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1. INTRODUCTION

Many different solutions have been presented for
system identification of linear dynamic systems
from noise–corrupted output measurements see,
for example, Ljung (1999), Söderström and Stoica
(1989). On the other hand, estimation of the
parameters for linear dynamic systems where also
the input is affected by noise is recognized as
a more difficult problem. Representations where
errors or measurement noises are present on both
inputs and outputs are usually called “errors–in–
variables” (EIV) models. They play an important
role when the purpose is determination of the
physical laws that describe the process, rather
than the prediction of its future behavior.

When searching on the internet for ‘errors-in-
variables’ Google gives more than 80000 hits. Var-
ious publication data bases such as Science Cita-
tion Index or Elsevier Science Direct give a few
hundred different references each on the subject.
The area is therefore quite extensive. The vast
majority of papers are written from an applica-
tion perspective, and can deal with biomedicine,
chemistry, chemical engineering, earth sciences,
econometrics, managements, mechanical engineer-

ing, finance, ecology, geoscience, image systems,
time series analysis, etc. Most of the papers pub-
lished in the automatic control journals and con-
ference proceedings focus on methodology. So do
also some of the many papers in various statis-
tical journals. In case of static systems, errors–
in–variables representations are closely related to
other well–known topics such as latent variables
models and factor models, Fuller (1987), Van
Schuppen (1989), Scherrer and Deistler (1998).

Errors-in-variables models can be motivated in
several situations. One such case is the modeling
of the dynamics between the noise-free input and
noise-free output. The reason can be to have a
better understanding of the underlying relations,
rather than to make a good prediction from noisy
data. This is the ‘classical’ motivation used in
econometrics and some other areas. In some ap-
plications, perhaps typically so in non-technical
areas such as biology, economics, environment, it
may be useful to regard the identification experi-
ment as designed by somebody else, and the mod-
eler has to work with given recorded input and
output data. Another situation is when a high-
dimensional data vector is to be approximated by
a small number of factors, which is the standard



when the user lacks enough information to classify
the available signals into inputs and outputs, and
prefer to use a ‘symmetric’ system model. This
is closely connected to the behavioral approach
to modeling, Willems (1986), Heij et al. (1997),
Markovsky et al. (2005), Markovsky et al. (2006b).
We will return to the issue when EIV problems
occur in Section 2.

With reference to these systems, the assump-
tions (prejudices) which lie behind the identifica-
tion procedure have been thoroughly analyzed in
Kalman (1982a), Kalman (1982b) with particular
attention to the Frisch scheme, Frisch (1934). This
scheme assumes that each variable is affected by
an unknown amount of additive noise and each
noise component is independent of every other
noise component and of every variable. As a conse-
quence, in this case the solution is constituted by
a whole family of models compatible with the set
of noisy data, unlike other traditional approaches
where the solution is characterized by a single
model. Kalman’s work relates to the static, mainly
multivariable case. He uses the term ‘prejudice’ for
non-errors-in-variables approaches of modelling
dynamic systems.

There is also a rich literature dealing with the EIV
problem for the static case, which falls outside
the scope of this paper. Some classical work on
EIV include Adcock (1877), Adcock (1878), Frisch
(1934), Koopmans (1937), Reiersøl (1950) and
others. Extensive analysis is given in Anderson
(1984). The topic is also well treated from differ-
ent points of view in the books Cheng and Ness
(1999), Fuller (1987). The Frisch scheme, Frisch
(1934), has been analyzed (for the static case) in
Guidorzi (1991), Beghelli and Soverini (1992) and
Guidorzi (1995). Other works deal with ‘errors-
in-variables filtering’. This refers to filtering prob-
lems, where both input and output measurements
are contaminated by noise. This topic is treated,
for example, in Guidorzi et al. (2003), Markovsky
et al. (2002).

The paper is organized as follows. The problem is
described in the next section. Identifiability is dis-
cussed from different points of view in Sections 3-
5. The Cramér-Rao bound for unbiased estimators
is discussed in Section 6, and basic notations can
be found in Section 8. A general characterization
of approaches is given in Sections 7 and 9-15. Some
concluding remarks appear in Section 16.

2. THE ERRORS-IN-VARIABLES PROBLEM
FOR DYNAMIC SYSTEMS

As a typical model example, consider the lin-
ear single-input single-output (SISO) system de-
picted in Figure 1 with noise-corrupted input
and output measurements. The paper is mainly

mentioned when extensions to multi-input multi-
output (MIMO) systems are possible and straight-
forward.
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u(t)uo(t) yo(t) y(t)ỹ(t)

ũ(t)
Fig. 1. The basic setup for a dynamic errors-in-

variables problem.

The noise–free input is denoted by uo(t) and the
undisturbed output by yo(t). We assume that the
observations are corrupted by additive measure-
ment noises ũ(t) and ỹ(t). The available signals
are in discrete time and of the formu(t) = uo(t) + ũ(t);y(t) = yo(t) + ỹ(t): (1)

The general problem is to determine the system
characteristics, such as the system transfer func-
tion.

In order to proceed, some further assumptions
must be introduced. To some degree they can
be made more or less restrictive. In the coming
subsections we therefore introduce a number of
assumptions, that are partly alternative ones.
Then it will be discussed what assumptions that
are necessary for different results.

Concerning the system, the following assumption
will be imposed.

AS1. The system is single-input single-output
(SISO), linear and asymptotically stable. 2
In many, but not all, cases we also use

AS2. The system is causal, so yo(t) depends onuo(s) for s � t, but not on future values of uo(�).2
In most cases t will denote time, and then it is
most natural to require the system to be causal
as in AS2. However, the estimation techniques
can also be applied if t has the meaning, say, of
a spatial variable, and the model describes some
cross-directional property of a material. For such
cases, non-causal models make perfect sense. Also
in the case of a ‘symmetric’ approach, assumption
AS2 can be dispensed with. In this case, rather
than using the causality between uo(t) and yo(t)
implied by Figure 1, write the measured data asz(t) = zo(t) + z̃o(t); zo(t) =

� yo(t)uo(t)� : (2)

The noise-free data, zo(t) is assumed to fulfil a
relation
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H(q� )zo(t) = 0; (3)

where H(q�1) is an asymptotically stable filter.
However, we do not require that yo(t) can be
solved as a function of past values of the noise-
free input uo(s); s � t, using (3).

