
1

 Uppsala Master's Theses in
Computer Science 304
2006-09-14
ISSN 1100-1836

Wrapping Persistent ROOT Framework Objects in an

Object-Oriented Mediator System

Valentas Kurauskas, Matas Šileikis1

Information Technology
Computer Science Department

Uppsala University
Box 337

S-751 05 Uppsala
Sweden

Abstract

In this thesis we develop a wrapper for scientific data stored in ROOT
files using Amos II, a functional DBMS. ROOT is an object-oriented
framework for representing high-energy physics data. We investigate
possible ways to represent ROOT C++ objects in a functional data model
and propose a simple and fast mapping method. We define a schema to
represent ROOT object storage containers, objects and their meta-data
for Amos II users. The wrapper implements interface functions for data
retrieval using the ROOT library. Amos II users can define SQL-like
queries over data stored in ROOT files without dealing with levels of
abstraction below Amos II. Athena is the common control framework for
simulation, reconstruction, and analysis of scientific data collected in
ATLAS experiment carried out in CERN. We investigate what is
required to manage Analysis Object Data (AOD) files created using
Athena. As a result, we show that our wrapper is capable of efficiently
reading AOD files without having the ATLAS Athena framework
installed.

Supervisor: Ruslan Fomkin
Examiner: prof. Tore Risch

1 The authors can be contacted by email

2

Contents

1 Introduction .. 4
2 Example queries ... 6
3 Background .. 11

3.1 Scientific data management... 11
3.2 Analysis Object Data (AOD) .. 12

3.2.1 Event Data Model .. 12
3.2.2 Tracks, Events and Particles .. 12
3.2.3 Object persistence .. 13
3.2.4 Storage of AOD data.. 14

3.3 ROOT .. 16
3.3.1 Overview.. 16
3.3.2 ROOT storage .. 16
3.3.3 TTree.. 17
3.3.4 Reflection... 18
3.3.5 Why access AOD using ROOT?.. 19

3.4 Wrapper and Mediators ... 20
4 The Amos II system ... 21

4.1 Overview of Amos II features ... 21
4.2 Functional data model ... 21

4.2.1 Types.. 21
4.2.2 Objects ... 22
4.2.3 Functions.. 22

5 System Architecture ... 24
5.1 Layers of ROOT Object Wrapper ... 24
5.2 Meta-data... 25

5.2.1 Structure of objects stored in AOD files.. 25
5.2.2 Object represented as Amos II Struct type .. 26
5.2.3 Type mapping .. 27
5.2.4 Stored meta-data .. 28

5.3 Data retrieval process .. 29
5.3.1 Opening a container ... 30
5.3.2 Breaking circularities ... 30
5.3.3 Retrieving data ... 30

6 Implementation .. 32
6.1 Tools.. 32
6.2 Query processing... 32
6.3 C++ layer... 33

6.3.1 C++ layer organisation... 33
6.3.2 Data reconstruction using ROOT... 34
6.3.3 Calling Amos II.. 35
6.3.4 Caching .. 36

6.4 AmosQL layer ... 36
6.5 Limitations... 37

6.5.1 Issues with reference breaking... 37
6.5.2 Limited variety of accessible ROOT trees... 39

3

6.5.3 Bulky retrieval of data ... 39
6.5.4 Memory deallocation problems in ROOT ... 39

7 Application to Athena AOD files... 40
7.1 AOD file structure ... 40
7.2 How to query AOD files ... 41
7.3 Performance evaluation... 42

8 Conclusions .. 47
8.1 Summary ... 47
8.2 Future work (limitations to relax) ... 47

9 Acknowledgements .. 49
10 References .. 50
Appendix A. Test queries. ... 51

4

1 Introduction

The Large Hadron Collider (LHC) is going to be the world’s largest particle accelerator and
collider located at CERN in Switzerland [12]. The LHC project aims to shed light on a range of
cutting-edge modern physics theories such as the dark energy, the dark matter, extra dimensions,
the super-symmetry, and give clues about unification of the four forces. LHC consists of a huge
circular tunnel designed to collide counter-rotating beams of elementary particles. Particles are to be
accelerated exploiting superconductivity and using electromagnets to reach a speed extremely close
to the speed of light. To study what happens when the beams of that huge energy collide, five
experiments will take part, each of them using detectors to measure, record and store physical
events into digital data. This stage of experiments imposes a challenge for the best
telecommunications and computing software and hardware as the collision data will contain
enormous amounts of information.

Among the five experiments that construct detectors, ATLAS (A large Toroidal LHC
ApparatuS) [14] is to date the most important for scientific computing. To help process streams of
physics data produced by the ATLAS detector, CERN started up the so called Athena framework, a
software package encompassing algorithms, filters, converters and other tools needed for physics
research concerned with the data produced by LHC [13]. A final format of the collision event
information is Analysis Object Data (AOD) units of compressed and minimized data organised as
collections of objects. AOD data contain the part of all measurements essential and enough for
particle physics analysis [14]. Section 3.2 gives more details about AOD. Much attention in CERN
is paid for the Grid approach, which is a service for sharing computer power and data storage
capacity over the Internet [20]. It is planned to be a common way to share and work with AOD data.
Note that the concept of AOD also depends on the technology used to store data. The storage
manager used behind Athena is the object-oriented, C++ based programming framework ROOT [7],
aimed at solving the data analysis challenges of high-energy physics (section 3.3). Therefore
accessing an AOD file can be achieved by directly accessing objects stored in a ROOT file. In
ROOT, one of the key classes is TTree, a class describing a data structure for keeping collections of
objects of the same type and accessing them rapidly. Higher level functionality, such as unique
object and file identification, data hierarchy organisation, and transfer to the Grid for data storage to
make it easily retrieved even without knowing physical storage details, is provided by the POOL
(Pool of Persistent Objects for LHC) framework [18]. POOL plays a role of an intermediate layer
between ROOT and Athena.

However, many data files are created separately, not following AOD format conventions, and
using only ROOT. A vital requisite desired by scientists carrying out research on the particle data
produced in CERN is ability to access experiment data in an appropriate programming
environment. The only way to access such data currently popularized by CERN is using the Athena
framework installed on a local cluster. Unfortunately, installing and using the Athena framework
turns out to be a non-trivial and highly resource demanding task. Users who prefer a non-
framework approach or for some reason have no access to any cluster with required CERN software
have to look for other approaches. In this project we have developed the ROOT Object Wrapper
(ROW) enabling database queries to scientific data stored in ROOT files (see description in section
3.3) This wrapper provides an easy and convenient way to browse and query ROOT object data
files: retrieving file structure, listing hierarchy elements and stored data, getting data types and,
most importantly, reading needed data using low level procedures to enable querying through a
high-level query language [1, 19]. Such a system may prove useful since it provides easy access to

5

not only Analysis Object Data generated by LHC software but also to data stored using any other
software based on ROOT as the storage manager. As long as the ROOT framework remains the
technology used to store Analysis Object Data, all the functionality can easily be achieved by
wrapping certain ROOT storage functions (more precisely, functions, for reading data from a
ROOT file). Although the ROOT framework itself provides a graphical file browser, unlike ROW
this browser is neither able to retrieve/list data nor formulate a specific query. In general all data
retrieval functionality has to be manually programmed by the user. ROW aims to automatize this
task as much as it is possible. Furthermore it concentrates on making the software compact to the
highest possible extent, that is to use a minimal set of software making the installation and usage
easier. As we show further in the report (section 6.1) this software volume is substantially smaller
than that of the Athena framework.

ROW extends a functional object-oriented database management system, Amos II [1], to make
it possible to query ROOT data files using the functional query language, AmosQL [1, 19]. Amos II
(Active Mediator Object System) is a functional database management system that allows data from
different data sources to be viewed uniformly as queries defined in AmosQL.Transparent access to
different data sources is obtained by extensions of Amos II, so called wrappers, which convert data
into Amos II data primitives – objects, types and functions, that can be processed and accessed by
AmosQL queries. Amos II provides interface to foreign languages C, JAVA, and Lisp for wrappers
implementations. Many wrappers providing access to common DBMS sources, wrapping various
scientific data, music files, etc. have been created at UDBL [17].

We believe that the ROW approach is simple and attractive to common users. Instead of using
the elaborate Athena or POOL frameworks to read data, we use directly the lowest level software,
ROOT. Having our wrapper based on ROOT allows us to develop a simple, compact, easy to
install, and easy to use cross platform software sufficient for querying data from arbitrary AOD
files. Giving up the upper level software (Athena and POOL) means a disadvantage of losing
certain functionality, such as universal object identification. Furthermore, a wide range of Athena’s
data analysis algorithms and tools are implemented as methods of objects that are callable (to date)
only when the Athena framework is installed. However, in the case when only access to data stored
in files is needed, the ability to easily query data from saved files outweighs the sacrificed
functions. During the project we show that our ROOT Object Wrapper is capable of retrieving of all
types of simulated (as the first real experiments are planned only in 2007) ATLAS detector data.

ROW uses ROOT’s external call interface to access ROOT files through the external language
interface of Amos II [3]. We introduce a new primitive type, Struct, to represent C++ structures in
Amos II. In addition, we design a mapping from C++ primitive types and collections to basic Amos
II types, making the wrapper able to represent in AmosQL most of the classes used for work with
scientific data. For data retrieval we implement several basic functions, such as the function get to
fetch data records one by one. These functions are implemented as foreign Amos II functions
calling ROOT data retrieval functions and constructing Amos II Struct objects according to our
designed policy. On top of the basic interface a meta-data model is implemented by defining an
Amos II schema, consisting of entitity types such as ROOT container, ROOT type, etc.
Furthermore, functions are defined to automatically fill and reuse this database each time a new
ROOT file is accessed. We define routines to automatically collect the meta-data from each opened
file as well as functions to navigate and extract particular data from retrieved objects using the
meta-data. ROW is written in C++ and makes heavy use of the Amos II external call mechanism as
the intermediate code between ROOT and Amos II. However, some non time-critical routines are
implemented in AmosQL.

6

2 Example queries

To make a clearer picture of what the proposed software can be used for, let’s start with two
simple examples showing the basic capabilities of ROW. In this section we assume that the reader
is aware of the basic Amos II concepts as well as with AmosQL language (if not, see [19] or
Chapter 4). Here we skip most of the technical details, which can be found in the following
chapters. The file we are going to analyse is of AOD format, that is, it has the same structure as the
one which is to be actually used in the CERN’s scientific research. The file is named
dc2.003007.evgen.A1_z_ee._00092.pool.root and has been generated by a simulator using CERN
software [22]. Here we view the objects stored in a file from the perspective of formal programming
language, i.e. we do not consider the semantics of the classes.

The first action is to see all the containers stored in this file:

AODWrap 1> row_containers("dc2.003007.evgen.A1_z_ee._00092.pool.root");

...

<"","POOLContainer_DataHeader","POOLContainer_DataHeader",10001>

...

<"","POOLContainer_EventInfo","POOLContainer_EventInfo",10001>

...

<"","POOLContainer_McEventCollection","POOLContainer_McEventCollection",10001>

...

We choose to have a look inside the container POOLContainer_EventInfo. First we declare a
new RootContainer instance and assign it a handle to a newly opened container:

AODWrap 1> declare RootContainer :c;

<#[OID 912 "ROOTCONTAINER"],AMOS_C>

AODWrap 1> set :c = openContainer("dc2.003007.evgen.A1_z_ee._00092.pool.root", "",

"POOLContainer_EventInfo");

….

6 types imported

OpenContainer creates several new meta-data objects describing all the classes encountered in
this container: (in this case they are EventInfo, EventID, EventType, TriggerInfo, …):

AODWrap 2> select name(t) from RootType t where t = types(:c);

"vector<unsigned int>"

"vector<bool>"

"TriggerInfo"

"EventType"

"EventInfo"

"EventID"

The meta-object for EventType, for example, describes that structures of this type have two
fields, one of which is a Vector, and the other is a Charstring. There is some other information

7

stored which is used for more complex structures. Here is a query for displaying all the members of
the class (or type) EventType.

