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Abstract. We give a sound and complete procedure for fence insertion
for concurrent finite-state programs running under the PSO memory
model. This model allows “write to read” and “write-to-write” relax-
ations corresponding to the addition of an unbounded store buffers be-
tween processors and the main memory. We introduce a novel machine
model, called the Hierarchical Single-Buffer (HSB) semantics, and show
that the reachability problem for a program under PSO can be reduced
to the reachability problem under HSB. We present a simple and effec-
tive backward reachability analysis algorithm for the latter, and propose
a counter-example guided fence insertion procedure. The procedure in-
fers automatically a minimal set of fences that ensures correctness of the
program. We have implemented a prototype and run it successfully on
all standard benchmarks, together with several challenging examples.

1 Introduction

For performance reasons, most of the modern architectures implement weak
memory models [16,5]. Such models allows the reordering of memory instruc-
tions issued by the set of processes. For instance, the most common reordering
is “write to read” which allows that writes to shared memory may be delayed
past subsequent reads from memory. The “write to read” reordering leads to the
Total Store Order (TSO) memory model that is adopted by Sun’s SPARC and
x86 architectures [22,23]. Adding the “write to write” reordering to TSO leads
to the Partial Store Order (PSO) memory model (described in the Sun’s SPARC
architecture [24]). The “write to write” reordering may swap the order between
two writes of the same process if they concern different variables.

The gain in the performance through the use of weak memory models comes
with a price since reasoning about the behavior of even very small programs
running under weak memory models is more difficult and counter-intuitive than
under the usual Sequentially Consistent (SC) memory model. In fact, the SC
memory model is the one that is usually assumed by the programmers where
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the program instructions of different processes should appear as if these instruc-
tions are interleaved in a consistent global order. This means that a program
under weak memory models can deviate from its intended behaviour (under the
SC model) and hence violates its specifications. For example, several mutual
exclusion algorithms and produce-consumer protocols become incorrect when
executed under weak memory models. To avoid such undesired behaviours, pro-
grammers can use special memory fence instructions that prevent some reorder-
ing of instructions issued before and after the fence. Then, an important problem
is to find the set of fences that ensures the correctness of programs when run
under a weak memory model without compromising the performance. In fact,
inserting too many fences would result in a degradation of program performance.

In this paper, we present the first precise and sound method for automatic
fence insertion for concurrent finite-state programs running under the PSO mem-
ory model. To this end, we make the following contribution:

•We propose a new model, called the Hierarchical Single-Buffer (HSB), that
is equivalent to the PSO memory model and allows the application of efficient
infinite state model-checking techniques.

• A simple and effective algorithm to solve the reachability problem under
HSB, using a backward analysis algorithm.

• A fence insertion procedure that infers a minimal fence set in order to
correct programs under PSO.

• A prototype that is integrated to Memorax [2,1,3]. We evaluate our prototype
on a wide range of benchmarks. The download link can be seen in Section 6.

Related Work Weak memory models are an active research area today. Many
techniques have been developed to help programmers, in the form of precise
model-checking algorithms (e.g., [9,10,12]), monitoring and testing tools (e.g.,
[13,14,21]), explicit state-space exploration (e.g., [20,19]), bounded model check-
ing (e.g., [17,25,8]) and program transformations (e.g., [11,7,12]). Most of these
works have focused on different memory models than PSO and thus are not di-
rectly comparable. Almost all the existed works on the PSO memory model are
either (i) based on under-approximation techniques and which leads to sound but
potentially imprecise analysis (e.g., [20,14]), or (ii) based on over-approximations
techniques and which leads to potentially unsound analysis (e.g., [19,6,15]). Fi-
nally, checking safety property for finite-state programs running under TSO and
PSO memory models has been shown to be decidable with a non-primitive re-
cursive complexity [9,10]. A tool implementing an exact procedure for checking
safety properties for programs running under TSO was presented in [2,1,3]. Our
reachability algorithms can be seen as an efficient instance of the work [10] to
the PSO memory model. Moreover, [10] does not discuss fence insertion.

2 Preliminaries

In this section, we introduce some notations and definitions that we use later.



Notation We use N to denote the set of natural numbers. For sets A and B, we
use [A 7→ B] to denote the set of all total functions from A to B and f : A 7→ B
to denote that f is a total function that maps A to B. For a ∈ A and b ∈ B,
we use f [a ←↩ b] to denote the function f ′ defined as follows: f ′(a) = b and
f ′(a′) = f(a′) for all a′ 6= a.

Let Σ be a finite alphabet. We denote by Σ∗ (resp. Σ+) the set of all words
(resp. non-empty words) over Σ, and by ε the empty word. The length of a word
w ∈ Σ∗ is denoted by |w|; we assume that |ε| = 0. For every i : 1 ≤ i ≤ |w|, let
w(i) be the symbol at position i in w. For a ∈ Σ, we write a ∈ w if a appears
in w, i.e., a = w(i) for some i : 1 ≤ i ≤ |w|. For words w1, w2, we use w1 · w2 to
denote the concatenation of w1 and w2. For a word w 6= ε and i : 0 ≤ i ≤ |w|,
we define w� i to be the suffix of w that we get by deleting the prefix of length
i, i.e., the unique w2 such that w = w1 · w2 and |w1| = i.