Next introduce assumptions on the noise and the
noise-free input.

AN1. The noise sequences ũ(t); ỹ(t) are station-
ary processes, with zero mean values and spectra�ũ(!) and �ỹ(!), respectively. Further, ũ(t) andỹ(t) are mutually uncorrelated. [In a few cases to
be specified later, the noise sequences are allowed
to be cross-correlated.] 2
AI1. The true input uo(t) is a stationary process
of zero mean, with spectral density �uo(!). The
input uo(t) is assumed to be persistently exciting
of a suitable order, which means that �uo(!) > 0
for a sufficient number of frequencies. Further,uo(t) is uncorrelated with the measurement noise
sources ũ(t) and ỹ(t). 2
The assumption of zero mean is a weak one, and
rather made for convenience. A situation whereuo(t) and yo(t) have nonzero means is in fact
easier from an identifiability point of view, as the
static gain of the system can then be determined
separately.

Introduce also an assumption about the experi-
mental condition.

AE1. The data comes from one (single) experi-
ment, where AN1 and AI1 apply. 2
When do errors-in-variables problems occur? Con-
sider the following extension of Figure 1.

SYSTEM

F? - -- ? ?
Æ
�� Æ
��Σ

Σ

v(t)
u(t)uo(t) yo(t) y(t)ỹ(t)

ũ(t)
Fig. 2. The basic setup, including input genera-

tion.

One option is to assume one experiment only,
and that uo(t) cannot be affected by the user.
The experiment is ‘arranged’ by nature, or the
considered system is just a part of a larger system
and excited at some other point. Possibly the
true input uo(t) can be modeled as a stationary
stochastic process with rational spectrum, i.e. as
an ARMA process. This means that in Figure 2,F is a finite order, unknown linear filter, and v(t)

for this option assumption AE1 applies.

Another option is to assume that the signal v(t)
is fully accessible to the user, but that the filterF is an unknown and possibly nonlinear filter,
so that uo(t) can neither be chosen freely, nor
computed. Nevertheless, in such scenarios it is
possible to make repeated experiments with the
same v(t), and hence with the same uo(t). In such
cases the assumption AE2b applies, see Section
5 for further details.

A further situation is the one depicted in Figure
3.

SYSTEM- - -? ?Æ
�� Æ
��ΣΣ
u(t) uo(t) yo(t) y(t)ỹ(t)ũ(t)

Fig. 3. A false errors-in-variables problem.

Here u(t) is the designed input but ũ(t) is added
(due to distortions or other unavoidable reasons)
before the input reach the system as uo(t). It
is important to realize that this is not an EIV
problem. Note for example that in contrast to the
situation in Figure 1.� The dynamics between uo(t) and yo(t) is the

same as between u(t) and yo(t) (hence the
presence of ũ(t) is not so problematic here as
in Figure 1.� ũ(t) effects also the output measurementsy(t).

For the situation in Figure 3, it is appropriate to
regard ũ(t) as a form of process disturbance. The
total effect of ũ(t) and ỹ(t) can be modelled as
a single autocorrelated disturbance on the output
side.

3. IDENTIFIABILITY ASPECTS

Introduce the following assumptions.

AN2. The measurement noises are Gaussian dis-
tributed. 2
AI2. The noise-free input is Gaussian distributed.2
Under the assumptions AN2 and AI2 only (first
and) second order moments carry information
about the distribution, and higher-order moments
do not bring further information. We may alter-
natively say that the study for the time being
is limited to infer information from second-order
statistics.

It turns out that in such cases, without introduc-
ing more explicit assumptions, it is not possible
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Deistler (1984), Anderson and Deistler (1987).

As an illustration of the identifiability difficulties,
consider the following situation. Let the measure-
ment noises be auto-correlated, with spectral den-
sities �ũ; �ỹ, respectively. The system is assumed
to have a transfer function G. Denote the obser-
vations as z(t) =

� y(t)u(t)� : (4)

Their spectrum is�z =

�GG� GG� 1

��uo +

� �ỹ 0
0 �ũ � : (5)

The variables in (5) are all functions of the angular
frequency !. For briefness use the symbolsG = G(ei!); G� = [G(ei!)]� = G>(e�i!) (6)

in (5) and in what follows. To be more explicit,
let the estimates of the aforementioned variables
be denoted by Ĝ; �̂uo ; �̂ũ; �̂ỹ . The equations
determining the estimates are�z =

� ĜĜ� ĜĜ� 1

� �̂uo +

� �̂ỹ 0

0 �̂ũ � : (7)

Note that based on (5) and (7), for each frequency
there are 3 equations with 4 unknowns. There is
hence one degree of freedom (for each frequency)
in the solution.

The relations are easily extended to the MIMO
case, where (5) and (7) are replaced by�GI ��uo �G� I �+

� �ỹ 0
0 �ũ �

=

� ĜI � �̂uo � Ĝ� I �+

� �̂ỹ 0

0 �̂ũ � : (8)

When the system has nu inputs and ny outputs,
it turns out that equation (8) has nu(nu + 1)=2
degrees-of-freedom (the number of unknowns mi-
nus the number of equations). For nu = 1 this
leads to one degree of freedom as already seen
above.

Now introduce the following assumptions.

AS3. The system transfer function has no zeros
mirrored in the unit circle, that is, if G(z1) = 0,
then G(z�1

1 ) 6= 0. 2
AS4. If the system is noncausal, then G has no
poles mirrored in the unit circle, that is, p1 andp�1

1 cannot both be poles of G(z). 2
Under the assumptions of AS2 and AS3, or AS3

and AS4, the solution to (5) and (7) can be writ-
ten with a scalar, frequency independent degree
of freedom. In fact, under the stated assumptions,
the non-diagonal elements of (5), (7) giveG�uo = Ĝ�̂uo : (9)

�uo
order. Consider the left hand side of (9). All zeros
and poles of the factor �uo(!) appears in mirrored
pairs. Due to Assumptions AS1 and AS3 no poles
or zeros of G appear in mirrored pairs. Therefore,
all mirrored zeros and poles must be attributed
to the factor �uo . Considering only models that
satisfy Assumptions AS1 and AS3, one can then
conclude Ĝ(ei!) = G(ei!)