AODWrap 3> select attributes(x) from RootStructType x where name(x) = "EventType";

{"m_user_type",#[OID 991],1,1,0}

{"m_bit_mask",#[OID 1020],0,1,0}

A single result line contains a name of the member, a reference to an object describing it’s type
and several more values which will be explained later.

Where do all those types and names come from? In fact, the records we actually going to read
are stored C++ objects of class EventInfo. The layout of this class is presented in Table 2.1.

Once we opened the container, we are ready to retrieve one entry from it:

AODWrap 4> declare Struct :s; /* Struct data type in AmosQL resembles struct type in C */

AODWrap 5> set :s = get(:c, 0); /* reads the first record in the opened container and

constructs an AmosQL object of type Struct according to predefined mapping */

The example starts with a procedure defined in the ROOT Object Wrapper, openContainer(). This
procedure, together with the query function get() present the core functionality of the wrapper. The
get() function constructs a “mystical” object [STRUCT #999] which is an Amos II structure (type
Struct). Compare its representation (figure 2.1) with a C++ layout of an object.

EventInfo

m_event_ID: EventID*
m_event_type:

EventType*
m_trigger_info:

TriggerInfo*

m_event_number:
unsigned int

m_run_number: unsigned
int

m_time_stamp: unsigned
int

m_bit_mask:
vector<bool>

m_user_type: string

m_eventFilterInfo:
vector<unsigned int>

m_extendedLevel1ID:
unsigned int

m_level1TriggerType:
unsigned int

m_level2TriggerInfo:
unsigned int

Table 2.1. Structure of objects of class EventInfo.

8

Now we will try to access one more container:

AODWrap 5> declare RootContainer :c2;

<#[OID 925 "ROOTCONTAINER"],AMOS_C2>

AODWrap 5> set :c2 = openContainer("../data/dc2.003007.evgen.A1_z_ee._00092.pool.root",

"", "POOLContainer_McEventCollection");

20 types imported

At this point we skip several lines concerning some issues with circular structures. The
subtleties are explained in Chapter 6. See Appendix A, Test E for a complete example using this
function. To extract data member of type HepMC::GenParticle (describing a particle) nested in
several levels within McEventCollection class (see figure 2.2) we can define a derived function
which, given a Struct object (representing McEventCollection object) and Integer (index of the
particle object we want to extract), returns a structure holding only data of the specified “particle”
object.

Struct #3569144: the top level structure

[Type
ID]

Struct #3569192: m_event_ID

[Type

ID]
Integer Integer Integer

Struct #3569216:
m_event_type

[Type

ID]
 Charstring

Vector of Integer

Struct #3569240: m_trigger_info

[Type

ID]
 Integer Integer Integer

Vector of Integer

Figure 2.1. The EventInfo structure returned as a result of the function get()

9

AODWrap 9>

create function particle(Struct s, Integer i)->Struct

 as select getStructMember(

getStructElement(

 getVectorMember(

 getStructElement(

 getVectorMember(s, "m_pCont"), 0),

 "m_particle_barcodes"),

 i),

 "second");

#[OID 1045 "STRUCT.INTEGER.PARTICLE->STRUCT"]

Figure 2.2 A particular path to HepMC::GenParticle data member within class McEventCollection

Next, we generate a thousand random integers from interval [0; 10000) and store them in the
function randints:

AODWrap 10> create function randints(Integer)->Integer;

#[OID 1047 "INTEGER.RANDINTS->INTEGER"]

AODWrap 11> set randints(i) = r from Integer i, Integer r where i = iota (0, 999) and r =

rand(10000);

NIL

The following query selects records (actually, stored McEventCollection objects) according to
random indices that have been just generated, extracts the HepMC::GenParticle member from each

10

of the latter objects, and extracts three coordinates of the particle represented by the
HepMC::GenParticle member:

AODWrap 12> count(select getMember(mom, "dx"), getMember(mom, "dy"), getMember(mom,

"dz")

 from Struct s, Struct mom, Integer i, Integer j, Struct rec

 where i = iota(0, 1000) and

 rec = cast (get(:c2, randints(i)) as Struct) and

 s = particle(rec, j) and

 mom = cast (getMember(cast(getMember(s, "m_momentum") as Struct), "pp") as Struct)

);

Finally, we close all opened containers for memory cleanup.

AODWrap 13> for each RootContainer c closeContainer(c);

11

3 Background

In this section we discuss the most important technologies related to ROW. First, we briefly
overview a field where ROW is claimed to be useful, i.e., scientific data management. Then, we
describe a particular data format Analysis Object Data together with means for managing it.
Afterwards we go deeper into the framework we used to implement it, ROOT. The last section is a
very short description of wrapper/mediator approach but as the latter technology is crucial to ROW,
we describe it to a greater extent in chapter 4.

3.1 Scientific data management

When the proton beams produced by the LHC interact in the center of the detector, a variety of
different particles with a broad range of energies will be produced. Using elaborate and carefully
designed inner components ATLAS will be able to detect high mass particles and measure their
speed, positions, and momenta with a precision that was never available before. The trigger system,
involving a cluster computer located near the detector, will then have to select the most interesting
particle events out of 40 billion per second and store them for offline analysis. Event reconstruction
will be performed by software which will involve operating on vast amount of data (hundreds of
megabytes stored each second) and will require both extensive computational power which can be
enabled using suitable methods for representation, storage and access of collected data [11]. A
major interest for achieving this is in using the Grid.

To this extent CERN jointly with many international partners have established the Worldwide
LHC Computing Grid (LCG) project which aims to ensure building and maintaining a data storage
and analysis infrastructure for the entire energy physics community that will use LHC. LCG has
many subareas, each of them devoted for specific tasks, such as 1) providing software for storage of
tremendous amounts of data collected, 2) providing tools to service ATLAS detector in general and
3) creating a toolkit for all relevant calculations. Another important area of research in LCG is 4)
simulating the detector data so that all the previously mentioned software could be tested and
refined in advance [8]. Growing Grid capabilities and the amount of stored data and usage in
scientific research requires higher level and easily applicable software that would prevent end users
from putting too much effort in details of data access management. Data produced by the LHC
experiments (or simulation of them) is only one example of excessively large amounts of data
stored in nodes of the Grid infrastructure.

A number of frameworks and large software application projects are being implemented within
and outside LCG. An example of these efforts is the Athena framework [13], which is a concrete
implementation of functionality needed to develop physics applications using data generated by
ATLAS. This framework in turn uses much of the previously developed ideas and architectures
(Gaudi [23], GEANT [24], etc.) together with other software frameworks and applications
developed by parallel LCG projects, e.g. ROOT and POOL [13]. See sections 3.2.3 and 3.3 for
more about them.

An observation here is that the data files can be seen as databases of events. These databases
are produced from one level of processing raw experiment data and are in general referred to as
Analysis Object Data (AOD). The aim of ROW is to enable easy searching these databases using a
database query language for scientific queries.

A particular scientific Grid project called POQSEC [2, 16] is in progress at the moment. The
system relies on open source Grid middleware ARC [19] to access scientific data produced on the

12

Grid. The aim of POQSEC is to provide high performance scientific query execution over
distributed and heterogeneous data sources accessed through ARC middleware. Wrapping and
combination of data sources, query processing and optimization is performed by utilizing Amos II
database management system supported and developed at UDBL. The work presented here provides
a wrapper of AOD data for POQSEC to enable searches using the AmosQL query language.

3.2 Analysis Object Data (AOD)

As it was mentioned in the introduction during the experiments with LHC up to 1 petabyte of
Particle Physics event data will be generated and stored each year. The problem being solved by
projects in CERN is how to efficiently represent that data and how to make it available for using
and searching in Grid environment.

3.2.1 Event Data Model

To provide an easy maintenance and coherence of collaborative experiments with large
amounts of data generated by detector a C++ based Event Data Model (EDM) common for all the
detector subsystems and groups was proposed at CERN. ATLAS EDM is designed to allow use of
common software between online data processing and offline event reconstruction [14].

To facilitate the remote usage of event data, two types of datasets, or file formats2, were
introduced:

1) the Event Summary Data (ESD);

2) the Analysis Object Data (AOD).

ESD is designed to represent detailed output of the detector reconstruction and the data is
produced directly from the raw data. Data in AOD format consists of summaries of each
reconstructed event. It contains sufficient information for common analyses and can be generated
from data in ESD format. The size of an event record in AOD is approximately 5 times less than the
corresponding one in ESD. Thus AOD becomes the key format of storing the event data for
scientific analysis.

3.2.2 Tracks, Events and Particles

The major aim of the Event Data Model is to share as much code as possible implementing the
data obtained from various parts of the ATLAS subdetector systems, such as trackers and
calorimeters. One of the most important concepts of this model is a common and efficient
implementation of track. A track is a sequence of coordinates of a particle in a particular coordinate
system. It is worth noticing that signals detected by various parts of detector must pass a number of
reconstruction algorithms to finally be converted to meaningful and efficient representation.

The process of creating AOD files consists of:

− obtaining raw data from the detector

− reconstruction of particle tracks (to ESD files)

− preparation of tracks for efficient analysis (converting ESD files to AOD files)

2 Later we will sometimes identify AOD and ESD concepts not as a format itself but as data stored in this format. The

meaning should be clear from the context.

13

− including meta-information for events (event tagging)

The whole process also requires ability to store, or persistify the obtained objects.

The final representation in the actual implementation of AOD is object oriented event records.
One of the currently used models of representing events and tracks is proposed in the HepMC
package [9]. In HepMC each collision event is represented by a number of graphs, where each
vertex is represented by a graph node and maintains a set of incoming and outgoing particles
represented as edges of a graph. Multiple collisions are thus represented by a superposition of
graphs. In addition to spatial coordinates many other parameters, such as particle charge, mass,
lifetime, polarization, etc. can be stored in event objects.

Together with event objects, meta-data providing easier search among stored events also must
be provided. Information stored as meta-data includes the time of the measured events, the type of
their structural representation (as the classes for representing objects may evolve and change), and
some universally unique identifiers. Furthermore, ATLAS EDM generally uses two types of
storage: transient and persistent. See the following section for more about that.

3.2.3 Object persistence

Object persistence is another important issue tackled by physics projects related with Large
Hadron Collider. The POOL project was established in CERN to help perform a largely
collaborative analysis within the Grid environment and provide means for common object storage,
identification and easier reuse. POOL aims to develop a set of service APIs for C++ programmers.
These APIs introduce several abstraction layers of objects being persistified, including to navigate
those layers, to retrieve the objects to virtual memory (as transient objects), and to store them on
one of the types of storage (persistify). These layers provide a natural hierarchy for objects:
containers, databases, catalogues, etc., altogether with associated meta-information for a quick
access. As for the storage part, POOL builds on top of another framework, ROOT, i.e. POOL’s
storage collections are simply ROOT trees and databases are ROOT files. The navigational
information is both stored in databases and in entities called catalogues, physically represented as
XML files.

In this project we analysed many ways to work with AOD files. One of the first alternatives
was to implement a wrapper using interfaces provided by POOL. Although the visions and ideas
formulated for POOL are logical and seem to be useful, the projects turns out to face a number of
difficult implementation issues.

POOL introduces distinction between physical objects, which can be either in ROOT
containers called TTrees (section 3.3.3), in relational database records (not yet implemented), or in
logical objects. It is claimed that one logical object can have several physical representations. A
logical object is an object identified by a specific address and path (also introduced in POOL) and
can be permanently stored in several places. Reading a logical object means implicitly connecting
to one of its storage sites and transferring it to operating memory. This complicates the
implementation of the framework.