Set Ordering Given an ordering v on C, we say that v is a well-quasi ordering
if for every (infinite) sequence c0, c1, . . . in C, there are i < j with ci v cj . The
upward closure of a set C wrt. v is defined as C↑:= {c′| ∃c ∈ C, c v c′}. A set C
is upward closed if C = C↑. We use Min (C) to denote the minor set of a given
set C wrt. v, that satisfies the following conditions: (i) for all c ∈ C there is a
c′ ∈ Min (C) such that c′ v c, and (ii) for all c, c′ ∈ Min (C), c 6= c′ implies c 6v c′.

Transition System A transition system T is a triple (C, Init,−→) where C is a
(infinite) set of configurations, Init ⊆ C is a set of initial configurations, and
−→ ⊆ C × C is a reflexive transition relation. We write c−→ c′ to denote that
(c, c′) ∈ −→, and ∗−→ to denote the reflexive transitive closure of −→. A run π of
T is of the form c0−→· · ·−→ cn, where ci−→ ci+1 for all i : 0 ≤ i < n. Then, we
write c0

π−→ cn. We use target (π) to denote cn. Notice that, for configurations
c, c′, we have that c

∗−→ c′ iff c
π−→ c′ for some run π. The run π is said to be a

computation if c0 ∈ Init. A configuration c is said to be reachable if there is
a computation π such that c = target (π). Two runs π1 = c0−→ c1−→· · ·−→ cm
and π2 = cm+1−→ cm+2−→· · ·−→ cn are said to be compatible if cm = cm+1. Then,
we write π1 • π2 to denote the run π1 = c0−→ c1−→· · ·−→ cm−→ cm+2−→· · ·−→ cn.
Given an orderingv on C, we say that−→ is monotonic wrt.v if whenever c1−→ c′1
and c1 v c2, there exists a c′2 such that c2

∗−→ c′2 and c′1 v c′2. We say that −→
is effectively monotonic wrt. v if, given the configurations c1, c

′
1, c2 described

above, we can compute c′2 and a run π such that c2
π−→ c′2.

3 Concurrent Programs under PSO

A concurrent program P has a finite number of finite-state processes, each with its
own program code. Communication between processes is performed by reading
and writing through a shared-memory with finite number of shared variables
and finite domains. First, we introduce the PSO semantics (similar to the one
described in [20]) and its reachability problem. Then we propose a new model,
the HSB model, that we use to analyse programs under the PSO model.



3.1 Syntax

We assume a finite set X of variables ranging over a finite data domain V . A
concurrent program is a pair P= (P,A) where P is a finite set of processes and
A = {Ap| p ∈ P} is a set of extended finite-state automata (one automaton Ap
for each process p ∈ P ). The automaton Ap is a triple

(
Qp, q

init
p , ∆p

)
where Qp

is a finite set of local states, qinitp ∈ Qp is the initial local state, and ∆p is a finite
set of transitions. Each transition is a triple (q, op, q′) where q, q′ ∈ Qp and op
is an operation. An operation is of one of the following six forms: (i) the “no
operation” nop, (ii) the read operation r(x, v), (iii) the write operation w(x, v), (iv)
the full fence operation mfence, (v) the write-write fence operation sfence, and
(vi) the atomic read-write operation arw(x, v, v′), where x ∈ X, and v, v′ ∈ V .
For a transition t = (q, op, q′), we use source (t), operation (t), and target (t) to
denote q, op, and q′ respectively. We define Q := ∪p∈PQp and ∆ := ∪p∈P∆p. A
local state definition q is a mapping P 7→ Q such that q(p) ∈ Qp for each p ∈ P .

3.2 PSO Semantics

Transition System We define the transition system induced by a program run-
ning under the PSO semantics. To do that, we define the set of configurations
and transition relation. A PSO-configuration c is a triple

(
q, b,mem

)
where q is

a local state definition, b : P 7→
[
X 7→ (V ∪ {?})∗

]
, and mem : X 7→ V . Intu-

itively, q(p) gives the local state of process p. The value of b(p)(x) is the content
of the buffer belonging to variable x of p. This buffer associates a sequence of
values from V to the variable x, where each value v represents a write operation
that assigns v to the variable x. The buffer may also contain the write-write
fence symbol ? that restricts the ordering of writes. In our model, writes will be
appended to the tail of buffer (the right most one), and fetched from the head
of buffer (the left most one). The head of buffer b(p)(x) is at the index 1, and
the tail of buffer is at the index |b(p)(x)|. Finally, mem defines the state of the
memory (defines the value of each variable in the memory). We use CPSO to
denote the set of PSO-configurations.

We define the transition relation −→PSO on CPSO . The relation is induced
by (i) members of ∆; (ii) a set ∆′ :=

{
updatep,x| p ∈ P, x ∈ X

}
where updatep,x

is an operation that updates the memory using the message at the head of the
buffer for variable x of process p; and (iii) a set ∆′′ :=

{
updatep,?| p ∈ P

}
where

updatep,? removes the write-write fence symbol from the head of all the buffers

of process p. For configurations c =
(
q, b,mem

)
, c′ =

(
q′, b′,mem ′

)
, a process

p ∈ P , and t ∈ ∆p ∪
{
updatep,x, updatep,?

}
, we write c t−→PSO c′ to denote that

one of the following conditions is satisfied.
• Nop: t = (q, nop, q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, and mem ′ = mem.

The process changes its state while the buffer contents and the memory remain
unchanged.
• Write to store: t = (q,w(x, v), q′), q(p) = q, q′ = q [p←↩ q′], b′ =

b [p←↩ b(p) [x←↩ b(p)(x) · v]], and mem ′ = mem. The write operation is ap-
pended to the tail of the buffer for variable x of process p.