1�; (10)

where � is a constant. Proceeding further leads to�̂ũ(!) = �ũ(!) + �uo (!) (1� �) ; (11)�̂ỹ(!) = �ỹ(!) + jG(ei!)j2�uo(!)

�
1� 1�� :(12)

The parameter � is bounded as�� �� ∆
= inf! �uo(!) + �ũ(!)�uo(!)

; (13)�� �� ∆
= sup! jG(ei!)j2�uo(!)�ỹ(!) + jG(ei!)j2�uo(!)

: (14)

Introduce the frequency specific signal-to-noise
ratios, Su(!) and Sy(!) on the input and output
sides, respectively asSu(!) =

�uo (!)�ũ(!)
; Sy(!) =

�yo(!)�ỹ(!)
: (15)

Then �� = inf! Su(!) + 1Su(!)
� 1: (16)

If Su(!) for some frequency is (very) large, then
it follows that the upper bound �� is (very) close
to 1. Similarly,�� = sup! Sy(!)

1 + Sy(!)
� 1: (17)

If Sy(!) is (very) large, possibly for some other
frequency, then the lower bound �� is (very) close
to 1. Hence, if Su and Sy are large for some
frequencies, then the possible interval [��; ��] for� becomes small.

The one degree of freedom solution (10)-(12) with
the bounds (13), (14) can be derived using an
explicit spectral factorization of the spectra, see
Agüero et al. (2005), Agüero (2005), Agüero and
Goodwin (2006) for details.

A more detailed identifiability analysis is carried
out in Anderson (1985), Deistler (1986), Deistler
and Anderson (1989). In general, there are nz + 1
degrees of freedom for characterizing the class
of systems that match a given spectrum of the
measured signals. Here nz is the number of non-
minimum phase zeros. Identifiability of multivari-
able systems is treated in Green and Anderson
(1986). An identifiability analysis covering also
noncausal systems can be found in Anderson and
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scription of all observationally equivalent systems
is given in Scherrer and Deistler (1998). In the
analysis leading to (10), we have nz = 0 due to
Assumption AS3, and the solution set hence has
one degree of freedom as already seen.

To summarize so far, there is a fundamental
lack of identifiability in the errors-in-variables
problem, as long as only quite general assumptions
are imposed. There are different possibilities for
how to reflect about the situation.

(1) One possibility is to ‘accept’ the status, and
not make any further assumptions. Instead
of looking for a unique estimate, one has
to deal with the whole set of estimates (10)
where the constant � is bounded as in (13),
(14). This choice is in the spirit set member-
ship estimation, Milanese and Vicino (1991),
where one characterizes the set of all possible
models. In Agüero et al. (2005), the specific
choice �̂ = (�� + ��) =2 (18)

is presented. It minimizes the H1 norm of
the estimation error Ĝ(ei!)�G(ei!).

(2) Another option is to modify at least one
of the assumptions AN2, AI2 on Gaussian
distributed data. When the data are not
Gaussian distributed, higher order statistics
can be employed to gain additional informa-
tion about the system. This option was dis-
cussed in Deistler (1986) and used in Tugnait
(1992). Using higher order statistics tends
to be time-consuming and may not lead to
accurate estimates.

(3) A third option is to impose more detailed
models for the measurement noises and
for the noise-free input uo(t). Typically,ũ(t); ỹ(t) and uo(t) are then modeled as
ARMA processes of specified orders. Then
the decomposition of the spectrum �z(!) in
(7) into one part depending on the noise-free
input and a second part due to the measure-
ment noise may have a unique solution in
some cases. More details about this option
are presented in Section 4.

(4) A fourth option applies if more than one
experiment can be used. This happens in
some applications, say when the user can
control the signal v(t) in Figure 2. It is then
needed that the noise-free input spectrum�uo(!) differs between the different experi-
ments, while the measurement noise proper-
ties remain the same. Another possibility is
that the noise-free input uo(t) is (well) cor-
related between experiments, but the mea-
surement noises ỹ(t); ũ(t) are uncorrelated
between experiments. For details, see Section
5.

to mention. It may not be trivial to define an
appropriate (discrete-time) transfer function that
describes the behavior between discrete-time data
of uo(t) and yo(t). Most physical systems oper-
ate in continuous-time. In case the inter-sample
behaviour is known, one can determine a corre-
sponding discrete-time model description. How-
ever, here when the noise-free input signal uo(t)
is not measurable, it is not obvious how to model
this signal.

One approach is to formulate the whole errors-in-
variables problem using continuous-time models.
Some initial examinations using this idea are given
by Söderström et al. (2006), Mahata and Garnier
(2005), Sagara et al. (1991).

A second approach has been pointed out by Pin-
telon and Schoukens (2005). Let the system have a
continuous-time transfer function Gc and assume
that v(t) in Figure 2 is a zero order hold signal.
Under this assumption one can sample exactly the
system from v(t) to yo(t) as well as the system
from v(t) to uo(t), leading to the discrete-time
models of the formyo(t) =

By(q�1)AF (q�1)AS(q�1)
v(t); (19)uo(t) =

Bu(q�1)AF (q�1)
v(t): (20)

Combining (19) and (20) gives a sampled, discrete-
time model of the system withGd(q�1) =

By(q�1)AS(q�1)Bu(q�1)
: (21)

Hence, under the assumption of v(t) being a
zero order hold signal, there is a unique discrete-
time transfer function Gd describing how yo(t)
and uo(t) are related. Note though, that the
transfer function Gd(q�1) has higher order than
the continuous-time system Gc(s), contains no
sampling delay, and depends also on the unknown
filter F .

