Yao and Johannes Gehrke. The Cougar approach to in-network query
processing in sensor networks. SIGMOD Record, 31(3):9–18, 2002.

137

	Introduction
	Motivation
	Database Management Systems
	Distributed and Parallel DBMS
	Parallel Database Architectures
	Types of Parallelism for DBMS

	Data Stream Management Systems (DSMSs)
	Summary of Contributions and Thesis Outline

	GSDM System Architecture
	Scenario
	Query Specification and Execution
	GSDM Coordinator
	GSDM Working Nodes
	CQ Life Cycle
	Compilation
	Execution
	Deactivation

	An Object-Relational Stream Data Model and Query Language
	Amos II Data Model and Query Language
	Stream Data Model
	Window Functions
	Stream Types
	Registering Stream Interfaces

	Query Language
	Defining Stream Query Functions
	SQF Discussion
	Transforming SQFs
	Combining SQFs

	Data Flow Distribution Templates
	Central Execution
	Partitioning
	Parallel Execution
	Pipelined Execution
	Partition-Compute-Combine (PCC)
	Compositions of Data Flow Graphs

	Scalable Execution Strategies for Expensive CQ
	Window Split and Window Distribute
	Parallel Strategies Implementation in GSDM
	Window Split Implementation
	Window Distribute Implementation

	Experimental Results
	Performance Metrics
	FFT Experiments
	Analysis

	Definition and Management of Continuous Queries
	Meta-data for CQs
	Data Flow Graph Definition
	Templates Implementation
	Central Execution
	Partitioning
	Parallel execution
	Pipelined execution

	CQ Management
	CQ Compilation
	Mapping
	Installation
	Activation
	Deactivation

	Monitoring Continuous Query Execution
	Data Flow Optimization
	Estimating Plan Costs
	Plan Enumeration

	Execution of Continuous Queries
	SQF Execution
	Operator Structure
	Execute operator
	Implementation of S-Merge SQF
	Implementation of OS-Join SQF

	Inter-GSDM communication
	Scheduling
	Scheduling periods
	SQF Scheduling
	Scheduling of System Tasks
	Effects of scheduling on system performance

	Activation and Deactivation
	Impact of Marshaling

	Continuous Queries in a Computational Grid Environment
	Overview of Grids
	Integrating Databases and Grid
	GSDM as an Application for Computational Grids
	GSDM Requirements for Grids
	GSDM Resource Allocation
	Multiple Grid Resources
	Grid Requirements for Applications

	Related Projects on Grid
	OGSA-DAI
	OGSA-DQP
	GATES
	R-GMA

	Related work
	Data Stream Management Systems
	Aurora
	Aurora*, Medusa, and Borealis
	Telegraph and TelegraphCQ
	CAPE
	Distributed Eddies
	Tribeca
	STREAM
	Gigascope
	StreamGlobe
	Sensor Networks

	Continuous Query Systems
	Database Technology for Scientific Applications
	Parallel DBMS

	Conclusions and Future Work
	References