• Memory update: t = updatep,x, q′ = q, b = b′
[
p←↩ b′(p)

[
x←↩ v · b′(p)(x)

]]
,

and mem ′ = mem [x←↩ v]. The write at the head of the buffer for x of p is
removed and the memory is updated accordingly.

• Write-write fence update: t = updatep,?, q
′ = q, ∀x ∈ X : b = b′

[
p←↩ b′(p)

][
x←↩ ? · b′(p)(x)

]
, and mem ′ = mem. The write-write fence symbol ? is removed

from the head of all buffers of process p.

• Read: t = (q, r(x, v), q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, mem ′ = mem,
and one of the following conditions is satisfied. (i) Read own write: There is an
i : 1 ≤ i ≤ |b(p)(x)| such that b(p)(x)(i) = v, and v′ 6∈ (b(p)(x)� i) for all
v′ ∈ V . If there is a write in the buffer for x of p then we consider the write at
the tail of the buffer (the right most one of the buffer). This operation should
assign v to x. (ii) Read memory: v′ 6∈ b(p)(x) for all v′ ∈ V and mem(x) = v. If
there is no write operation in the buffer for x of p then the value v of x is fetched
from the memory.

• Full fence: t = (q,mfence, q′), q(p) = q, q′ = q [p←↩ q′], ∀x ∈ X : b(p)(x) = ε,

b′ = b, and mem ′ = mem. A full fence operation may be performed by a process
only if all its buffers are empty.

• Write-write fence: t = (q, sfence, q′), q(p) = q, q′ = q [p←↩ q′], ∀x ∈ X : b′ =
b [p←↩ b(p) [x←↩ b(p)(x) · ?]], and mem ′ = mem. A write-write fence operation
adds the symbol ? to the tail of all buffers of process p.

• ARW: t = (q, arw(x, v, v′), q′), q(p) = q, q′ = q [p←↩ q′], b(p)(x) = ε, b′ = b,
mem(x) = v, and mem ′ = mem [x←↩ v′]. The operation arw(x, v, v′) is per-
formed atomically. It may be performed by a process only if its buffer for x is
empty. The operation checks whether the value of variable x is v. In such a case,
it changes its value to v′. Note this operation permits to model instructions like
compare-and-swap (or test-and-set) under SPARC [24].

We use c−→PSO c′ to denote the reflexive closure of c t−→PSO c′ for some
t ∈ ∆ ∪ ∆′ ∪ ∆′′. The set InitPSO of initial PSO-configurations contains all
configurations of the form

(
qinit , binit ,meminit

)
where, for all p ∈ P , we have

that qinit(p) = qinitp and binit(p)(x) = ε for all x ∈ X. In other words, each process
is in its initial local state and all the buffers are empty. On the other hand, the
memory may have any initial value. The transition system induced by a concur-
rent system under the PSO semantics is then given by (CPSO , InitPSO ,−→PSO).

The PSO Reachability Problem Given a set Target of local state definitions, we
use Reachable(PSO) (P) (Target) to be a predicate that indicates the reachabil-
ity of one of the following configurations

{(
q, b,mem

)
| q ∈ Target

}
, i.e., whether

a configuration c, where the local state definition of c belongs to Target, is reach-
able. The reachability problem for PSO is to check, for a given Target, whether
Reachable(PSO) (P) (Target) holds or not. We use Target to denote “bad con-
figurations” that we do not want to occur during the execution of the system.
Therefore, we often say that the “program is correct (or safe)” to indicate that
Target is not reachable.



3.3 Hierarchical Single-Buffer Semantics

The PSO semantics make use of unbounded perfect FIFO buffers that induces an
infinite transition system. However, the reachability problem under PSO is still
decidable as shown in [9,10]. In fact, it can be solved using the framework of well-
structured transition systems [4]. For the case of TSO, the paper [2] proposes
an ordering partly based on the sub-word relations of the configuration’s buffer
contents. However, because PSO configurations can contain the ? symbol (which
can not be lost), a similar ordering is not monotonic wrt. the PSO semantics.
Therefore, our goal is to derive a new semantical model, called the Hierarchi-
cal Single-Buffer model (HSB), that is both equivalent to PSO wrt. reachability
problems and monotonic wrt. some ordering. The buffer contents of HSB con-
figurations will not contain ? symbol.

Formal Semantics A HSB-configuration c is a quadruple
(
q, b,m, z

)
where q is

(as in the case of the PSO semantics) a local state definition, b : P 7→ [X 7→ V ∗],
m ∈ ([X 7→ V ]× P ×X)

+
, and z : P 7→ N. Intuitively, b(p)(x) is a per pro-

cess and variable buffer, the channel m contains messages as triples of the form
(mem, p, x) where mem defines the values of the variables (encoding a memory
snapshot), x is the latest variable that has been written by the process p. Fur-
thermore, z represents a set of pointers (one for each process) where, from the
point of view of p, the word m � z(p) is the sequence of write operations that
have not yet been used for memory updates and the first element of the triple
m(z(p)) represents the memory content. We use CHSB to denote the set of HSB-
configurations. As we shall see below, the channel will never be empty, since it
is not empty in an initial configuration, and since no messages are ever removed
from it during a run of the system (in HSB semantics, the update operation
moves a pointer to the right instead of removing a message in the channel). This
implies (among other things) that the invariant z(p) > 0 is always maintained.
Messages are appended to the tail of the channel (the right most one) that has
index |m|. The bottom of channel, index 1, is the initial message.