Another issue in POOL complicating both programming and scientific analysis of object data
is the abstraction layers described in the beginning of section. Event databases can no longer be
stored in a single place: in addition to a physical data file there are some additional meta-data files.
The layers and hierarchy itself requires user knowledge in order to be able to use it. Though those
abstraction levels are not always necessary, still they must always be used, since POOL does not
provide any other way to store objects. And lastly the introduced hierarchy requires defining an

14

addressing protocol, which can be difficult or unreasonable to learn for a user, especially if there is
some other way to store the objects (for example, manually write them to the disk).

In general, until now the POOL project requires a considerable work to achieve its planned
goals and currently provides only basic functionality. For now (version 2.4.3) POOL (a standalone
version, independent of Athena) practically supports only one platform, namely CERN’s SLC and a
specific compiler [18, see Platforms and compilers]. It requires a dozen of dependencies to be
installed and configured. This in turn requires either installing the same operating system as the one
used in CERN [18, see Platforms and compilers, External Packages] or a greatly advanced
knowledge and efforts to manually adapt the system. Clearly, it is not possible for POOL to fulfil
the goals stated before starting it – to provide a common and easy access to objects within LCG, as
1) it is extremely difficult to install on most of the platforms 2) the interface requirements are
formulated but implemented to a low extent 3) the interface is poorly documented. It is very likely
that these issues make POOL available only to a narrow circle of users and the lack of testing and
participation does not boost the development of framework.

However, a very useful service is POOL’s use of ROOT to stream data from ROOT files. Such
streaming can be done without using the POOL meta-data or the Athena system. This project
provides ability to search these ROOT files ouside POOL by using a query language.

3.2.4 Storage of AOD data

In Figure 3.1 the data processing steps of Analysis Object Data are presented. It must be
pointed out, that these steps do not use all the capabilities of Athena, POOL, or ROOT. Although it
is only one of the many ways to produce AOD objects, it is currently the mostly used one. The first
phase is the physical experiment phase, when software obtains raw detector’s signals and applies
algorithms to convert the detector input data to a particle track format and producing ESD files. The
ESD files are further prepared to be saved as AOD using parts of Athena toolkit called converters.
Then Athena calls its storage module to persistify resulting data. That is, it simply calls a built-in
POOL application. POOL further adds its meta-data and calls ROOT libraries to finally store the
objects into containers which are represented by ROOT TTrees [Section 0].

15

Retrieving persistified objects back to analyse the stored data can be done in the same fashion,
using Athena and calling special functions to open AOD files. However, retrieval of objects is
different from their storing in that that AOD files basically need to be stored only once, after an
experiment or a simulation, while they can be retrieved many times and by different users.

It turns out that there is another much faster and simpler way to access the AOD data, namely
using only ROOT. A factor which can be exploited here is ROOT’s ability to stream the objects
even if the header, or class description, meta-data is not available through POOL. This ability is a
part of the ROOT streamer and comes into play because ROOT aims to be able to store (almost)
any kind of objects (simple class objects, ROOT class objects, even STL objects) self contained.
Furthermore, as long as universal identifiers, cataloguing information, are not used in practice, it
turns out that the main POOL’s purpose is not more than calling ROOT interface functions to write
the objects to certain containers (ROOT trees).

ROW utilizes the ability to directly access ROOT files containing AOD objects.

Figure 3.1. Generation of Analysis Object Data files.

16

3.3 ROOT

ROOT is an object-oriented framework aimed at solving the data analysis challenges of high-
energy physics. The framework was started in 1995 by René Brun and Fons Rademakers who had
previously led other successful projects in CERN and developed a large, reliable, dynamic, and
efficient system, which is today used in scientific analysis applications in many fields (e.g. particle
physics, astronomy, biology, genetics, finance, etc.). ROOT contains components as a hierarchical
object oriented database, a C++ interpreter (CINT), advanced statistical tools, visualization tools, a
rich set of container classes, run-time object inspection capabilities, automatic HTML
documentation generation, etc. [7].

Today the ROOT project is officially funded by CERN, has a solid group of developers, has a
broad circle of users and testers, provides an elaborate user’s guide [6], has good documentation,
provides a ROOT-Talk Forum, supports many platforms (all Linux platforms, Windows), and is an
excellent choice for physicists demanding a user-friendly programming environment

3.3.1 ROOT storage

Speaking only about storage component of ROOT, since 2001 important additional features
were implemented making ROOT even more convenient and powerful.

First, foreign and emulated class support was implemented, allowing automatic or manual
storing and retrieving any C++ objects from a file. That is, whenever an object of a new class is
streamed into a file, the class (header) information is also stored to a file, making it self contained.
Thus the ROOT streamer (i.e. the component responsible for writing objects as strings of bytes into
file and vice versa) now does not need to use a C header of a class before the objects of that class
are streamed. This is an essential improvement over the previous versions of ROOT where in order
to read an object of particular class, the class header had to be compiled into a special runtime
library called a dictionary. Recreating objects without a dictionary was impossible, which in turn
required such systems as Athena and POOL to be installed. With the ROOT files now being self
contained it is possible to access any ROOT file without consulting external meta-data. This is
utilized in ROW.

Second, the TRef class was implemented which allowed fast and proper storing of pointer
objects.

Lastly, a good C++ Standard Type Library (STL) support was provided and automatic
streamers were implemented allowing easy and fast storage of virtually any kind of C++ collection
into a file.

ROOT is an object oriented environment. Thus the storage component of ROOT (ROOT I/O)
is based on class TStreamer. The streamer can store C++ objects derived from TObject (a common
ancestor for all classes defined in ROOT) and objects of a class that has a dictionary loaded. For
storing objects into a file, ROOT maintains a file header containing a description of the objects
stored in the file. Every object being streamed is assigned a key string according to which it will
later be retrieved. Sequential streaming provides many additional features and optimizations, such
as object compression, fast seeking, object class evolution (objects of several versions of the same
class may be stored), hierarchical structure of files (ROOT files may consist of the whole directory
hierarchy), and chaining several files (objects stored in separate ROOT files may be linked using
the TChain class).

17

3.3.2 TTree

The most important type of objects that can be stored into ROOT files are trees. Any other
objects used in ROOT can be stored into a file by first placing it into a tree. However, the tree
concept is different from that commonly used in computer science (digital, binary trees). It is
designed to store a large number of objects of the same type (we will refer to a stored instance of a
type as an entry), to quickly navigate, and to store and retrieve subsets of fields of objects and
attributes. Therefore ROOT trees play the role of a database store. The authors of this project see
the name for the TTree structure somewhat confusing, since a TTree is actually much more like an
unnormalized relational database table than a simple tree data structure. A branch in a TTree can be
imagined as a column or several grouped columns in a relational database table and a leaf as a
column in the table. Saving objects in trees rather than streaming them directly into a file allows
much quicker access and reduced disk space as there is no need to store meta-information for each
stored object, but rather a single record for a whole group of objects of the same type.

TTree is a C++ class in ROOT, although it has many variations and extensions (TNtuple,
TChain, etc.). TTree basically consists of one or more branches (TBranch) and each of the branches
can be accessed independently of others. The lowest unsplittable element of a TTree is a leaf, TLeaf,
which either holds one primitive data member (integer, float, string) or a whole binary object.

Figure 3.2, A structure of TTree

18

There are two basic ways to store data in a TTree.

The first way is storing tuples of primitives in a branch. That is we have explicit tuples of the
values of fixed size and we want to store many of the samples with the same structure. The values
can of course be both primitives and objects. An example could be a tuple of three doubles
representing coordinates, <dx, dy, dz>. In this case each of the variables will be assigned one leaf
in a tree and written together. When retrieving the data, the variables will be retrieved together. This
case is equivalent to a relational database table with three columns (leaves) and a certain amount of
rows (records). As coordinate values make sense only in triples, it is reasonable to store all of them
in one branch. If on the other hand, we have subsets of values which are independent of each other,
then those subsets can be stored in different branches of a tree. It means that when reading values
back one is able to access only a relevant subset, and save the time for reading the other values.
Using TTrees in this way is simple and quick and was taken by a number of applications. A wrapper
for Amos II developed by J. Tysklind [5] wrapped exactly the trees produced by this method.
However, this approach (writing tuples of primitives to a tree) is becoming less popular because of
the following disadvantage: for each new class of objects the tree creation, data writing and
retrieving procedures must be programmed manually. Given the new capabilities of ROOT of
introspecting its classes, an alternative approach is natural: if the system has its object layout
described it could automatically create branches and assign data members or read them back.

The second way is storing objects in a branch. We store an arbitrary number of objects of the
same kind of branch. Although, one of the options is to save each object as a bunch of bytes, just
like as it would be done in the first case, ROOT allows automatic splitting of objects that are being
written. That is, if an object contains aggregated object members inside, a sub-branch (physically it
is also at the same level as the top-level branch, the ‘splitting’ is only logical) can be automatically
created for each of those aggregated members; the same can be done for their child members, etc.
How deep the objects are expanded can be controlled by setting the split level property for a
TBranch. If the split level is more than 1, the members of a stored object can be retrieved separately
from each other, thus ensuring a fast performance. The automatic splitting also handles writing
collections, but currently only of the types defined in ROOT. The remaining collections, such as
STL vectors are usually not split, i.e. streamed as binary objects.

If data is written to a TTree as objects the easiest way to read it back is to read it also as objects
and this is supported by ROOT’s streamer. If the split level is high, primitive members can be
accessed one by one, otherwise entire top level objects must be retrieved, and the programmer has
to set up object additional routines to provide the application user an ability to extract required
members from those objects.

Storing objects, not tuples of values in a branch was chosen in the implementation of the
POOL project [see section 3.2.4]. As long as we take the object oriented approach to represent
Particle Physics entities, such as particles, tracks, vertices and events, we also store them as objects,
not as tuples of preselected values. Furthermore, because ROOT files are self contained, ROOT is
able to read any object from the file, not only the ones which are defined in the program (see the
following section). This makes it possible to read object data members from such files as AOD
without using any higher level frameworks, including Athena and POOL.

3.3.3 Reflection

Reflection is the ability of programming language to introspect its data structures and interact
with them at runtime without prior knowledge [6]. ROOT provides reflection for C++ with a Reflex
package which replaced the older techniques used before ROOT version 5.08. To be able to use this
reflection for a particular class, a runtime dictionary library must be loaded for that class. For

19

standard ROOT classes, dictionary libraries are provided within the framework itself. For own
defined classes user must use tool programs to generate dictionaries.

A dictionary represents a static C++ class header file which is loaded at runtime. Using
dictionary, objects of the class it describes can be created and manipulated, including retrieval of an
object from a ROOT file or tree.

However ROOT provides an alternative option for reading of objects that were streamed into a
ROOT file – dictionary-less object creation. Starting from version 5.08 ROOT is able to recreate an
object from a file even in the case that object is not defined previously and its class does not have a
dictionary loaded. To ensure this, for each class and any of its super-classes of objects stored in a
file, ROOT stores information in the file header required to recreate and read the object back. When
the main reading routine is called, object is automatically recreated and pointer to it returned. If the
dictionary for an object is loaded, this pointer can be directly casted to the object of a correct class.
Streamer information (offsets and member object names and types) can be used to navigate through
the fields of an object and reconstruct the information stored inside. In other words, all objects
which are stored to a ROOT file have their layout described in the same file and can be read without
any other information. The objects created without dictionary are referred to as emulated objects in
ROOT.