Another attempt is to regard the noise-free sig-
nal zo(t) as a stationary process. Note that in
continuous-time the spectrum of zo(t) is�(c)zo =

�GcI ��ũ �G�c I � ; (22)

which apparently has rank equal to one.. Accord-
ing to Poisson’s summation formula, the sampled
data spectrum of the signal is�(d)zo (eı!h) =

1Xj=�1 �(c)zo (! + j 2�h ); (23)

where h is the sampling interval. Due to the
folding effects caused by all terms with j 6= 0 in

(23), �(d)zo will get rank 2 and there is no no causal
discrete-time transfer function Gd(q�1) such that

5



�(d)zo =

�GdI ��(d)uo �G�d I � : (24)

4. IDENTIFIABILITY ANALYSIS:
PARAMETRIC MODELS

It is important to realize that the errors ũ(t) andỹ(t) can have several causes. One possible cause is
pure measurement errors. It seems often realistic
to assume such errors to be uncorrelated in time,
and therefore relevant to model as white noise pro-
cesses. However, the output error ỹ(t) must also
accommodate effects of process disturbances and
modeling errors. Both these types of contributions
are typically autocorrelated in time. Therefore, it
is natural to model the output error as an ARMA
process.

As an ARMA process is a general model for de-
scribing a stationary, or quasistationary, process
with a rational spectra, Ljung (1999), such a
model may also be postulated for describing the
noise-free input uo(t).
Assuming the maximum lags to be fixed and
finite, we hence now have a parametric problem.
The system is modeled as a finite order one. In
the most general form it is also assumed that the
noise-free input uo(t) as well as the input noiseũ(t) and output noise ỹ(t) are ARMA processes.
The total model is described in Figure 4.C(q�1)D(q�1)

K(q�1)M(q�1)

B(q�1)A(q�1)

F (q�1)H(q�1)
-
- -

- ? ?--i i+ +u(t) y(t)ũ(t) ỹ(t)
uo(t) yo(t)e(t)

ey(t)eu(t)
Fig. 4. Modeling a finite order system, withuo(t); ũ(t) and ỹ(t) as ARMA processes.

More specifically, let the system transfer function
be described asG(q�1) =

B(q�1)A(q�1)
; (25)A(q�1) = 1 + a1q�1 + � � �+ anaq�na;B(q�1) = b1 + � � �+ bnbq�nb+1; (26)

As described in the end of Section 3, it is reason-
able to assume that G(q�1) has no internal delay,
but a direct term (b1 in this case). Further, in
Figure 4, the noise-free input signal is the ARMA
process

D(q� )uo(t) = C(q� )e(t);C(q�1) = 1 + 
1q�1 + � � �+ 
n
q�n
;D(q�1) = 1 + d1q�1 + � � �+ dndq�nd;Ee(t)e(s) = �eÆt;s: (27)

The output noise model isH(q�1)ỹ(t) = F (q�1)ey(t);F (q�1) = 1 + f1q�1 + � � �+ fnfq�nf ;H(q�1) = 1 + h1q�1 + � � �+ hnhq�nh;Eey(t)ey(s) = �yÆt;s: (28)

and the input noise model isM(q�1)ũ(t) = K(q�1)eu(t);K(q�1) = 1 + k1q�1 + � � �+ knkq�nk;M(q�1) = 1 +m1q�1 + � � �+mnmq�nm;Eeu(t)eu(s) = �uÆt;s:
(29)

The parameter vector to be estimated is� = (a1 : : : ana b1 : : : bnb 
1 : : : 
n
;d1 : : : dnd; f1 : : : fnf ; h1 : : : hnh;k1 : : : knk;m1 : : : mnm; �e �y �u)> : (30)

The identifiability problem will then be whether
or not the parameter vector � can be uniquely re-
covered from the spectrum �z(!), (5), of the mea-
sured input-output data. Assuming for simplicity
that the polynomial degrees are known, and using
ˆ to denote the estimated quantities, the equations
determining the identifiability properties will beB̂B̂�ÂÂ� ĈĈ�D̂D̂� �̂e + �̂ỹ � BB�AA� CC�DD��e + �ỹ ; (31)B̂̂A ĈĈ�D̂D̂� �̂e � BA CC�DD� �e; (32)ĈĈ�D̂D̂� �̂e + �̂ũ � CC�DD� �e + �ũ: (33)

The identities in (31)-(33) are to hold for all fre-
quencies. Trivially, the true value of the parameter
vector will satisfy the identities. The system is
identifiable if there is no other value of the pa-
rameter vector that satisfies the identities.

We will consider some different scenarios, describ-
ing different special cases.

AN3a. Both ỹ(t) and ũ(t) are ARMA processes,
as in (28) and (29). 2
AN3b. The output noise ỹ(t) is an ARMA pro-
cess, while the input noise ũ(t) is white. This
means that nk = nm = 0 in (29). 2
AN3c. Both ỹ(t) and ũ(t) are white noise se-
quences. This means that nf = nh = 0 in (28)
and nk = nm = 0 in (29). 2
Of the assumptions AN3a, AN3b, AN3c, obvi-
ously AN3a is most general and AN3c is most re-
strictive. In practice, the output noise ỹ(t) should
model not only sensor noise but also effects of
process disturbances. As this does not apply for
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u t
AN3b is a fairly realistic one.

The parametric identifiability problem has been
dealt with by several authors. An extensive anal-
ysis with various previous results as special cases
are given in Agüero (2005), Agüero and Good-
win (2006). In the frequency domain an essential
assumption for identifiability is that the noisy
input–output signals u(t), y(t) have a rational
spectrum, Castaldi and Soverini (1996). In this
case the identifiability of the EIV system is en-
sured even if the orders of the processes are not a
priori known, provided that no zero/pole cancella-
tion occurs between the transfer function G(q�1)
and the ARMA model of the noise–free inputu0(t), and all the ARMA processes involved in the
EIV representation do not share common poles.

Other results are more specific for various special
cases. For example, identifiability under the noise
assumption AN3c is investigated in Castaldi
and Soverini (1996), Söderström (2003), Stoica
and Nehorai (1987). The situation of the out-
put noise being an ARMA process and the in-
put noise being white, Assumption AN3b, is
treated in Söderström (1980), Solo (1986). The
case of ỹ(t) being a general stochastic process
is dealt with by Hsiao (1977). The more gen-
eral case AN3a where both ũ(t) and ỹ(t) are
ARMA processes, is coped with in Agüero (2005),
Agüero and Goodwin (2006), Nowak (1985),
Nowak (1993), Castaldi and Soverini (1996), An-
derson and Deistler (1984). Generalization to the
multivariate case is considered in Nowak (1992).

In order to give some insight, a simple case is
presented first before the most general result is
given.