Let c =
(
q, b,m, z

)
be a HSB-configuration. For every p ∈ P and x ∈ X,

we use LastWrite (c, p, x) to denote the index of the most recent channel
message where p writes to x or the message with the current memory of p
if the aforementioned type of message does not exist in the channel. For-
mally, LastWrite (c, p, x) is the largest index i : z(p) ≤ i ≤ |m|, such that
m(i) = (mem, p, x) for some mem, or i = z(p) if such m(i) does not exist.

We define the transition relation −→HSB on the set of HSB-configurations as
follows. For configurations c =

(
q, b,m, z

)
, c′ =

(
q′, b′,m′, z′

)
, and t ∈ ∆p ∪{

updatep, serializep,x
}

where updatep is an operation that updates memory from
the view point of p by increasing z(p) by one, and serializep,x is an operation
that serialises the write (the left most one) at the head of the buffer b(p)(x) into

a new message at the tail of m, we write c t−→HSB c
′ to denote that one of the

following conditions is satisfied:
• Nop: t = (q, nop, q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, m′ = m, and z′ = z.

The operation changes only local states.



• Write to store: t=(q,w(x, v), q′), q(p)=q, q′=q [p←↩ q′], b′ =
b [p←↩ b(p) [x←↩ b(p)(x) · v]], m′ = m, and z′ = z. The write operation is
added to the tail of b(p)(x).

• Serialize: t=serializep,x, q′ = q, b = b′
[
p←↩ b′(p)

[
x←↩ v · b′(p)(x)

]]
, m(|m|)

is of the form (mem1, p1, x1), m′ = m · (mem1 [x←↩ v] , p, x), and z′ = z. A new
message is serialised to the head of the channel. The values of the variables in
the new message are identical to those in the previous last message except that
the value of x has been updated to v. Moreover, we include the updating process
p and the updated variable x.

• Update: t = updatep, q
′ = q, b′ = b, m′ = m, z(p) < |m| and z′ =

z [p←↩ z(p) + 1]. An update operation performed by a process p is simulated by
moving the pointer of p one step to the right. This means that we remove the
oldest write operation that is yet to be used for a memory update. The removed
element will now represent the memory contents from the point of view of p.

• Read: t = (q, r(x, v), q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, m′ = m,
z′ = z, and one of the following conditions is satisfied: (i) Read own write:
b(p)(x)(|b(p)(x)|) = v. If there is a write on x in the buffer for x of p then
we consider the most recent of such write operations (the right most one in
the buffer). (ii) Read memory: m(LastWrite (c, p, x)) = (mem1, p1, x1) for some
mem1, p1, x1 with mem1(x) = v, b(p)(x) = ε. If there is no write operation in
the buffer for x of p then the value v of x is fetched from the memory. Note that
b(p)(x) always does not contain the symbol ?.

• Full fence: t = (q,mfence, q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, ∀x ∈ X :

b(p)(x) = ε, b′ = b, m′ = m, z′ = z, and z(p) = |m|. A full fence operation may
be performed by a process p only if all its buffers are empty, and process p is
observing the most recent message.

• Write-write fence: t = (q, sfence, q′), q(p) = q, q′ = q [p←↩ q′], b′ = b,
∀x ∈ X : b(p)(x) = ε, m′ = m, and z′ = z. A write-write fence operation
requires all previous writes of p to be serialised before continuing, hence a write
of p cannot reorder past a sfence.

• ARW: t = (q, arw(x, v, v′), q′), q(p) = q, q′ = q [p←↩ q′], b′ = b, b(p)(x) = ε,
z(p) = |m|, m(|m|) is of the form (mem1, p1, x1), mem1(x) = v, m′ = m ·
(mem1 [x←↩ v′] , p, x), and z′ = z [p←↩ z(p) + 1]. The fact that the buffer is
empty from the point of view of p is encoded by the equality z(p) = |m|. The
content of the memory can then be fetched from the right most element m(|m|)
in the channel. To encode that the buffer is still empty after the operation (from
the point of view of p) the pointer of p is moved one step to the right.

We define the sets update := ∪p∈P updatep, serializex := ∪p∈P serializep,x, and

serialize := ∪x∈Xserializex. We use c−→HSB c
′ to denote that c t−→HSB c

′ for some
t ∈ ∆∪ {update, serialize}. The set InitHSB of initial HSB-configurations of the
form

(
qinit , binit ,minit , zinit

)
where |minit | = 1, and for all p ∈ P , we have that

qinit(p) = qinitp , binit(p)(x) = ε, and zinit(p) = 1. In other words, each process is
in its initial local state. The channel contains a single message, say of the form
(meminit , pinit , xinit), where meminit represents the initial value of the memory.
The memory may have any initial value. Also, the values of pinit and xinit are



not relevant since they will not be used in the computations of the system. The
pointers of all processes point to the first position in the channel. Moreover, all
buffers are all empty. The transition system induced by a concurrent system
under the HSB semantics is then given by (CHSB , InitHSB ,−→HSB ).

The HSB Reachability Problem In a similar manner to the case of PSO, we
define the predicate Reachable(HSB) (P) (Target), and define the reachability
problem for the HSB semantics. The following theorem states equivalence of the
reachability problems under the PSO and HSB semantics.

Theorem 1. For a finite-state program P and a local state definition Target,
the reachability problems are equivalent under the PSO and HSB semantics.