If, additionally, the dictionary for the class is provided, the class methods can also be called
Special handling and navigation is provided for navigating collections and arrays using a ROOT
class TVirtualCollectionProxy. A need to be able to navigate the objects using streamer offset
information arises as it is the only way to reconstruct those stored objects in a tree which were not
split3. (if object was completely split each primitive member would be stored in a separate branch
and simply names and types of branches could be used). ROW is directly based on retrieving data
using ROOT’s reflection mechanisms. That is, before reading any object it first accesses the
metadata (such as the layout of members). See the implementation part (section 6) for more about
that.

So far the Reflex package does not provide ability to also store and call object methods from a
file. However this ability is planned to be implemented in future [personal communication].

3.3.4 Why access AOD using ROOT?

As it was described before, the most natural way to access AOD data files is to use the same
tools as were used to store it. That is, use the programming environment and functions of ATLAS’
Athena framework with built-in POOL. An obvious disadvantage at this point is the size and
complexity of the framework. Having hundreds of megabytes of source code and a variety of
required software, Athena becomes not a trivial program to install. The demand of resources and
evan a specific platform makes it reasonable to be installed only on servers in large networks or
clusters. This may not be appropriate for all of the users, since it is often only possible to work on a
disconnected computer (laptop) or in a system which does not belong to a cluster where Athena is
installed. Another disadvantage, already mentioned in Section 3.2.3, is a demand for knowing most
of the protocols used in all the layers (Athena, POOL, ROOT) to manage the files, even if these
protocols provide only redundant functionality.

Together with our work we propose an approach which is much simpler and much more
attractive to common users. That is, we claim that using only the framework of the lowest storage

3 The split level is set when creating a tree. I.e. members of member of an object are assigned separate branches only

when the split level is more than 1. Typically the split level in AOD files is high but lower branches are not split
because they contain such structures as STL vectors of objects and splitting is not implemented for them..

20

level, ROOT, is enough to carry out certain kind of research with particle physics data, i.e., search
for certain kind of data. A circumstance which enables us to do this is the way object collections are
persistified (i. e., stored to a physical memory) in POOL as ROOT files. Containers are simply
ROOT TTrees of the second type where a branch consists of a number of object records. Thus
because the POOL implementation does not use any additional processing when storing objects into
files than that provided by ROOT we can use ROOT to browse and retrieve stored objects.

It is true that accessing data that has some hierarchical wrapping from a level other than the top
one makes us sacrifice certain functionality which was known only for the higher levels. For AOD
data we lose a place of collections objects in the directory structure. Collections in POOL must
additionally be stored in catalogues, which are implemented creating records in an additional XML
file. Also POOL aims to provide meta-data search in its catalogues or collections. This functionality
of course can not be accessed by only working with a physical ROOT file, as the additional
information is stored outside. So is, for example, the UUID (Universally Unique ID) for each of the
files. If a user uses ROW, he or she must know exact name of the file where the data is stored and
have the file accessible for the wrapper. On the other hand, file information is stored as meta-data in
an Amos II database and can be searched. Because physicists will want to work with a limited
collection of files there is often no need to store the whole directory hierarchy of all data files.

A big advantage of reading AOD directly using ROOT versus reading using Athena is
simplicity and transparency. We no longer need to have POOL or Athena installed which is very
complicated, we need only ROOT which is, like it was noticed in the chapter overview, much easier
to install and much more user-friendly. As long as ROW deals only with reading and searching
data, class dictionaries are also not necessary.

3.4 Wrapper and Mediators

Scientific data is distributed among peers of the Grid and sometimes needs to be combined
from data sources of different kind. Therefore a reasonable solution for performing queries over
scientific data is to apply the mediator/wrapper approach [18]. A mediator is a network peer that is
seen by other mediators and applications as a set of data views defined in a common data model
(CDM). These views access data sources by so called wrappers. Each kind of data source has a
corresponding wrapper that translates its data into the CDM. A mediator system enables integration
of several heterogeneous and distributed wrapped data sources. The Amos II system provides
mediator and wrapper functionality.

21

4 The Amos II system

In this chapter we will briefly describe features of the Amos II system that are related to ROW
and explain certain aspects in more detail to make it possible to understand the architecture and
implementation of ROW. See [1, 2, 3, 4, 17] for more about the system and its architecture.

4.1 Overview of Amos II features

An Amos II system may have arbitrary number of wrappers that convert external data sources
into the Amos II CDM and provides means for executing queries upon them.

Wrappers may be written in C, JAVA and Lisp, as Amos II provides a so called call-out
interface for these languages allowing wrapper implementations. ROW is a wrapper is written in
C++ and implements an Amos II call-out interface.

The call-in interface [3, 4] defines calls of opposite direction, i. e., how programs can access
Amos II, and execute AmosQL queries through their mediator peers. The call-in interface is also
used by ROW because, as you will see in chapter 6, meta-data of ROOT files is stored in the Amos
II database and needs to be accessed by ROOT Object Wrapper.

4.2 Functional data model

Amos II employs a functional data model that represents all data as objects, types and

functions. To simplify understanding we will provide corresponding object-oriented concepts.

4.2.1 Types

An Amos II type corresponds to a class. The system provides a hierarchy of built-in types
displayed in figure 4.1. User can define new types and create objects for them. User defined types

Figure 4.1. Types in Amos II.

22

automatically become derived from the type UserObject. User can also create types hierarchies
under earlier defined user types.

4.2.2 Objects

Objects correspond to object in the OO paradigm and are instances of some type. In Amos II
anything is an object, including types and functions themselves. Objects are of two basic types:

− Surrogate objects have associated numeric key identifiers (OIDs) that are unique
within the local Amos database. All objects of user defined types are surrogates.
The OIDs are managed automatically by the system. Surrogate objects have to be
explicitly deleted by the user to be removed from the database when they are no
longer needed.

− Literal objects don’t have associated OIDs and are automatically deleted by a
garbage collector whenever they are no longer referenced from other database
objects. They are more light-weight than surrogate objects. Examples of literals are
Number, Charstring. Literal subtypes that are special are Collection objects. In case
of ROW, the task of the wrapper is to represent data stored in AOD/ROOT files as
literal objects so that huge amounts of data can be efficiently streamed through the
database. ROW uses three kinds of collection objects:

− Bag – set of any objects

− Vector – zero-based indexed array of objects

− Struct – a special collection representing records (C structs) containing:

− A reference to an Amos II type object. It is up to developer to implement
type representation in Amos II and assign a type object to an instance of
Struct.

− An indexed array of object references by the Struct.

4.2.3 Functions

A function represents a property of some object, a mapping between objects of different types,
or a computation over objects. They can represent not only one-to-one functions (having
mathematical meaning) but also mapping to several objects (thus representing one-to-many and
many-to-many relationships). They can be classified as:

− Stored functions to represent properties of objects (attributes) locally stored in an
Amos II database. Stored functions correspond to attributes in object-oriented
databases and tables in relational databases.

− Derived functions are defined by a single query statement (SQL-like select
statement) and therefore can be defined on other Amos II functions. Derived
functions cannot have side effects. Derived functions correspond to side-effect free
methods in object-oriented models and views in relational databases.

− Stored procedures that are defined using procedural sublanguage of AmosQL and
are meant to be means for computation or correspond to methods with side-effects.

− Foreign functions are defined in a programming language C/C++, Java, or Lisp.
They provide ways of calling external systems from Amos II. Wrappers are defined
using foreign functions.

23

Foreign functions can be defined as being multidirectional, meaning that both the function and
ints inverses are defined. For example, the following function is multidirectional:

create function f(TypeA a)->TypeB bas multidirectional

(”bf” foreign “A_to_B” cost {100, 1})

(”fb” foreign “B_to_A” cost {200, 1})

(”ff” foreign “scan_A_B” cost scan_cost)

The above definition means that mapping from A to B () BA:af → is performed by foreign
function A_to_B (binding pattern "bf" means that first argument a is bound, and the second
argument b is free), backward mapping () AB:bf →−1 is meant to be performed by foreign

function B_to_A, and foreign function scan_A_B should return all pairs ()()afa, ("ff" means that
both arguments are free).

The cost specification provides estimates for the Amos II query optimizer about function
execution time and size of the result returned. This can be specified as constant in AmosQL (first
two cases) or be returned by external cost function, scan_cost, in this case.

This kind of function definition allows Amos II efficiently process queries like

select a from TypeA a, TypeB b where f(a) = b

and to choose efficient function execution depending on the cost. In this wrapper the foreign
functions row_get and row_scan implement the multidirectional function get (see chapter 6.2).

4.3 Data storage

The Amos II DBMS uses a main memory database storage manager AStorage. All data in an
Amos II database is stored in a database image managed by this manager. AStorage is responsible
for allocation and deallocation of physical objects inside the database image. A physical object is a
C structure handled by the storage manager. Amos II objects (logical objects) described previously
are of a higher abstraction layer built on top of AStorage physical object layer.

The C implementor has the choice of allocating data persistently inside the database image by
using a set of primitives provided by the storage manager (also refered to as storage interface in this
paper). Persistency in this case means that data allocated inside the database image can be saved on
disk (for example, by issuing AmosQL statement 'save') and later restored.

The C/C++ programmer can define own persistent data structures by using a set of storage
manager primitives. By employing this feature ROW creates both literal and surrogate Amos II
objects.

24

5 System Architecture

5.1 Layers of ROOT Object Wrapper

An Amos II wrapper consists of two abstraction layers one of which is defined in a foreign
language, as the external source provides interface to some external language, e.g. C++, and the
other is defined in AmosQL, as the source must be queryable by Amos II users.

The ROOT Object Wrapper has the following abstraction layers:

• The lower one is written in C++ and implements an external C interface of Amos II. It
includes:

o Transient container meta-data storage, a structure to hold transient meta-data
describing the external ROOT data storage being wrapped. The data in this
structure is not used directly by Amos II user but is only for better
performance.

o Routines employing ROOT framework to manage data stored in ROOT files.

o Routines in ROW using the call-in interface to access the Amos II database to
create transient and persistent objects.

o Functions implementing ROW functionality through the call-out interface.

o Caching and optimization components.

• The upper layer is written in AmosQL4 It includes

o Definitions of external functions provided by the lower layer.

o Definition of meta-data schema (see next section).

o Meta-data management procedures.

o Definition of literal type Struct (see next section) and derived functions for
more convenient management of data retrieved by external functions.

4 Only the type Struct is defined in Lisp.

25

5.2 Meta-data

5.2.1 Structure of objects stored in AOD files

 As it was explained in section 3.3, our task was to extract C++ objects stored in ROOT files in
a form which is convenient for Amos II users to deal with. That is, Amos II must be enabled to
extract retrieved ROOT data members in form of Amos II literal types. Moreover, they should be
retrieved by queries.

Recall that AOD files contain several objects of type TTree. We will call them simply as trees.
The trees are actually persistent (stored in a ROOT file) arrays of C++ objects of some class; we
will refer to this class as top level class of a tree. If those classes were simple structures, probably
they could be returned by ROW as vectors of atomic literal types (character strings, numbers, etc).
But actually some of those classes are structures themselves, containing nested collection types.

To ease the management of data having complicated structure we decided to preserve that
structure when representing objects as Amos II objects. Therefore while reading data from an AOD
file ROW creates structures of corresponding topology. Moreover, functions are provided to
navigate in these structures.

At the first stage of planning the architecture of the system, objects were intended to be
mapped to Amos II Vectors, by representing an object aggregated into another object as nested
vector structures. But we chose a slightly more complicated Amos II collection Struct because of
several issues:

• To know the type of an object represented by a Vector requires to reserve one vector
element for a type identifier, while Struct has a special field for the type identifier.

26

• Recursive printing to console of complex objects represented as vectors is inconvenient
as the output may be huge and therefore hardly readable. By contrast a Struct is printed
as an object address, rather than printing its (nested) contents. Printing circular vector
structures furthermore causes indefinite looping.

5.2.2 Object represented as Amos II Struct type

The new collection type Struct type proved to be convenient. In Figure 5.2 you can see that
Struct is similar to a vector containing attributes (elements) of type Object. Thus it can represent
structures containing members of any type.