Example 4.1. Assume that Assumption AN3b

applies and further thatnd > n
: (34)

holds. In this case, it is not difficult to find out
that the system is (uniquely) identifiable. Note
that here �ũ = �u. As the polynomials C and D,
as well as the estimates Ĉ and D̂ have all zeros
inside the unit circle, it follows by considering the
denominators in (33) that D̂ = D. Further, (33)
then impliesĈĈ��̂e +DD��̂u � CC��e +DD��u:
The terms here consist of sums over eik! , with k
ranging from �nd to nd. Examining the specific
terms with k = nd and invoking (34) it follows

that �̂u = �u. Then spectral factorization, see,
e.g., Söderström (2002), gives Ĉ = C; �̂e = �e.
Hence the spectrum of the measured input can
be uniquely decomposed in the effect of the input
noise and the spectra of the noise-free input. It

then follows from (32) that A = A and B = B,

while (31) finally gives �̂ỹ = �ỹ.

In the above example, the degree condition (34)
is crucial. When this is not fulfilled the analysis
becomes a bit more complicated, and one cannot
use the identifiability equations just one by one as
in Example 4.1.

It is possible to extend the identifiability analysis
though. The most general result known is due to
Agüero (2005), Agüero and Goodwin (2006), and
runs as follows.

Result 4.1. Let the noise-free input be an ARMA
process as in (27), the output noise an ARMA
process as in (28) and the input noise an ARMA
process as (29). Assume that� B(z) has no zero that is mirrored in the unit

circle (that is, it is not allowed to be also a
zero of B(z�1)),� B(z) has not a zero that is also a zero ofD(z�1),� A(z) has not a zero that is also a zero of C(z).

Then the system is identifiable, if any of the
following additional assumptions holds:

(1) There exists at least one zero of D(z) that is
not a zero of M(z).

(2) There exists at least one zero of A(z) that is
not a zero of H(z).

(3) There exists at least on zero of D(z) that is
not a zero of H(z).

(4) The polynomial degrees satisfynm� nk > nd� n
: (35)

(5) The polynomial degrees satisfynh� nf > (nd� n
) + (na� nb): (36)

Note that the expressions in the inequalities (35)
and (36) are expressed in terms of the pole excess
of various filters.

5. IDENTIFIABILITY: USE OF MULTIPLE
EXPERIMENTS

There is in general a fundamental lack of identi-
fiability for EIV systems, unless some additional
assumption or condition is added. Here two cases
are considered. Both are discussed in the litera-
ture, where data are available from two or more
experiments, and these experiments have some
features to exploit.

Should the unperturbed input signal, uo(t), be
the same in all experiments, and the experiments
of equal length, then concatenating the measure-
ments will indeed produce periodic data.
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which the noise-free input has different character.
Such a situation is treated in Markovsky et al.
(2006a), although it is there described as thatuo(t) changes character at some point of time in
a single experiment.

Now impose the following assumption.

AE2a. There are more than one experiment. The
spectrum of the noise-free input is different in
the different experiments, while the measurement
noise properties remain the same. 2
It is straightforward to show that the system is
identifiable under Assumption AE2a.

Example 5.2. Another scenario with more than
one experiment where the system becomes identi-
fiable is based on the following assumptions.

AE2b. There is more than one experiment. The
measurement noises ũ(t); ỹ(t) are uncorrelated
between different experiments. The true noise-free
input uo(t) is correlated between the experiments.2
Such a situation may occur when making repeated
experiments for determining some system prop-
erties as explained in Schoukens et al. (1997),
Pintelon and Schoukens (2001). The system is
then a mechanical setup for determining material
properties from wave propagation experiments.
The noise-free input signal uo(t) is in this case
the applied force to the test structure. The user
has access to a command signal v(t), cf Figure
2, that through a shaker F produces the forceuo(t). However, the shaker is an electromechanical
device with unknown dynamics, and its movement
is also influenced by the movement in the system.
The filter F may therefore not only be unknown
but also nonlinear. By choosing the command
signal v(t) as periodic, it is possible to ensure that
also the true input uo(t) is periodic.

6. CRAMÉR-RAO BOUNDS ON
PARAMETER ESTIMATES

To assess the statistical efficiency of a parametric
estimator, it is imperative to know the Cramér-
Rao lower bound (CRLB). This bound gives a
lower bound for the covariance matrix of the
parameter estimates,

cov(�̂ � �o) � CRLB = J�1; (37)J = E �� logL(�)�� �>�� logL(�)�� � ; (38)

where L(�) is the likelihood function. The matrixJ is the Fisher information matrix, Söderström
and Stoica (1989). The computation of the CRLB
would also delineate the set of poorly identifiable
systems, as such systems should lead to a large

estimator. When applied in a system identification
context, the considered estimates are consistent
but in general not unbiased. Then (37) applies
asymptotically for large data sets, i.e. when N !1.

Computing the CRLB for the errors-in-variables
problem, one essential aspect is that the noise-
free input signal must be parameterized in some
way, see also Section 4. Assuming that the data
are Gaussian distributed (Assumptions AN2 and
AI2), there are at least two ways of computing the
asymptotic CRLB, see Karlsson et al. (2000) and
Söderström (2006) for details. Note in particular,
that the CRLB is equal to the matrix PML given
in (123), see Section 14.

7. CLASSIFICATION OF ESTIMATORS
BASED ON DATA COMPRESSION

Estimation methods can be classified and orga-
nized in different ways. It may be useful to group
methods together, based on an initial data com-
pression step. After a first ‘pre-processing’ of the
data, some reduced information is set up and
used for the final computation of the parameter
estimates. In case the condensed information is
really a sufficient statistics, one would even be able
to achieve statistical efficiency in the final step.
Also when this is not the case, such an estimation
scheme can still be useful, for example due to low
computational complexity.

The two steps of the estimators, with an initial
data compression, are illustrated in the Figure 5
below.

System
Data

compression

Estimator

- �� Data
Condensed
information

Estimate

Fig. 5. Classification of the data compression prior
to the estimation step.