4 The HSB Reachability Algorithm

We present an algorithm to check HSB reachability problem for a given set
Target. Then according to Theorem 1, we can solve the PSO reachability prob-
lem. First, we define an ordering v on the set of HSB-configurations. We then
show that it satisfies two properties: (i) it is well-quasi ordering (wqo), and (ii)
the HSB relation −→HSB is effectively monotonic wrt. v. Recall that the term
well-quasi ordering and effectively monotonic are defined in Section 2.

4.1 Ordering

We define Active (c) := min {z(p)| p ∈ P} for a HSB-configuration c =(
q, b,m, z

)
. In other words, the part of m to the right of (and including)

Active (c) is “active”, while the left part is “dead” in the sense that it is not
needed for computations starting from c.

Given two HSB configurations c =
(
q, b,m, z

)
and c′ =

(
q′, b′,m′, z′

)
.

Define j := Active (c) and j′ := Active (c′). We write c v c′ to denote
that: • (i) q = q′; • (ii) for every p ∈ P and x ∈ X, there is a mapping

gp,x : {1, 2, . . . , |b(p)(x)|} 7→
{

1, 2, . . . , |b′(p)(x)|
}

such that the following condi-
tions are satisfied: for every i, i1, i2 ∈ {1, 2, . . . , |b(p)(x)|}, (1) i1 < i2 implies
gp,x(i1) < gp,x(i2), and (2) b(p)(x)(i) = b′(p)(x)(gp,x(i)); • (iii) there is a map-
ping h : {j, j + 1, . . . , |m|} 7→ {j′, j′ + 1, |m′|} such that the following conditions
are satisfied: for every i, i1, i2 ∈ {j, j + 1, . . . , |m|}, (1) i1 < i2 implies h(i1) <
h(i2), (2) m(i) = m′(h(i)), (3) LastWrite (c′, p, x) = h(LastWrite (c, p, x)) for
all p ∈ P and x ∈ X, (4) z′(p) = h(z(p)) for all p ∈ P ; • (iv) For every p ∈ P
and x ∈ X, one of the following condition holds: (1) if b(p)(x)(|b(p)(x)|) = v
then b′(p)(x)(|b′(p)(x)|) = v, or (2) if b(p)(x) = ε then b′(p)(x) = ε.

The conditions (ii-1) and (iii-1) mean that g and h are strictly monotonic.
The condition (ii) indicates that b(p)(x) is a sub-word of b′(p)(x). The conditions
(iii-1,2) present the active part of m is a sub-word of the active part of m′. The
conditions (iii-2,3) ensure the last write indices wrt. all processes and variables
are consistent. The conditions (iii-2,4) ensure each process points to identical



elements in m and m′. The last condition (iv) shows that the two buffer are
empty or contains the same element at the tail of buffers (the right most ones).

We get the following lemma about the ordering on HSB-configurations.

Lemma 1. The relation v is a well-quasi ordering on HSB-configurations.

Proof. The lemma is an immediate consequence of the fact that: (1) the subse-
quence relations (ii) and (iii) are well-quasi orderings on finite words [18], and
(2) the number of states (i), pointers (iii-4), observed memory states (iii-2), and
last writes (iii-3) and (ii) that should be equal, is finite.

The following lemma shows the effectively monotonicity of HSB-transition
relation wrt. v.

Lemma 2. −→HSB is effectively monotonic wrt. v.

Proof. We show that give HSB-configurations c1, c′1, and c2 such that c1−→HSB c
′
1

and c1 v c2, there exists an HSB-configuration c′2 and a run π satisfying:
c2

π−→HSB c
′
2 and c′1 v c′2. Let h and gp,x be the mappings defined by c1 v c2. We

will consider each transition t ∈ ∆p ∪
{
updatep, serializep

}
for some p ∈ P such

that c1
t−→HSB c

′
1, and show that c2

π−→HSB c
′
2 for some c′2 and π. Then because

a run is a concatenation of some transitions, we have the proof.

• Nop: t = (q, nop, q′), select c′2 such that c2
t−→HSB c

′
2. Because nop operation

only change the local state of c1 to c′1 and of c2 to c′2, and c1 v c2, we have c′1 v c′2.

• Write to store: t = (q,w(x, v), q′), select c′2 such that c2
t−→HSB c

′
2. We add

a value to b(p)(x) of c1, and we add the same value to b(p)(x) of c2. Hence the
condition (ii) and (iv) hold. Because in this transition we only change the buffers
and local states, and c1 v c2, we have c′1 v c′2.

• Read: t = (q, r(x, v), q′), select c′2 such that c2
t−→HSB c

′
2. We do not change

the buffers and channel, and require process p to observe x with value v. Because
conditions (iii-3) and (iv), c′2 exists. Because of c1 v c2, we have c′1 v c′2.
• Serialize: t=serializep,x. This transition takes an element from buffer for x

of p and send a message to channel. The same element exists in c2 and will
make the same message when serialised. However, there might be more elements
in buffer for x of p of c2 that must be serialised before that element can be
reached. Select a run π as a sequence of serialised transitions of p on x will do

this work. Formally, select π = c2
serializep,x−−−−−−−→· · · serializep,x−−−−−−−→︸ ︷︷ ︸

gp,x(1) times

c′2. In other words, π

will serialise all p’s writes to x up to and including the one that corresponds
to the one that is being serialised in c1. Because π only removes the element
from buffer for x of p, the same message is created at the end of channels of
both c1 and c2. Since neither t nor π change the local states or pointers, and the
serialised operation changes the LastWrite (c1, p, x) and LastWrite (c2, p, x) in
both two configurations to a new consistent message, we have c′1 v c′2.
• Update: t = updatep. This transition advances the pointer of p to a more

recent message. However, the corresponding message in c2 might not be imme-
diately following the message currently pointed by p. But by performing several



updates, the pointer in c2 can be advanced to the message corresponding to the

more recent message in c1. Formally, select π = c2
updatep−−−−−→ · · ·

updatep−−−−−→︸ ︷︷ ︸
h(z(p)+1)−h(z(p)) times

c′2. Since

the pointer of p in c1 has been forwarded from z(p) to z(p) + 1, and the pointer
of p in c2 has moved from h(z(p)) to h(z(p) + 1), (iii-4) holds. Also (iii-3) holds
between c′1 and c′2 because of (iii-3,4) and c1 v c2. Then we have c′1 v c′2.