As it was mentioned in the previous section, we exploit conveniently attribute typeo (see figure
5.2) of type Struct. In this wrapper it is used to refer to the meta-data object (i. e., object containing
names and types of its members, for details see section 5.2.4) which descibe the Struct object. This
makes Struct objects self descriptive.

An alternative option would have been to represent each C++ object as an Amos II surrogate
object and each new type as an Amos II type, i.e. to create new types for all of the classes
encountered in the data file and create Amos II functions to represent data members. Objects of type
Struct are basic and lightweight data holders more suitable for streaming because objects not
satisfying the WHERE clause of a query are automatically disposed by the garbage collector. By
contrast surrogate objects require much more additional space and processing and must be explicitly
deleted when no longer needed. The sequence of actions using surrogates would be 1) read all data
from the files and store it in Amos II database and 2) search the data using usual Amos II queries.
By contrast, our approach is the following: 1) create Struct objects for each entry (see 3.3.2 for
definition) 2) project the needed data fields for each entry and, if needed, store to permanent
objects. As the number of objects stored in analysis data may be millions or billions, our approach
proved to be faster, thus more suitable. Not least does it consume a minimal amount of memory as
the automatic garbage collector immediately removes all Struct objects no longer needed.

Figure 5.2 Layout of Amos II Struct object

27

5.2.3 Type mapping

Mappings to Amos II types are known at compile time for certain C/C++ types that are not
mapped to Amos II Struct: primitive types, string, char*, arrays, STL containers.

There is no need for every C++ class to have one-to-one mapping to an Amos II type. For
example, there are many types in C for integer numbers (short, integer, long) while Amos II has
only one built in type Integer. A subset of the literal types provided by Amos II is enough to
represent any C++ class.

As Amos II provides type Charstring for storing character strings, it is natural to convert C
type char* and STL class string to type Charstring. (see Table 5.1). It is also of no use to represent
differently an object of some class (e. g., class X) and a pointer data member (of type X*) pointing
to an object of the same class because pointers are used as programming means and is not a
database concept.

28

C++ types Amos II type meta-data type

char*, char, string CHARSTRING ROOTAmosPrimitiveType

Int, short, long, unsigned int, unsigned

short, unsigned long, unsigned char
INTEGER ROOTAmosPrimitiveType

float, double REAL ROOTAmosPrimitiveType

Bool BOOLEAN ROOTAmosPrimitiveType

arrays, STL containers VECTOR ROOTVectorType

classes, different from mentioned above STRUCT ROOTStructType

X*, where X is any type
type, to which
X is mapped

meta-data type corresponding to X

Table 5.1: Mapping of types from C++ to Amos II

5.2.4 Stored meta-data

ROW is able to read objects of classes that were user-defined and not known at compile time.
The C++ objects are represented as Struct objects. It utilizes ROOT file meta-data and ROOT
library classes. The process of retrieving and storing this data is discussed in more detail in section
5.3.

As we may open several different ROOT files that contain objects of the same classes, or open
the same file several times, re-using meta-data allows easy access to data from several different
ROOT files. If different ROOT files containing the same kind of data had different wrapper meta-
data, it would be hard to integrate data. For this purpose we store in the Amos II database
ROOT/AOD the following meta-data information from several files (see Figure 5.3):

Figure 5.3 Metadata schema

29

The ROOTContainer represents a ROOT tree The tree is stored in a ROOT file named File.

As a tree in a ROOT file may be stored inside some top level file directory structure, we need an
attribute InnerPath to define the path to the tree inside the ROOT file. Thus a RootContainer is
identified by the attributes file, innerPath (a directory path), and tree (a TTree object in that
directory). The name container is chosen to foresee possibility of extending wrapper to deal with
other kinds of ROOT object storages than TTrees.

� All C/C++ types (classes or a primitive types) that are used in a particular ROOT file are
part of the file’s meta-data. This information (i.e., names and members of a class) are
extracted from the ROOT file before reading the actual data. The types are represented by
the Amos II type ROOTType. ROOTType is an abstract type that has attributes to represent
data common to all ROOT C++ types: name is type name and amosType is an object
representing a built-in Amos II type. It refers to the type to which C++ type is meant to be
mapped (see Table 5.1, column "Amos II type"). Different groups of types share specific
features. Therefore meta-data of any type is an object of some of the following types (see
Table 5.1 column "meta-data type"):

1) ROOTAmosPrimitiveType represents meta-data of primitive C++ types. It contains no
own attributes, but its amosType depends on the C++ type while the following
ROOTVectorType is mapped constantly to Vector and ROOTStructType is mapped
constantly to Struct.

2) ROOTVectorType represents array-based types. It provides the meta-data of the single
type of its elements. Formally, some STL containers (e.g. map) may have more than one
element type in their definition. However, map was the only case we encountered among
AOD data and it poses no problem as it is retrieved by ROOT as C++ template type
vector<pair> where pair is name of a class that aggregates two classes: the one being
mapped by a map object and the one being mapped to.

3) ROOTStructType has four attributes describing each data member of a C++ class
described by ROOTStructType object:

1. Type refers to meta-data of a member thus allowing it be of any type

2. Index is the position of the member in the data array within a Struct object

3. Name is name of data member as it is declared in class described by
ROOTStructType

4. Expand is to enable breaking circular references. For explanation see section 5.3.2.

As the same type may be present in several different trees and trees may have several types,
types ROOTContainer and ROOTType have many-to-many relationships.

5.3 Data retrieval process

Initially, for the sake of clearness, we will reference a ROOT tree by a more general term
container.

30

5.3.1 Opening a container

To enable ROW to retrieve objects of types that were not known before (i. e. their meta-data
are not stored in the Amos II database), the import of meta-data of ROOT classes must be
performed prior to executing any queries upon the container.

The actions of meta-data importation are:

1. The stored procedure openContainer is called with parameters identifying the container
externally.

2. If meta-data of this container is already present in the database (see "Container metadata
in Amos II local database" in Figure 5.1), no meta-data retrieval is performed and the
C++ module populates the local database with the inner meta-data in the container being
opened.

3. Otherwise the stored procedure openContainer calls a foreign function that retrieves
meta-data from the container and adds it to both the local database and wrapper’s
transient container meta-data storage that is defined independently of Amos II.

4. As retrieved meta-data may already be present in the local database, the stored procedure
removeDuplicates is called that compares newly retrieved types’ meta-data and already
stored types’ meta-data. If a newly retrieved type is equivalent to some type that was
stored before, it is removed. Equivalence of types is defined by the following rules

1) Primitive types are equivalent if they are mapped to the same Amos II type.

2) Vector (collection) types are equivalent if they contain elements of equivalent type.

3) Struct (class) types are equivalent if they have the same number of fields (attributes)
and corresponding fields are equivalent.

5.3.2 Breaking circularities

A nontrivial task in wrapping ROOT/C++ objects is handling circular structures. Although all
data could have been stored as surrogate database objects, this approach is cumbersome as we often
need not store all the data from a file but some relatively small data selection. Type Struct has a
disadvantage of not allowing circular structures, i.e., members in children structures cannot point
back to parent structures. The restriction is mainly because of the reference counting based Amos II
garbage collector [4]. Therefore, we have chosen to automatically track circularities while
constructing mapped objects and issue error on noticing any of them. Moreover, to still be able to
retrieve data, we decided to implement support for manual disabling of certain links (see chapter 6
about implementation) while preserving vital information.

5.3.3 Retrieving data

ROW data retrieval functions return Struct objects each of which contains data of a single
object instance stored in a container. However, the user often requires only specific members
(attributes) of the objects. To extract these attributes some Amos II data management functions are
provided. The user is never required to call low level ROW functions directly. Instead the user
issues an AmosQL query in terms of data management functions. After container has been opened
such queries can be executed in the following way:

31

1. The user query is executed in terms of data management functions.

2. The data management functions either call the foreign function row_get to return a Struct
object containing data of a single object stored in the container or row_scan that streams
Struct objects containing data of all the objects in the container.

3. The wrapper constructs Struct objects using its internal meta-data (present in the wrapper
RAM). This is more efficient than querying the Amos II database for meta-data.

4. Data management functions such as getMember(Struct s, Charstring name) -> Object use
meta-data stored in the Amos II database to extract required members from the Struct
objects returned by foreign functions.

For example, consider a derived function definition:

create function getEvents(Struct s) -> Struct as

select getStructElement(getVectorMember(s, "m_pCont"), i) from Integer i;

Here s is a Struct is a meaningful variable if it represents an object of class
McEventCollection. This class contains data member m_pCont which is a collection of objects of
type HepMC::GenEvent. We extract it using the function getVectorMember(Struct s, Charstring

name)-> Vector. We extract all elements of this collection by calling getStructElement(Vector v,

Integer i)-> Struct. Thus the function returns all HepMC::GenEvent objects within a
McEventCollection object represented by Struct s.

32

6 Implementation

6.1 Tools

The general tools used to work with AOD are the projects developed within CERN: ROOT,
POOL and ATLAS Athena. We reviewed advantages and disadvantages of all these frameworks in
sections 3.2 and 3.3. Our claims in those sections are supported by our personal tests and practical
evaluation of the existing software.

As we implemented a wrapper for ROOT object trees, a compulsory tool which must be used
in our work is, of course, ROOT. We based and tested our implementation on the newest currently
stable versions, 5.08/b and 5.11. The other required software for us was Amos II DBMS. As ROOT
is a framework for C++ and Amos II has a full support for call-in and call-out from C, we used C++
language to provide the bridge between the two systems. Some of the functions were implemented
using AmosQL.

Moreover, we aimed to develop a platform independent wrapper version. The two platforms
considered were Microsoft Windows and Linux. We used GNU C++ Compiler (gcc) version 3.3.5
and Microsoft Visual C++ 6 to compile the wrapper for corresponding platforms. Despite of several
minor issues regarding ROOT and Microsoft Visual C++ 6 compiler compatibility, we succeeded to
develop a common source compiling on both platforms.

6.2 Query processing

Consider as an example two possible scenarios of requests from Amos II users. The first
scenario is opening an object tree in a ROOT database. More precisely, a user decides to work with
data stored in file “MyROOTFile.ROOT” which has an internal directory named
“DirectoryInsideROOT” and a tree, or container, named “MyContainer”. In ROW, this container
must first be opened and type information stored in the transient container meta-data storage. After
the container is opened the user may decide to retrieve the first entry in this container.

To open the container, the user needs to call the procedure openContainer:

AODWrap 1> set :myROOTContainer = openContainer("MyROOTFile.ROOT", "DirectoryInsideROOT",

"MyContainer");

10 types imported;

The parameters of openContainer describe the location of a container in ROOT file hierarchy.

Consider what is done in the function openContainer(). First, we want to know if this container
exists at all as a tree in the given file and the given directory. Thus we must call ROOT to actually
open that container. We use a foreign procedure row_openContainer for that reason.

The external opening routine checks the existence of a container and, if it exists, returns a
success value. The foreign procedure has arguments consisting of the file path in the OS, path
inside ROOT file.

Once a container is opened, calling any of the lower layer routines with the same key will not
require a repeated opening of the container, as it will be stored in transient container metadata
storage.

After the container is opened reading is not possible yet as there is no representation of ROOT
types in the database as meta-data objects. Thus, implicitly after opening, the AmosQL layer

33

wrapper part calls the C++ interface again to retrieve the types encountered in the container that
was just opened. That is, it retrieves the types of top-level objects stored in that tree as well as types
of all the types of its member objects, etc. The AmosQL layer also performs a type matching
against the types already defined before in order to avoid duplication. It finishes opening of the
container by removing the types which are duplicates of some previously defined ones, thus
creating a new ROOTContainer object, setting the necessary values of stored functions in the
database, and returning the container object for a user.