The different groups of methods that will be
discussed in the sections to follow, differ in the way
the data compression is carried out. The following
cases will be treated.

a) Using a covariance matrix. This case in-
cludes instrumental variables, (Section 9),
bias-eliminating least squares, (Section 10),
the Frisch scheme, (Section 11), total least
squares, (Section 12). In all these cases the
condensed information is a small set of esti-
mated covariance elements fr̂u(�)g, fr̂yu(�)g
and fr̂y(�)g.
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quency domain data, (Section 13). As com-
pared to case a), we basically have a large set
of estimated covariance elements here.

c) Using the original time-series data. This case
includes the use of prediction error and max-
imum likelihood techniques, (Section 14). No
data compression takes place.

8. BASIC SETUP AND NOTATIONS

In this section several general notations to be used
in what follows are introduced.

Assume that the system is of finite order, and can
be described by a linear difference equation:

AS5. The system is described asA(q�1)yo(t) = B(q�1)uo(t); (39)

whereA(q�1) = 1 + a1q�1 + � � �+ anaq�na;B(q�1) = b1 + � � �+ bnbq�nb+1: (40)

Introduce the parameter vector� =
�a1 : : : ana b1 : : : bnb�> ∆

= (a> b>)>; (41)

and the extended parameter vector� =

�
1� � : (42)

Similarly introduce the regressor vector'(t) =
�� y(t� 1) : : : � y(t� na)u(t) : : : u(t� nb+ 1)

�> : (43)

Then the system can be written as a linear regres-
sion y(t) = '>(t)� + "(t); (44)

where the noise effects are collected in the term"(t) = A(q�1)ỹ(t)�B(q�1)ũ(t): (45)

Introduce further the extended regressor vector'(t) =
�� y(t) : : : � y(t� na)u(t) : : : u(t� nb+ 1)

�>
=
�� y(t) '>(t)�> : (46)

Further, use the conventions:� �o denotes the true parameter vector, and �̂
denotes its estimate.� 'o(t) denotes the noise-free part of the re-
gressor vector.� '̃(t) denotes the noise-contribution to the
regressor vector.

Using the above notations, and the system de-
scription (39) it follows that'>o (t)�o =

�� yo(t) '>o (t)� � 1�o � (47)

=�A(q�1)yo(t) +B(q�1)uo(t) = 0: (48)

R' = E['(t)'>(t)]; (49)

and their estimates from finite data asR̂' =
1N NXt=1

'(t)'>(t): (50)

Similarly, let r'y and r̂'y denote the true and
estimated, respectively, covariance between '(t)
and y(t).

9. INSTRUMENTAL VARIABLE-BASED
METHODS

Instrumental variable (IV) methods are often used
as computationally simple estimators that replace
least squares estimators to avoid biased estimates.
The IV estimates are frequently used in EIV prob-
lems, for example in econometric applications.
The IV estimator tracks its roots to Reiersøl
(1941), Reiersøl (1950). For a general treatment
see Söderström and Stoica (1983).

The underlying model is the linear regression (44),
(45). Assume that there exist a vector z(t) such
that� z(t) is uncorrelated with the noise term "(t),� z(t) is well correlated with the regressor '(t).
Then the IV estimate can be defined as�̂IV =

 
1N NXt=1

z(t)'>(t)!�1 
1N NXt=1

z(t)y(t)! :
(51)

To make the treatment more general, proceed a
little differently in what follows. Introduce a vec-
tor z(t) of dimension na+ nb or larger, satisfyingE[z(t)'̃>(t)] = 0: (52)

Now write, using (48) and (52),E[z(t)'>(t)]�o = E[z(t)�'>o (t) + '̃>(t)�]�o = 0;
(53)

which we write for short asRz'�o = 0: (54)

The matrix in (54) can easily be estimated from
the data as R̂z' =

1N NXt=1

z(t)'>(t); (55)

and due to the relation (54) one can derive several
estimators from the approximate relationR̂z'�̂ � 0: (56)

One possible approach for defining the estimate,
leading to an instrumental variable (IV) estimator
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(1989)) is to partition the matrix in (56) as� r̂zy R̂z' �� 1�̂ � = r̂zy + R̂z'�̂ � 0: (57)

In case dim z(t) = na+nb, the relation (57) gives a
linear system of equations with an exact solution,
namely the basic IV estimator (51).

When the vector z(t) has higher dimension, (57)
gives an overdetermined system, and has in gen-
eral no exact solution. A weighted least squares
estimator may be taken, which gives the extended
IV estimator, see Söderström and Stoica (1983),�̂EIV = �(R̂>z'WR̂z')�1(R̂>z'Wr̂zy); (58)

where W is a positive definite weighting matrix.

An alternative approach for exploiting (56) is
to solve it in a total least squares (TLS) sense,
Van Huffel and Vandewalle (1991), see also Sec-
tion 12. When dim z(t) > na + nb holds, the
IV and TLS estimators are not identical. It was
shown experimentally in Van Huffel and Vande-
walle (1989) that they have very similar behavior,
and in Söderström and Mahata (2002) that they
can have the same asymptotic covariance matrix
in the following sense. It holds that for large NpN(�̂IV � �o) N!1�! N (0; PIV); (59)pN(�̂TLS � �o) N!1�! N (0; PTLS); (60)

where PIV = �S>(W )cov
�L(q�1)z(t)�S(W ); (61)PTLS = �S>(I)cov
�L(q�1)z(t)�S(I); (62)S(W ) =WRz'(R>z'WRz')�1; (63)

and where � and the filter L(q�1) are given by the
spectral factorization�L(z)L�(z) = A(z)A�(z)�ỹ(z)+B(z)B�(z)�ũ(z):

(64)
The covariance matrix PIV, (61) apparently de-
pends on the weighting matrix W . PIV is mini-
mized with the choiceW =

�
cov

�L(q�1)z(t)���1 : (65)

Remark 1. One of the principal advantages of the
IV method is its applicability under fairly general
noise conditions, AN3b. It is inexpensive from a
computational point of view. 2
Remark 2. However, a poor accuracy of the pa-
rameter estimates is obtained: PIV is often much
larger than the the Cramér-Rao lower bound. 2
Remark 3. The matrix Rz' has to be full rank
for the IV based estimates to exist. This is a
persistence-of-excitation like condition to be sat-
isfied by the noise-free input signal. 2

rithms employing state space models are proposed
in Chou and Verhaegen (1997). Their method is
based on the noise assumption AN3b (ũ(t) white,ỹ(t) ARMA), but allows the noise terms to be
correlated. These algorithms can be applied to
multivariable systems operating in open or closed
loop, where one has to account for the process
noise also. 2
Remark 5. The main idea of the IV technique
has been subsequently developed and generalized
in several ways, e.g. by combining it with a
weighted subspace fitting approach Stoica et al.
(1995a). The noise assumption AN3b applies
(and can be somewhat weakened: one can let ũ(t)
be an MA process, that is also finitely correlated
with ỹ(t).) This combined instrumental variable
weighted subspace fitting has a much improved
statistical performance. 2

10. BIAS-COMPENSATION APPROACHES

In this section, consider the case when the sys-
tem is modeled as the linear regression, cf AS5,
written as y(t) = '>(t)� + "(t): (66)

Here, the regressor '(t) is defined in (43) and the
parameter vector � in (41). The term "(t) is the
equation error.