• ARW: t = (q, arw(x, v, v′), q′), select c′2 such that c2
t−→HSB c

′
2. This transi-

tion performs all read, write, serialise, and update as a single operation. Above
we show that any operation of read, write, serialise, and update operations is
an effectively monotonic operation. The arw requires p’s buffer of x to be empty
in c2. This requirement holds because the p’s buffer of x is empty in c1 and
because of (ii). The arw also requires the p’s pointer to be on the last message,
but it must be the case in c2 if it is in c1. Suppose that this requirement does
not hold. Then because the pointer of p points to the last message in channel
in c1 (the one at the tail of channel), (1) the last message in channel of c2 (the
one at the tail of channel) does not have a corresponding message in channel
of c1. But (2) the last message of c2 must be the LastWrite (c2, p

′, y) for some
p′ ∈ P, y ∈ X (because some process must add more messages after the position
LastWrite (c2, p, x)). (1) and (2) make (iii-3) not hold. This is a contradiction.
Thus c′2 exists, and c′1 v c′2.
• Full fence and write-write fence cases are trivial, because we do not change

anything for buffers and channels.

4.2 Reachability Algorithm

Algorithm 1: Reachability Algorithm.

input : A concurrent program P, and a finite set
Target of local state definitions.

output: “u” if ¬Reachable(HSB) (P) (Target), “r”
otherwise.

1 W ← Min
({(

q, b,mem
)
| q ∈ Target

})
;

2 F ← ∅;
3 while W 6= ∅ do
4 Pick, remove a configuration c′ from W;

5 O ← Min
(
Pre
({
c′
}
↑
)
∪
{
c′
})

;

6 foreach c ∈ O do
7 if ∃c0 ∈ InitHSB : c v c0 then return “r”;
8 if ∃f ∈ F : f v c then discard c;
9 else

10 W ←W \ {w ∈ W| c v w} ∪ {c};
11 F ← F ∪ {c};
12 return “u”;

Recall that the terms upward
closure, upward closed set,
and minor set are defined
in Section 2. We define the
pre-set Pre (C) of a set C as
Pre (C) := {c′| ∃c ∈ C,t ∈ ∆ ∪
{update, serialize} , c′ t−→HSB c}.
Bellow we present our al-
gorithm to check the HSB
reachability problem using the
ordering v that is well-quasi
and monotonic wrt. −→HSB .
The algorithm performs back-
ward reachability analysis from
the set of configurations that are defined by Target. It inputs a finite set Target,
and checks the predicate Reachable(HSB) (P) (Target). If the predicate does
not hold then Algorithm 1 returns “u” (unreachable), otherwise it returns “r”
(reachable). It maintains a working set W that contains detected configurations
that need to be checked. If one of configuration in W can be reached by a
configuration c smaller than the initial configurations (in the sense that there



exists a computation c0 from InitHSB such that c v c0), the finite set Target

also can be reachable (line 7). The set F is a set of all analysed configurations.
Initially, W has all elements from a minor set of Target, and F is an empty

set. At the beginning of each iteration, the algorithm picks and removes a con-
figuration c′ from the set W. Then it computes the set O that is a minor set of
c′ and all configurations that can reach a configuration in {c′}↑ in one transi-
tion t, t ∈ ∆ ∪ {update, serialize}. For each minor element c, it checks whether
the element is smaller than an initial configuration. If yes, it returns “r”. If
not, it checks whether c is presented in F (in the sense that F already has a
configuration f such that f v c). If yes then c can be discarded. Otherwise
the algorithm performs the following operations: (i) discards all elements w of
W that c v w, (ii) adds to W the configuration c, and (iii) adds c to F . The
algorithm terminates when W is empty and return “u’’.

Theorem 2. The reachability algorithm always terminates.

Proof. An immediate consequence of the framework of well-structured transi-
tion systems from [4] and the fact that it is possible to compute the finite sets
Min

({(
q, b,mem

)
| q ∈ Target

})
and Min (Pre ({c′}↑) ∪ {c′}) for a configuration

c′ in the same manner as done in [2].

We can modify the Alg. 1 to return a trace (if exists) from a configuration
in InitHSB to a configuration in Bad =

{(
q, b,mem

)
| q ∈ Target

}
in the form

t0 · t1 . . . tn−1 such that there is a computation: π = c0
t0−−→ c1

t1−−→· · · tn−1−−−−→ cn
with c0 ∈ InitHSB and cn ∈ Bad. Indeed, in the algorithm for each configuration
c we keep the trace from this configuration to one configuration in Bad. Initially,
all configurations inW have empty traces (line 1). There are two more positions
in the algorithm we need to modify. At line 5, when we calculate the list of
configurations Pre ({c′}↑), we add the corresponding transition to the current
trace of c′. We do the similar modification in line 10.