Now let’s watch the event flow when a data retrieval query is issued. Let’s say that
:myROOTContainer was successfully opened and the user issues the query:

select get(:myROOTContainer, 0);

[struct #999];

In this case the processing proceeds as follows:

1. Amos II calls function get which is simply a derived function defined in upper wrapper
layer.

2. The function substitutes :myROOTContainer with a key that is associated to this container
and calls a foreign function named row_get:

row_get(<“MyROOTFile.ROOT”, "DirectoryInsideROOT", "MyContainer">, entryNumber);

3. The Amos II optimizer takes action for the multi-directional function row_get and decides
that it is more efficient to get entry number entryNumber of the container by calling foreign
C++ subroutine row_get (bbf binding) or to call the subroutine row_scan which returns all of
the entries (bff binding) and then filter out the entry with a particular key. Say, it decides to
use bbf binding. Then a foreign subroutine row_get() is called with the same arguments.

4. The function for getting an entry is executed in the lower (C++) layer. A ROOT library
function that retrieves all the data and constructs a binary C++ object of a particular
structure is called.

5. The lower layer part uses the information which was collected upon opening the file to
navigate inside the created object and creates an Amos Struct representing it.

6. A handle of a newly created Struct is emitted to upper layer.

6.3 C++ layer

In this section we describe the lower layer of the wrapper (the C++ module) implementation in
detail.

6.3.1 C++ layer organisation

The lower layer wrapper part provides the only necessary functionality to access ROOT via its
C++ interface, to navigate in ROOT files, and to retrieve data stored in them. Since our aim was to
wrap only ROOT object trees we used (not very strictly) object oriented approach to implement this
part.

The classes used in the implementation roughly correspond to those described in the meta-data
schema in section 5.2. Although the call-in interface of Amos II enables querying for any data

34

stored in the database image, for efficiency ROW additionally maintains an internal transient
container meta-data (which actually duplicates part of the meta-data stored in local Amos II
database) together with the handles to meta-data objects stored in the image. It was done mainly
because of efficiency reasons as the retrieval of data members in an object should be fast. Also
certain properties which are needed for the lower layer make no sense for the upper layer and the
user, for example, offset of certain member in a class. In other words we manipulate persistent
meta-data storage in upper layer and it’s transient equivalent in lower layer.

The routines implemented in the lower layer are grouped into the following parts:

1. ROOT database navigation routines. The lower layer provides navigation within ROOT files
which is only possible by calling ROOT functions from C++. The routines are scanning for
all the containers stored in a ROOT database (file), container opening, and container closing.

2. Routines providing synchronization between upper and lower layers. Since we have
representation of meta-data information in both upper and lower layers, we must ensure that
they are always synchronized. This type of methods include exporting (and creation) of
class information of the objects in a specific container to the upper layer, updating type
information (in case upper layer decides to remove a certain type object), setting the
database connection handle (to be able to call Amos II functions), etc.

3. Class meta-data retrieval routines. The most important is a method that uses ROOT streamer
information to automatically construct class information for every object stored in a file. See
the following subsection.

4. Data retrieval routines. For example, a routine to create a Struct object from a given binary
C++ object retrieved by ROOT. The mapping between objects of any of the C++ classes
which are stored in ROOT classes and Amos II type Struct are explained in Section 5.2. The
functioning of the Struct creation routine is further explained in the next subsection.

6.3.2 Data reconstruction using ROOT

Having opened a branch in a TTree, one needs to call a method, TBranch.GetEntry() to
recreate in the RAM the object stored in that branch and get access to it through a pointer. Yet, to be
able to interpret data recreated under the root pointer one must know the inner structure of it. The
pointer structure is automatically created by ROOT’s streamer when opening the file where the tree
is stored. In the RAM ROOT maintains a list of classes (TClass), both those used internally and
those loaded from a ROOT file. This list can be accessed by searching for a class with a specific
name (method TROOT::GetClass(const char *)). Member names and other properties can be further
browsed using the ROOT class methods TClass and TStreamerInfo. Special classes are provided for
representing collections (TVirtualCollectionProxy and the derived classes). These classes enable
description of a collection of practically any type of collections that could occur and most
importantly, the C++ STL collections (vectors, sets, maps, ...).

ROW calls the ROOT functions only once, on importing the meta-data of the types in a
container. After the meta-data is imported, the wrapper uses its own efficient transient container
meta-data storage.

Navigating through binary representation of retrieved transient C++ objects is done using raw
addresses and offsets of members. As the variety of possible classes is so big in C++ neither ROOT
aims to be able to stream all of them (though it covers a large variety of classes) nor do we claim to
handle all the types handled by ROOT. However our wrapper does provide enough flexibility to
extract the following members of any class:

1. Primitive members.

35

2. Arrays of any type.

3. Aggregated objects.

4. Base class members in objects of an inherited class.

5. Pointer members.

6. Elements, if the class is as an array-like class.

Note that array-like classes (STL containers and arrays) are treated more conveniently than
general ROOT C++ classes as ROOT recognizes them as collections. It means that data is extracted
from array-like objects independently of their implementation and used needs not to know their
internal structure.

The basic algorithm to build a Struct object applies the ideas described in chapter 5 to construct
structures representing an object retrieved from a container. It is a modification of depth-first search
(DFS):

− If a data member of an object is a primitive data member, it is converted to an Amos II
object explicitly according to the built-in type mapping table. The algorithm removes
pointer information, e.g., both data of type int and int* are represented as type Integer in
Amos II.

− If the member is an object or a pointer to an object, the algorithm recursively proceeds to
create Struct objects from the bytes located at the member’s address and the Struct is
inserted into the parent object.

− If the member is some collection, for example, an STL vector, data is retrieved using
methods PushProxy() and Get() of class TVirtualProxy, which handles all types of
collections. Inner objects are then converted one by one recursively using the same
algorithm.

An interesting issue is how to handle circular references of pointers. Two problems are solved:

− In order to avoid infinite loops a cache of already accessed objects is maintained during
structure construction. The cache is represented as a hash map with a key consisting of the class
of a C++ object, a pointer to the object, and a pointer to an already created Amos II structure
storing the converted structure. Whenever an object that was previously created is encountered
in the cache a pointer to the structure which was previously assigned for it is returned.

− Because the Amos II garbage collector is not able to reclaim object structures with circular
references, the object creation routine must also track if the object creation path does forms a
cycle. It is done without losing almost any speed at all by flagging all the objects on the current
search path and unflagging whenever the path object is backed up (left). In case of a cycle,
when a flag is encountered that was placed on the path, the structure that is being created is
deleted, an error message issued, and the user is able to manually declare disabled fields causing
circularities. This is done by setting that field’s expansion attribute to 0 – see meta-data schema
in section 5.1.. Otherwise, the structure is successfully constructed and is emitted to Amos II
connection as a function result.

6.3.3 Calling Amos II back from the wrapper

Amos II call-in and storage interfaces are extensively used all throughout the lower layer
implementation. The lower layer is responsible for creating instances of the new surrogate Amos II
type RootType and the literal types Struct, Vector, Integer, Charstring, and Real which are all Amos

36

II types. Furthermore, it sets function values for RootType and accesses the Amos II database image
to ensure synchronization between the two layers. The basic data structures used are Amos II
Structs and Vectors which are the transferring medium between the lower and higher layers as well
as between the wrapper and Amos II environment.

Below we give the list of the most important Amos II call-in interface C functions called back
from ROW and short comments:

make_struct(size, type) – creates a transient Struct object with size members and meta
description refered by type. This object can represent most of the C++ objects stored with ROOT;

new_array(size) – creates a transient array (Vector) object of the specified size. Arrays were
used to represent any C++ collections wrapper was implemented for;

struct_set(bindtype, index, object) – sets the index’th element of a Struct object. It is used
to create referenced objects. A typical example of using this function is a recursive calls from the
object creation method fillObject. Its return value is a pointer to another Struct or a Vector:
struct_set(varstacktop, i, fillObject(...));

a_seta(array, index, object) – sets the index’th element of an array. It was used to fill
arrays;

struct_free(s) – release reference to the Struct s;

a_free(object) – release reference to the specified object;

a_setf(source, destination) – makes a reference to destination from source. This is similar
to assignments but the system also updates the object reference counters.

a_emit(context, tuple) – emits a result placed in a tuple as the result of a foreign Amos II
function;

a_newinteger(), a_newdouble(), a_newstring() - create and initialize literal objects;

a_gettype(connection, name, stopOnError) – retrieve the specified Amos II type identifier.

6.3.4 Caching

To speed up data retrieval in the cases when a single entry can be accessed many times in the
same query, a simple caching mechanism is implemented. A fixed number of the most recently
accessed entries can be remembered. This gives a dramatic improvement on non-trivial queries
when Amos II must read each entry several times.

6.4 The AmosQL layer

This layer is physically organised into five files:

• external.amosql contains the foreign function definitions to access the lower layer,

• schema.amosql contains the meta-data schema definitions,

• container.amosql contains ROOTContainer type management functions,

• struct.amosql defines the Struct literal type and

• aoddefs.amosql the main script that includes all previous scripts for convenient script
execution.

37

The upper layer code is small compared with the lower layer. The upper layer interacts with
C++ layer using it’s foreign function interface. A foreign function definition is realized using the
following calls [3]:

a) Define the implementation in C of a foreign AmosQL function, e. g.,

void row_open(a_callcontext, a_tuple)

row_open opens a container to be used in AmosQL queries;

b) Register the foreign function name to Amos II:

 a_extfunction("row_open", row_open);

c) Define the foreign function signature as AmosQL:

create function row_open(Charstring file, Charstring innerPath, Charstring tree)->Integer

as foreign "row_open";

row_open is one of the typical lower layer’s interface functions. Although they could be called
directly by the user, the upper layer provides a more convenient encapsulation of the lower layer’s
interface as well as additional functionality. It manages the ROOTContainer Amos II type defined
in the meta-data schema. Instead of always repeating a compound key identificator (file, innerPath,
tree) the user can instead operate with a single ROOTContainer object. ROOTContainer functions
allow to access both key and type information associated with a particular container.

The duplicate type removal stored procedure is also implemented in upper layer.

The upper layer uses a trigger for setting which members of a certain type should not be
retrieved. This provides an escape from forming of cyclic objects of type Struct which are not
supported by Amos II garbage collector. As meta-data objects are persistent objects in the database,
the lower layer implementation maintains a transient copy of meta-data in the memory. Whenever
the object in the image is changed, lower layer must be informed to also update its information. It
easily done by overriding default Amos II setter using function set_setfunction() with manually
programmed code that performs a suitable call to external layer (see Amos II documentation, [3, 4,
17]).

6.5 Limitations

In this section we discuss some system limitations.

6.5.1 Reference breaking

Consider two types, A and B:

class B;

class A {

 B * b;

38

};

class B {

 A * a;

};

In the case when some instances of some type contain circular references and for other
instances of the same type there is no such circularity some information can be lost.

In figure 6.1 an instance of a structure with circular references is displayed. a, a1 and a2
represent instances of type A (containing attribute of type B) and b represent instances of type B
(containing pointer to instance of type A). Assume that instances a and a1 are top layer objects of
respective structures 1) and 2). Presence of such instances in a file read by ROW would require the
user to break manually either references from A to B. This makes access to attribute b to be lost.
Alternatively, the link from B to A could be broken, which would cause loss of access to instance a2
(assuming that it is not referenced by anything else).

We offer a simple solution5 in special cases when objects of type A have a field that uniquely
identifies them. For such cases instead of completely breaking a link (i.e. storing a NIL for each
member a of B) we leave ghost objects at b.a. They are of the same form as object a, but have only

5 In this case a user needs to issue the following commands:
set expandable(“B”, “a”) = 0;
set expandable2(“A”, “id”) = 1;
Here “id” is a field uniquely identifying objects of type A. A more detail description of usage of the attributes and
functions is given in the ROW definition files.