The least squares (LS) estimate of � using the
model (66) is�̂LS = R̂�1' r̂'y ! R�1' r'y ; N !1: (67)

Assume for simplicity that the measurement
noises ũ(t) and ỹ(t) are white, AN3c. Then it
holds thatR' = R'o +R'̃; r'y = r'oyo = R'o�o: (68)

Using (67)-(68) gives (for N !1)R'�̂LS = [R' �R'̃]�; (69)

and �̂LS is biased due to the term R'̃. The princi-
ple for bias-compensated least squares (BCLS) is
to adjust the least squares estimate for this effect.
The adjusted estimate will be�̂BCLS =

hR̂' � R̂'̃i�1 r̂'y; (70)

where the noise term R̂'̃ has to be estimated in
some way.

Under Assumption AN3c the matrix R'̃ becomesR'̃ =

� �yIna 0

0 �uInb � ; (71)

and contains two different parameters to be de-
termined. An exception is the case when the ratio�y=�u is known. For such a case one single scaling
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R'
cation algorithms for this (considerably simpler!)
case of EIV problem have been proposed by Koop-
mans (1937), Guidorzi (1981), Levin (1964), Aoki
and Yue (1970), Eising et al. (1983), Fernando and
Nicholson (1985). A further analysis of such ‘one
degree of freedom’ bias-compensating schemes has
shown that they can be interpreted as a form of
weighted instrumental variable methods, Stoica
et al. (1995b), Söderström et al. (1999), Garnier
et al. (2000), Gilson and Van den Hof (2001).

When ỹ(t) and ũ(t) both are white but with un-
known variances, the modified normal equations
(70) must be complemented with (at least) two
more equations to determine also the two un-
known noise variances �y and �u. This can in
fact be done in several ways. Here, we present an
approach by Zheng (1998).

One such relation can be derived from the minimal
value of the least squares criterion. One can show
that VLS = min� E[y(t)� 'T (t)�]2

= �y + �T0 R'̃�̂LS: (72)

Note that (72) can be seen as a linear equation in�y and �u.

To get a second relation for �y and �u, an
extended model structure is considered, cf. the
Frisch scheme in Section 11. For this purpose
introduce extended versions of '(t), � and �0 as'̄(t) =

� '(t)'(t)� ; �̄ =

� �� � ; �̄0 =

� �0

0

� ; (73)

which are used in this section, rather than the
previous conventions (42) and (46).

The model extension can, for example, mean that
an additional A parameter is appended:'(t) = �y(t� na� 1); � = ana+1: (74)

Another possibility is to append an additional B
parameter, leading to'(t) = u(t� nb); � = bnb+1: (75)

For simplicity assume '(t) being a scalar (the
vector case is also feasible though).

Next consider least squares estimation in the
extended linear regression modely(t) = '̄T (t)�̄ + "(t); (76)

which leads to R'̄ ˆ̄�LS = r'̄y: (77)

Similarly to (69), it holds thatR'̄ ˆ̄�LS = r'̄0y0
+ r ˜̄'ỹ = R'̄0

�̄0 = (R'̄ �R ˜̄')�̄0:
(78)

R'̄
with �y and �u. SetH = (0 1); J =

� Ina+nb
0

� ; �̄0 = J�0: (79)

Observe that H�̄0 = 0. Eq. (78) impliesH ˆ̄�LS = HR�1'̄ (R'̄ �R ˜̄')�̄0 = �HR�1'̄ R ˜̄'J�0:
(80)

As shown in Hong et al. (2006b) one can equiva-
lently substitute (80) byE'(t)[y(t) � '>(t)�o] = 0 (81)

which leads to a set of linear equations,r̂'y = R̂''�̂: (82)

Set � = (�y �u)>;# = (�> �>)>: (83)

Summing up so far we have derived the following
equations for determining � and �: (69), (72),
(80). These equations turn out to be bilinear in
the unknowns � and �. That is, they are linear
in � and linear in �. There are different ways
to solve the equations, Zheng (1998), Söderström
et al. (2005). Assume that the equations (69),
(72), (80) are solved. The statistical distribution

of the estimation error #̂�#o due to the deviation
of estimated covariance elements from the true
covariance elements, is as follows.

Result 10.1. Under the given assumptions the
parameter estimates #̂ are asymptotically Gaus-
sian distributed,pN(#̂� #o) dist�! N (0; PB): (84)

A detailed expression for the matrix PB is given
in Hong et al. (2006a).

As the equations determining the bias-compensated
estimate are determined from a small set of esti-
mated covariance elements, and these covariance
elements can easily be computed recursively in
time, it is fairly natural that the estimate �̂BCLS

can be arranged as a recursive algorithm. For
algorithmic details, see Zheng and Feng (1989),
Wada et al. (1990) and Feng and Zheng (1991).

There are many further possible varieties of the
BCLS algorithm, though. Other approaches for
deriving the required two equations to be used
in addition to (70) have been proposed by Wada
et al. (1990), Jia et al. (2001), Ikenoue et al. (2005)
and Zheng (1999a). BCLS approaches using pre-
filters of the input are launched in Zheng and Feng
(1989) and Zheng (1999b).

An interesting generalization of the standard
BCLS method is proposed in Mahata (2006). It is
shown that basing the estimates on more general
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filtering, a significantly improved performance is
achieved, that is close to the Cramér-Rao lower
bound.