5 Fence Insertion

In this section we describe our fence insertion procedure that given a set of bad
configurations, we can find a minimal set of fences to avoid these configurations
under PSO. A minimal fence set is the one sufficient for correctness; and if we
remove any fences from this set, we violate the correctness. There are cases when
these fence sets do not exist because the program can reach to bad configurations
even under SC semantics. In this case we return an empty set. Bellow we fix a

configuration ci =
(
q
i
, bi,mi, zi

)
with 0 ≤ i ≤ n.

Fence Inference. We will identify the set of points along a trace returned

by Algorithm 1, π = c0
t0−−→ c1

t1−−→· · · tn−1−−−−→ cn with c0 ∈ InitHSB and
cn ∈ Bad with Bad =

{(
q, b,mem

)
| q ∈ Target

}
, in which (i) read opera-

tions overtake write operations, or (ii) write operations overtake write oper-
ations, and derive the set of fences such that any one of them forbids an



overtaking, NewFences(π) := NewFencesmfence(π) ∪ NewFencessfence(π). The set
NewFencesmfence(π) (or NewFencessfence(π)) can prevent write-read overtaking (or
write-write overtaking) in π.

First, we show how to find the set of NewFencesmfence(π) for π. Define ni :=
|mi|+Σp∈P,x∈Xbi(p)(x). We define a sequence of functions α0, α1, . . . , αn where
αi(j) (with 1 ≤ j ≤ ni) associates to each element in the channel mi or buffers
bi the position in π of the corresponding write transition. Note that the lowest
index element (index 1) is the initial message in the channel, and the highest
index element (index ni) is the newest element added to buffers. We define
α0, α1, . . . , αn in a recursive way. (i) At the beginning, c0 contains only initial
values in the channel, and all buffers are empty, α0(j) is undefined for all 1 ≤
j ≤ n0. (ii) The first element in buffers and channel is the initial message in
channel, therefore αi(1) is undefined also. (iii) If ti+1 is not a write operation
then the number of elements in buffers and channel are not changed, define
αi+1 := αi. (iv) Otherwise, we define αi+1(j) := αi(j) if 2 ≤ j ≤ ni, and define
αi+1(ni + 1) := i+ 1. The definition (iv) means that a new write operation will
add a new element to the tail of one buffer, and for this element we associate i+1.
Next, we find the write transitions that have been overtaken by read operations.
We define a function OverRead such that if ti (with 1 ≤ i ≤ n) is a read transition
then OverRead(π)(i) gives the positions of write transitions in π that have been
overtaken by ti. Formally, if ti is not a read then define OverRead(π)(i) := ∅.
Otherwise, ti = (q, r(x, v), q′) ∈ ∆p for some p ∈ P , define OverRead(π)(i) :={
αi(j)| LastWrite (ci, p, x) < j ≤ ni ∧ tαi(j) ∈ ∆p

}
. In other words, we consider

the process p that performed ti and the variable x that is read by p in ti.
We search for pending write operations are issued by p and associated with
elements in buffers and channel that are not updated to the memory. Now define

NewFencesmfence(π) :=
{
q
k
(p)| ∃i, j : 1 ≤ i ≤ n, j ∈ OverRead(π)(i), j ≤ k < i

}
.

In other words, it is necessary to insert a mfence fence at least one position
between a pair (j, i) for each i : 1 ≤ i ≤ n and each j ∈ OverRead(π)(i) in order
to eliminate at least one of write-read overtaking.

Second, we show how to find the set of NewFencessfence(π) for π in a similar
way. Define n′i := |mi|. We define a sequence of function γ0, γ1, . . . , γn where
γi(j) (with 1 ≤ j ≤ n′i) associates to each element in the channel mi the po-
sition in π of the write transition that is correspond to the element. We de-
fine γ0, γ1, . . . , γn in a recursive way. (i) γ0(j) is undefined for all 1 ≤ j ≤ n′i.
(ii) γi(1) is undefined also. (iii) If ti+1 is not a serialised operation then define
γi+1 := γi. (iv) Otherwise, we define γi+1(j) := γi(j) if 2 ≤ j ≤ n′i, and de-
fine γi+1(n′i + 1) := i + 1. Next, we find the write transitions that have been
overtaken by write operations. We define a function OverWrite such that if ti
(with 1 ≤ i ≤ n) is a write transition then OverWrite(π)(i) gives the positions
of write transitions in π that have been overtaken by ti. Formally, if ti is not
a write then define OverWrite(π)(i) := ∅. Otherwise, ti = (q,w(x, v), q′) ∈ ∆p

for some p ∈ P , define OverWrite(π)(i) := {αi(j)‖LastWrite (ci, p, x) < j ≤
ni, tαi(j) ∈ ∆p,∃1 ≤ k1 < k2 ≤ n′n : γn(k1) = ti ∧γn(k2) = tαi(j)}. Now define

NewFencessfence(π) :=
{
q
k
(p)| ∃1 ≤ i ≤ n, j ∈ OverWrite(π)(i), j ≤ k < i

}
.



Algorithm 2: Fence Insertion.

input : A concurrent program P, and a
finite set Target of local state
definitions.

output: A minimal set of fences if it
exists, or an empty set.