Figure 6.1. Circular references

39

their identifier field not NIL. Restoring a whole object from such a “ghost” object is, on the other
hand, also left for a user.

6.5.2 Limited variety of accessible ROOT trees

Another restriction is on variations of the trees handled by ROW. Currently it only handles
those object trees that have a single top branch. This was done to simplify navigation in the ROOT
files. Otherwise a key specifying an object would additionally require one or two strings describing
the object’s position in a tree. For the AOD files where we performed our tests our implementation
was satisfactory. Browsing in trees can be extended in future by making minor modifications in our
code.

6.5.3 Bulky retrieval of data

As it was explained in Section 3.3.3, collections of objects in ROOT trees are stored in a
branch. If an object has a member which is also an object, a sub-branch can be created to hold this
member for each of the “upper” objects. Currently it is only possible to retrieve a whole top level
object in a branch and this object can be big. A Struct representing it is constructed and passed to
the user. Afterwards the user is able to use the getMember(structure, memberName) function to
access the relevant data. If the user’s members to be accessed are known in advance, only the
desired substructure could be constructed instead of first building a whole top object structure and
then selecting particular substructure in it. To put it simply, the current work of the wrapper is as
follows: first a tree (a Struct object) with a possibly huge number of branches is returned, then
certain sub-trees are picked from that tree. If the sub-trees are considerably smaller than the tree, it
is more efficient to retrieve (at C++ layer of the wrapper) only the relevant sub-trees and not to
generate the branches of the rest of the top tree. This extension could make a significant
improvement in reading time if the split level (defined in 3.3.3) of ROOT branches is high.
However it would require analysis of how it can be implemented with the Amos II query optimizer.
For example, the optimizer could decide that only a sub-sub-sub-objects are enough to be retrieved
instead of fetching the whole objects and then discarding most of the data.

Additionally, as our experiments show (see chapter 7) the major part of time is taken by
construction of Struct objects. The fewer objects were constructed, the better performance could be
expected. So even if branches were not split and ROOT could only be able to read a whole top-level
object at once we could have an improvement.

6.5.4 Memory deallocation problems in ROOT

Until version 5.13 ROOT does not support automatical memory deallocation for emulated
objects. This is a serious limitation for our wrapper but also for ROOT. As soon as it is
implemented, almost no changes need to be done in the wrapper code to call the deallocator.

40

7 Application to Athena AOD files
Although LHC and ATLAS detector are not running yet, software to simulate AOD data exists.

One of the most widely used packages is ATLAS Fast Simulation Package (AtlFast, [10]) which is
based on Athena Framework. It produces event datasets using Monte Carlo reconstruction chain. It
should be pointed out that there is no strict common layout for AOD files. To store particle
information AtlFast uses a number of containers (ElectronContainer, PhotonContainer, etc.) which
are internally represented as ROOT trees and using AthenaPool. Another large set of simulated files
was generated in Rome workshop in 2005 [15] one generator of which was called DC2. We also
used some of AOD datasets simulated using the same software on NorduGrid. This type of files has
relatively few containers inside, a single McEventCollection contains all the event data. It is
possible to browse the file structure using ROOT’s graphical browser (figure 7.1).

In all the datasets we worked with the names of object containers begin with prefix
“POOLContainer_”. McEventCollection is a class developed by HEP (High Energy Physics)
software [9]. There is a ROOT tree with a single object branch created to store it. In figure 7.2 you
can see a structure of a single McEventCollection object. The files we tested our wrapper on
contained 1000 or 10000 of records in McEventCollection branch.

The other two meaningful containers in this type of files store EventInfo and DataHeader
objects. From EventInfo meta-data describing each of the events can be extracted and DataHeader
holds class structure information.

Of course, in order to access and use the data, the user should be aware of the layout (schema)
of the file. The physical layout can be investigated using ROWs navigation interface. However, the
semantics of containers need a higher level interpretation. Much information is also provided by
class member names, which are actually private data members in C++, for example m_alphaQED

in class HepMC::GenEvent. It is important to note that the wrapper does not allow calling methods
of objects. For example, McEventCollection contains a method sort() which is not callable from
ROW. Thus only the data members contained in an aboject can be retrieved and tthis is a drawback
comparing to accessing objects through Athena having access to all possible methods.

Figure 7.1: Snapshot of ROOT browser window

41

7.1 How to query AOD files

Two examples were presented in section 2, which also used AOD files. The examples skipped
many details which should be clearer now. Let’s focus on retrieving of some data from a Rome
AOD file. Our example file is named “rome.004100.FAST_AOD.T1_McAtNLO_top._00001.pool.ROOT"
and was downloaded from the ATLAS AOD sample site [15]. To open one of the containers,
McEventCollection, we issue the following queries to Amos II:

AODWrap 1> declare ROOTContainer :c;

<#[OID 905 “ROOTCONTAINER”],AMOS_C>

0.000168 s

AODWrap 1> set :c = openContainer("rome.004100.FAST_AOD.T1_McAtNLO_top._00001.pool.ROOT",

"", "POOLContainer_McEventCollection");

<Warnings by ROOT>

20 types imported

0.553148 s

Reading an entry with an McEventCollection is then as simple as

AODWrap 2> declare Struct :s;

<#[OID 985 “STRUCT”],AMOS_S>

<#[OID 905 “ROOTCONTAINER”],AMOS_C>

7.4e-05 s

AODWrap 2> set :s = get(:c, 10);

The output is however:

LOOP DETECTED! ROOT OBJECT WRAPPER CANNOT HANDLE LOOPS! Please use set

expandable(ROOTTypeObject, memberName) = 0 to disable members causing loops.

Figure 7.2: Structure of a single record for object McEventCollection

42

The detected loop is: McEventCollection->(Start of cycle)m_pCont[0]-

>m_particle_barcodes[0]->second->m_end_vertex->m_event-> (back to ...)m_pCont[0](End of

cycle)

0.111242 s

After inspecting the structure of object, the user realizes that loops are caused by a back
references to parents and relationship between GenVertex and GenParticle. To be able to continue
reading one must break the loops:

set expandable(getType("HepMC::GenVertex"), "m_event") = 0;

set expandable(getType("HepMC::GenVertex"), "m_particles_in") = 0;

set expandable(getType("HepMC::GenVertex"), "m_particles_out") = 0;

set expandable(getType("HepMC::Flow"), "m_particle_owner") = 0;

And now the get() routine can be called successfully.

The default calls for getting type information are provided by functions struct_type() and
objects of superclass ROOTType. We can simplify access of particular members or sub-members of
an object. In a couple lines in AmosQL we defined the following user function for navigating
Struct objects (see Appendix A, test C for the declaration):

particle(Struct s, Integer i)->Struct

This function returns particles at a certain position of the first event in McEventCollection assuming
that Struct s represents an McEventCollection object. In the similar manner, any of the member
functions can be defined to make them considerably shortened.

Finally we can check what information is stored for the event:

AODWrap 6> set :c = openContainer(”rome.004100.FAST_AOD.T1_McAtNLO_top._00001.pool.ROOT”,

“”, “POOLContainer_EventInfo”);

6 types imported

0.129168 s

AODWrap 7> set :s = get(:c, 10);

0.121476 s

AODWrap 9> toVector(cast (getmember(:s, “m_event_ID”) as Struct));

{{”m_event_number”,10},{”m_run_number”,0},{”m_time_stamp”,0}}

7.2 Performance evaluation

To evaluate the performance of ROW we selected a number of containers from AOD files of
different sizes and ran various data retrieval functions on different types of files. We performed 3
tests of increasing complexity. Tests A and B execute function get() to fetch random entries from a
single or several containers. Test C shows how efficiently ROW selects specific data members.
Queries of the tests are shown in Appendix A.

The tests were:

A - McEventCollection container in file named dc2.003007.evgen.A1_z_ee._00092.pool.root
generated on ATLAS data challenges phase 1 at NorduGrid. It has a very complex structure with

43

hundreds of particles and vertices in each event. The test function was retrieving 1000 random
(uniformly) records.

B – ElectronContainer containers in 118 AOD files from a Rome data set. The test function
was to retrieve 5000 random entries from all the containers, first uniformly by randomly choosing
one of the containers then getting one of its entries. This test was presented in Chapter 2.

C – The same conditions and data as in the test C, only additional data extraction is done in
Amos II afterwards. That is, for each of the 1000 records the momentum of each particle in a record
(event) was extracted and printed from a file dc2.003007.evgen.A1_z_ee._00092.pool.root. The
momentum consists of only 3 doubles, dx, dy and dz. Each record had set of approx. 875 particles
in average. Thus approximately 15 MB of data was actually extracted. The query was written
without any optimization accessing Struct members by names.

There are two lines for each test. The first line of values represent results when caching
mechanism is not used and the second one shows how caching speeds up the performance when
1000 last entries are kept in the cache.

Note also that (Appendix A) to get optimal results we use precompiled queries (i.e. queries
defined as derived functions in AmosQL) as well as random numbers generated in advance so that
query optimization time is not included in the tests.

44

 Caching Accessed

records

(overall

records)

Overall

objects

(structs

and

vectors)

created

Size of

accessed

records in

ROOT,

uncompresse

d

Time
6
 of

ROOT

GetEntry()

, s (% of

all)

Time to

create

objects, s

(% of

all)

Query

execution time,

s (% of all)

uncached 1000(10000) 7680052 138423 KB 74,436
(67%)

108,275
(98%)

110,418
(100%)

Test A

cached 1000(10000) 7371604 132864 KB 66,199
(68%)

95,714
(99%)

96,138
(100%)

uncached 5000(5336) 834318 60251 KB 7,186
(64%)

10,233
(91%)

11,213
(100%)

Test B

cached 5000(5336) 552172 39877 KB 4,774
(66%)

6,848
(96%)

7,138 (100%)

uncached 1000(10000) 7675144
(~875000
structs
projected)

138334 KB
(~15380 KB
projected)

44,669
(37%)

79,114
(65%)

122,024
(100%)

Test C

cached 1000(10000) 7366666
(~840000

structs
projected)

132775 KB
(~14760 KB
projected)

42,330
(37%)

73,448
(64%)

115,497
(100%)

Table 7.1, Performance evaluation

In test A we see that wrapper reconstruction part takes roughly the same time as ROOT object
reading. A more detail graph of performance time is given in Figure 7.3. Taking into account that
we can not exploit such properties as direct addressing while constructing Amos II vectors, we
consider the wrapper performance very satisfactory.

6 Time was calculated in seconds using default Linux function gettimeofday() and default Amos II output on idle

Linux. Note, that times in the rows are accumulated: object creation includes also reading with ROOT and query
includes all operations .The overall time includes both query optimization and query execution (when the result is
constructed) time. The time to open/close containers or to generate random values is not included. The evaluated
queries are denoted in bold in Appendix A.

45

Test B measured performance of the wrapper with entirely different conditions: we had many
relatively small input files and we scanned them all at once. The main difference from the case A is
opening time. We didn’t include file opening (and type importing) time in the table. For test A (570
MB) it takes approximately 0.55 s, for test B – 22.51 s (118 files, 774 MB overall, but
ElectronContainers contribute only around 70 MB to this amount).

Finally, test C evaluated how fast Amos II queries can be executed on extracted data structures.
While almost all values were very similar to those of test A, extraction of certain fields in Amos II
took a considerably longer time, namely, ten times longer than work of wrapper. We believe that it
is possible to achieve much better performance in Amos II by either optimizing a query itself or
implementing a specific handling of Struct for the Amos II optimizer. Unfortunately this task is also
out of the scope of our project. Also see the other possible optimization in section 8.2.

The three tests which evaluated ROW included only one complex query, namely, the last one.
More advanced queries using conditions and involving many containers can be easily constructed as
well. In this case, however, an attention should be paid to correct construction of a query.
Otherwise, the slow get() function can be called many times with different arguments. We partially
resolve this issue by implementing a simple caching mechanism. In the example queries caching
saves up to 36% time. We found that caching is extremely effective for even more complex queries
when Amos II optimizer cannot find a strategy to read each entry only once. The speedup is up to
500%, however, both due to lack of time and for the reason that our aim is to test only low level
functioning we do not present that kind of experiments.

46

Figure 7.3, Time to perform a query in tests A and B. Horizontal axis - number of get() call,

vertical - time in microseconds. GetEntry() time (lines below) corresponds to time of internal

ROOT function. Wrapping time is time of GetEntry() plus time to create an Amos object from

a record. The peaks probably indicate disk accesses.

Test A

Test B

47

8 Conclusions

In this project we have implemented a fully functioning wrapper for a broad extent of analysis
data files that are created with ROOT. This wrapper in turn broadens the capabilities of object-
oriented functional relational DBMS Amos II. It enables physicists or programmers to combine the
flexibility of ROOT storage manager and speed of DBMS queries.

During our work we investigated the best ways to work with data sets used in particle physics,
particularly in the data generated by LHC without using Athena framework software. We found that
the simplest and the fastest way is to base data retrieval on ROOT.

Furthermore we managed to map the structures and metadata used in ROOT, i.e. the C++
objects organised into containers, into entities and data structures in Amos II.

Lastly we performed tests of our wrapper on currently existing simulated data sets of ATLAS
experiment and found that our implementation runs fast and is general enough to open and read data
generated and tested with Europe’s leading physics computing software to date.

We hope that our efforts and insights were useful in further ROOT, Amos II and other related
software development.

It seems that there is much to be improved in both LHC software and Amos II. Firstly, projects
POOL and Athena should improve and realize their own goals, namely become suitable for many
users to work within or outside Grid environment. As we have seen during our project, only ROOT
provides both satisfactory functionality and documentation.

As for the Amos II part, much of the improvement could be obtained optimizing ROW queries
passed to. We have shown in our experiments that queries formulated in naïve way performs rather
inefficiently accessing many Struct members, as without caching the ROOT files are accessed many
times. A possible improvement from the wrapper part would be to return only certain subset of data
instead of a whole record. In this way we would not save any time in ROOT part (3 row from the
bottom, Table 5.1), but Amos II would then receive Structs of smaller size to perform queries on
and consequently would spend less time.

One particular drawback of reading ATLAS generator data files using only ROOT is that while
we are able to retrieve data members, we loose access to methods operating on them which are all
implemented in the Athena framework. It means that the necessary functions have to be redefined if
one wants to perform analysis on data wrapped for Amos II. However, many projects in CERN are
using separate data and software to process it. It means that in the future not only data members, but
also all functions can be accessed with more kinds of software. This functionality is to be provided
in Reflex package started by project SEAL [21] and now continued within ROOT and efforts of
POOL and Athena framework developers. In this case it could be possible to further extend our
ROOT object tree wrapper to also automatically wrap object methods.

On the other hand hierarchy and functionality related with cataloguing, uniquely indexing
objects, etc., cannot be correctly supported using only the lower layer, ROOT, instead of Athena or
POOL. It means that so far Amos II user has to maintain management of his own set of physical
datasets. As soon as POOL becomes more flexible and easier to use, two kinds of improvement can
be made:

A hierarchy navigation wrapped with our software creating an additional module and/or
functions in the schema.

− An alternative wrapper can be implemented using only POOL or Athena interfaces.

48

Lastly we leave recursive links problem only partially resolved. That is we only detect loops in
data and leave for a user to manually break them. There are also two ways to make this issue
easier:

− Change the Struct data type in Amos II to support cycles. It would require extending the
garbage collector.

As any programs, our wrapper is not likely to be a bug-free. As it was noticed in Section 6.5.4
a very serious limitation is that ROOT’s ability to free the allocated memory does not work yet.
There are some compatibility issues for reading ANSI strings in early versions of C++. For the
ROOT version we implemented (5.11) we have not noticed any other bugs. However, ROOT is an
evolving system, sometimes not supporting even its older versions, so to keep up with state-of-the-
art wrapper should be continuously improved.

Finally we are looking forward to applications of our wrapper. It provides only intermediate
interface which we hope is easy to cope with for a programmer who knows Amos II but perhaps not
for a physicist. Future work should investigate the best ways to apply our work for particle physics
analysis, provide a good test background for both ROOT and Amos II and possibly offer
improvements for the wrapper. We expect that integrating and using our software in the Grid will
also play a role in NorduGrid development and open new areas of work at UDBL in Uppsala
University.

49

9 Acknowledgements

We would like to thank the two ROOT developers, Philippe Canal and Axel Naumann,
working at CERN who never hesitated to answer and advice on the principles of object streaming
and programming subtleties in ROOT.

Also we received a great help from professor Tore Risch who made many useful insights when
carrying out the project and writing the report as well as from our supervisor Ruslan Fomkin who
introduced us to principles and development of physics software.

50

10 References
1. T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Distributed

Mediator System, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional
Approach to Data Management - Modeling, Analyzing and Integrating Heterogeneous Data,
Springer, ISBN 3-540-00375-4, 2003.

2. R.Fomkin and T.Risch: Managing Long Running Queries in Grid Environment, 1st Intl.
Workshop on GRID Computing and its Applications to Data Analysis (GADA’04), Lacarna,
Cyprus, Oct. 2004, in R. Meersman et al. (Eds.): OTM Workshops 2004, LNCS 3292, pp.
99–110, 2004

3. T.Risch. Amos II External Interfaces, Uppsala University, 2000.
4. T.Risch. ALisp User’s Guide, Uppsala University, 2000.
5. J. Tysklind: Wrapping a Scientific Data Management System Uppsala Master’s Theses in

Computing Science 301, ISSN 1100-1836, 2005.
6. ROOT Users Guide v5.08. CERN. Online version:

http://ROOT.cern.ch/ROOT/doc/ROOTDoc.html.
7. F. Rademakers, R. Brun. ROOT: an Object Oriented Data Analysis Framework. Linux

Journal. 1998.
8. J. Knobloch. LHC Computing Grid. Technical Design Report. 2005.

http://lcg.web.cern.ch/LCG/tdr/
9. M. Dobbs, J.B. Hansen. HepMC: a C++ Event Record for Monte Carlo Generators. Comput.

Phys. Commun. 134 (2001) 41.
10. E. Richter-Was, D. Froidevaux, L. Poggioli, ATLFAST 2.0 : a fast simulation package for

ATLAS, ATL-PHYS-98-138, November 1998. (http://www.hep.ucl.ac.uk/atlas/atlfast/)
11. See Wikipedia, ATLAS experiment, http://en.wikipedia.org/wiki/ATLAS_experiment (as of

Jun. 12, 2006).
12. See LHC homepage, http://lhc.web.cern.ch/lhc/.
13. Atlas Athena Developer’s Guide. Draft. Online version:

http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/
14. See ATLAS wiki pages. https://uimon.cern.ch/twiki/bin/view//EventDataModel.
15. ATLAS AOD simulation sample site,

http://www.nikhef.nl/pub/experiments/atlaswiki/index.php/AtlasATLASTopPhysicsSamples
.

16. See POQSEC project homepage. http://user.it.uu.se/~udbl/poqsec.html.
17. See Amos II homepage at UDBL. http://user.it.uu.se/~udbl/amos/.
18. See POOL homepage. http://pool.cern.ch (as of Aug. 9, 2006)
19. Amos II User’s Manual. http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html.
20. The Grid Café - What is Grid?. CERN. (As of Aug. 26, 2006).
21. See SEAL homepage. http://seal.cern.ch (as of Aug. 26, 2006).
22. ATLAS Data Challenges homepage.

http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/DC/index.html
23. Athena framework. https://twiki.cern.ch/twiki/bin/view/Atlas/WorkBookAthenaFramework
24. GEANT tool homepage. http://wwwasd.web.cern.ch/wwwasd/geant/

51

Appendix A. Test queries.

Common for all tests

/* random numbers used in tests A and C */

create function randints(Integer)->Integer;

set randints(i) = r from Integer i, Integer r where i = iota (0, 999) and r =

rand(10000);

/* random numbers used in test B */

create function randcont(Integer i key)->Integer r;

set randcont(i) = r from Integer i, Integer r

 where i = iota (0, 4999) and

 r = rand(99999);

create function randentries(Integer i key)->Integer r;

set randentries(i) = r from Integer i, Integer r

 where i = iota (0, 4999) and

 r = rand(99999);

/* any big number can be used instead of 99999 */

row_setcachesize(0); /* to see performance without cache comment out to see performance

using cache */

Test A

declare RootContainer :c;

set :c = openContainer("dc2.003007.evgen.A1_z_ee._00092.pool.root", "",

"POOLContainer_McEventCollection");

set expandable(getType("HepMC::GenVertex"), "m_event") = 0;

set expandable(getType("HepMC::GenVertex"), "m_particles_in") = 0;

set expandable(getType("HepMC::GenVertex"), "m_particles_out") = 0;

set expandable(getType("HepMC::Flow"), "m_particle_owner") = 0;

create function testA(RootContainer c) -> Integer

 as select count (

 select get(c, randints(i)) from Integer i

);

testA(:c); /* only this query was measured */

closeContainer(:c);

Test B

set :cs = /* automatically generated code to open 299 data files */

{

52

openContainer('rome/rome.004101.recov10.T2_McAtNLO_top500._00001.AOD.pool.root',

'','POOLContainer_ElectronContainer'),

openContainer('rome/rome.004101.recov10.T2_McAtNLO_top500._00004.AOD.pool.root',

'','POOLContainer_ElectronContainer'),

...

openContainer('rome/rome.004101.recov10.T2_McAtNLO_top500._00299.AOD.pool.root',

'','POOLContainer_ElectronContainer')

};

create function testB(Vector vc)->Integer as

select count (

 select get(c, cast(mod(randentries(i), entryCount(c)) as integer)) from Integer i,

RootContainer c where c = cast (vc[cast(mod(randcont(i),count(vc)) as integer)] as

RootContainer) and i = iota(0, 4999)

);

testB(:cs); /* only this query was measured */

for each RootContainer c closeContainer(c);

Test C

create function particle(struct s, integer i)->struct as select

getStructMember(getStructElement(getVectorMember(getStructElement(getVectorMember(s,

"m_pCont"), 0), "m_particle_barcodes"), i), "second");

create function length(real dx, real dy, real dz)->real as select sqrt (dx*dx + dy*dy

+dz*dz);

create function countOfLengths(RootContainer c) -> integer as

select count(

 select length(cast (getMember(mom, "dx") as real), cast(getMember(mom, "dy") as real),

cast (getMember(mom, "dz") as real))

 from struct s, struct mom, integer i, integer j, struct rec

 where

 rec = cast (get(c, randints(i)) as struct) and

 s = particle(rec, j) and

 mom = cast (getMember(cast(getMember(s, "m_momentum") as struct), "pp") as struct)

 and i = iota(0, 999)

);

declare RootContainer :c;

set :c = openContainer("../data/dc2.003007.evgen.A1_z_ee._00092.pool.root", "",

"POOLContainer_McEventCollection");

set expandable(getType("HepMC::GenVertex"), "m_event") = 0;

set expandable(getType("HepMC::GenVertex"), "m_particles_in") = 0;

set expandable(getType("HepMC::GenVertex"), "m_particles_out") = 0;

set expandable(getType("HepMC::Flow"), "m_particle_owner") = 0;

testC(:c); /* only this query was measured */

closeContainer(:c);