1 W ← {∅};
2 while true do
3 Pick and remove a set F from W;
4 if Reachable(HSB) (P⊕ F ) (Target)

then
5 N← NewFences(π);
6 if N = ∅ then return ∅;
7 foreach f ∈ N do
8 F ′ ← F ∪ {f};
9 if ∃F ′′ ∈ W : F ′′ ⊆ F ′

then discard F ′;

10 else W ←W ∪
{
F ′
}

;

11 else
12 return F ;

Algorithm. We present our fence inser-
tion algorithm (Algorithm 2). The al-
gorithm takes a concurrent finite-state
program P, a finite set Target, and
returns a minimal set of fences that
is sufficient to make the program safe
wrt. Target. If this set is empty then
we conclude that the program cannot
be corrected by placing fences. It means
that the program is not safe (i.e. can
reach to Target) even under SC seman-
tics. The algorithm uses a set, namely
W, for sets of fences that have been
partially constructed (but not yet large
enough to make the program correct).
During each iteration, a set F is picked
and removed from W. We use the HSB reachability analysis algorithm (Algo-
rithm 1) to check whether the set F is sufficient to make the program correct.
If yes, we return F as a possible set of minimal fences. If no, we compute the
set of fences N such that inserting a member of N will eliminate one overtaking
in the trace generated by Algorithm 1. We use P⊕F to denote the program we
get by inserting a set of fences F to P, and use π for the trace. For each f ∈ N
we add F ′ = F ∪ {f} back to W unless there is already a subset of F ′ in W.

Theorem 3. For a concurrent finite-state program P and a finite set Target,
Algorithm 2 terminates and returns a minimal set of fences wrt. P if the set
exists, or an empty one otherwise.

6 Experimental Results

Tool We have implemented our techniques from Section 3-Section 5 for reacha-
bility analysis and fence insertion of programs under PSO semantics to Memo-
rax1. The current version of Memorax only applies for TSO semantics [2]. We
compare our method with state-of-the-art tools: Remmex [20] (a tool based
on state-space verification with acceleration for program analysis wrt. safety
properties under TSO and PSO), and Musketeer [6] (a static analysis tool for
correctness analysis wrt. robustness property under weak memory model). We
compare based on two criteria: number of fences and the running time. We
run the experiments using an Intel x86-32 Core2 2.4 Ghz machine and 4GB
of RAM on 16 programs used as benchmarks in [2,20,6,19]. The results are
given in Table 1. For each experiment, we report the number of processes
(#P), the number of detected fences (#F) (including mfence and sfence if
possible), the running time in seconds (#T). Musketeer does not make differ-
ence between mfence and sfence, so we put the total number of fences for it.

1 https://github.com/margnus1/memorax



Program #P
Memorax Remmex Musketeer
#F #T # #T #F #T

SimDek 2 2 m,0 s 1.0 2 m,0 s 2.2 6 1.0
Dekker 2 4 m,0 s 2.2 4 m,0 s 4.8 10 1.0
LamBak 2 4 m,2 s 1253.7 4 m,2 s 9.3 8 1.0
Dijkstra 2 2 m,0 s 5.0 2 m,0 s 5.5 8 1.0
LamFast2 2 4 m,2 s 241.6 4 m,2 s 12.9 12 1.0
Peterson 2 2 m,2 s 4.1 2 m,2 s 7.6 6 1.0
Burns 2 2 m,0 s 1.0 2 m,0 s 4.2 6 1.0
IncSeq 2 0 m,0 s 1.0 0 m,0 s 104.3 0 1.0
Szymanski 2 3 m,0 s 3.3 3 m,0 s 5.8 10 1.0
AltBit 2 0 m,0 s 49.4 0 m,0 s 2.2 4 1.0
CLHQLock 2 • OM 0 m,0 s 3.1 • TO
TaskSched 2 0 m,0 s 153.2 0 m,0 s 3.0 0 1.0
Pgsql 2 2 m,1 s 5.4 2 m,1 s 22.82 4 1.0
TickSLock 2 0 m,0 s 24.5 0 m,0 s 5.03 2 1.0
RevBarrier 2 0 m,0 s 2.4 0 m,0 s 1.5 4 1.0
SpinLock 2 0 m,0 s 1.0 0 m,0 s 1.4 1 1.0

Table 1: Analyzed concurrent program.

For all experiments, we set up the
time out to 1800 seconds. If a tool
runs out of time (resp. memory),
we put “TO” (resp. “OM”) in the
#T column, and • in #F column.
We use “m” for mfence and “s”
for sfence. Bellow we summarise
the main observations: (i) Mem-
orax successfully finds the mini-
mal fence sets in 15/16 experi-
ments, and only fails in one test
because of running out memory
(CLHQLock). The minimal fence
sets of Memorax and Remmex are
the same. (ii) The running time
of Memorax and Remmex are compatable (Memorax is better in 9 examples, and
Remmex is better in 7 ones). (iii) Musketter is the fastest tool, but also fails in
CLHQLock test as Memorax does. However, in most cases (13/15), Musketter
returns redundant fences that are not optimal. Especially, AltBit, TickSLock,
RevBarrier, and SpinLock are declared to be safe under PSO according to Mem-
orax and Remmex, but still need fences using Musketter.

7 Conclusion

We have presented a precise and sound automatic fence insertion method for con-
current finite-state programs under PSO memory model. We have introduced a
new HSB semantics that is equivalent to PSO semantics in the sense of reachabil-
ity problems, we use a backward analysis to solve the HSB reachability problem.
In the case of an unsafe program under PSO but safe under SC, we propose a
counter-example algorithm to find a minimal fence set to correct it. We prove the
efficiency of our approach by running several benchmarks including challenging
ones in existed methods.
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