The BCLS principle can be extended to handle
also the case of a general output noise as in As-
sumption AN3b (ũ(t) white, ỹ(t) an ARMA pro-
cess), Zheng (2002), and Zheng and Feng (1992).
The basic idea is as follows. Introduce a noise
parameter vector as� =

� rỹ(0) rỹ(1) : : : rỹ(na) �u �> : (85)

Consider LS estimation in two ARX models where
the number of B parameters is nb and na+nb+1,
respectively. From the LS estimates it is possible
to derive BCLS type of equations that determine
both � and �.

Related approaches have been devised by Ek-
man and colleagues, Ekman (2005), Ekman et al.
(2006).

In a general setting the situation can be described
as follows, as far as the ‘design’ of BCLS methods
goes.� As a first step, the user has to provide the

structure of a noise model. More specifically,
the type of input and output noise is to
be provided. Two natural options here are
Assumption AN3c (both ũ(t) and ỹ(t) white
noise) or Assumption AN3b (ũ(t) is white
noise, and ỹ(t) is an ARMA process).� A second part is to set up the underlying
equations. In the case above, the set of equa-
tions are (69), (72), (80). While the normal
equations for a standard least squares estima-
tion typically are kept, the other equations
may be substituted. It is also possible to use
more equations than unknowns. Due to the
nature of the problem, the set of equations
will always be nonlinear, although they have
a considerable amount of structural proper-
ties.� The third item to consider is the numerical
algorithm to use for solving the system of
equations.

To formulate the situation in a general way, the
system of equations may be written asf(r̂N ; �̂) � 0: (86)

In (86) r̂N is a vector of a number of covariance
elements based on N data points. In the standard
BCLS case (86) is a concise notation for (69),
(72), (80). In case the number of equations and
the number of unknowns are equal, strict equality
holds in (86). The algorithm to solve (86) is
written as �̂k = g(�̂k�1; r̂N ); (87)

where k is an iteration number, and g is a function
that is tied to f . The scheme (87) is to be iterated

rN
be updated recursively in time, it is possible to
substitute (87) by a recursive algorithm, cf. Ljung
and Söderström (1983).

Consistency can be examined by investigating if
the solution to (86) converges to the true param-
eter vector, as the number of data points grows
to infinity. In mathematical terms, one examines
if the possible implicationf(r̂1; �) � 0 ) � = �o? (88)

holds true.

Convergence of the iterations is mostly considered
in the asymptotic case, that is for N = 1.
This means that one considers the discrete-time
deterministic nonlinear system�̂k = g(�̂k�1; r̂1); (89)

and explores whether or not the desired solution� = �o is a stable solution. This stability analysis
can be done both locally, and (which is more diffi-
cult) globally. For the analysis of ‘local’ stability, it
is enough to examine the linearized system. More
particularly, the matrix�g(�; r̂1)�� �����=�o
must have all eigenvalues inside the unit circle to
guarantee (local) stability.

Finally, one can also examine the statistical accu-
racy, as expressed by the asymptotic distribution
of the parameter estimates. Assume that the itera-
tive scheme (87) is chosen so that the iterations do
converge. The properties of the asymptotic (k !1) estimate will then not depend on the used
algorithm for solving the equations (86). WhenN is large but finite, the estimate will deviate
somewhat from the true parameter vector. Under
weak assumptions the deviation is asymptotically
Gaussian distributed in the sensepN(�̂ � �o) �! N (0; P ); N !1: (90)

Here, the normalized asymptotic covariance ma-
trix P will depend on the system, the noise-
free input spectrum, the signal-to-noise ratios and
the estimation method. The dependence on these
quantities can be rather involved.

11. THE FRISCH SCHEME

The Frisch scheme has its roots in a classical
algebraic estimation problem, see Frisch (1934).
The term ‘Frisch scheme’ has also been used in
situations where the noise has uncorrelated com-
ponents, but is correlated in time. Extensions of
the Frisch scheme to identification of dynamic
models appeared in Beghelli et al. (1990), Scher-
rer and Deistler (1998). Later refinements and
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Guidorzi (1996), Söderström et al. (2002), Diversi
et al. (2003). The Frisch scheme may be inter-
preted as a special form of bias-compensated least
squares.

The Frisch estimation method is based on the as-
sumption of white input and output measurement
noise, AN3c. First note that'>o (t)�o = �Ao(q�1)yo(t) +Bo(q�1)uo(t) = 0:

(91)
Further it holds thatR' = R'o +R'̃; R' = R'o +R'̃: (92)

It follows from (91) thatR'o�o = E �'o'>o �o� = 0: (93)

Hence the matrixR'o is singular (positive semidef-
inite), with at least one eigenvalue equal to zero.
The corresponding eigenvector is �o. One can
show that under the general assumptions AI1 the
matrix R'o will in fact have only one eigenvalue
in the origin.

The noise covariance matrix has a simple struc-
ture, as R'̃ =

� �yIna+1 0

0 �uInb � : (94)

The relation (93) is the basis for the Frisch
method. The idea is to have appropriate estimates
of the noise variances and then determine the
parameter vector � from�R̂' � R̂'̃� �̂ = 0: (95)

Assume for the time being that some estimate �̂u
of the input noise variance is available. Then the
output noise variance �y is determined so that
the matrix appearing in (95) is singular. More
specifically, see Söderström (2005):�̂y = �min

�R̂'y�R̂'y'u�R̂'u � �̂uInb��1R̂'u'y�
(96)

where �min(R) denotes the smallest eigenvalue
of R. The estimate of the parameter vector � is
determined by solving�R̂' �� �̂yIna 0

0 �̂uInb �� �̂ = r̂'y; (97)

which is indeed the BCLS equations (69), (95). By

(96), �̂y will be a function of �̂u.

What remains is to determine �̂u. Different alter-
natives have been proposed:� In Beghelli et al. (1990), the function �̂y(�̂u)

is evaluated both for the nominal model and
for an extended model, adding one A or oneB parameter (or both). The two functions

correspond to curves in the (�̂u; �̂y) plane.
The curves will ideally intersect in one unique

R̂' would be replaced by its true value R' a
situation as displayed in Figure 6 would be
obtained. Curve A corresponds to the true

P

B
A�u�y �̂u

�̂y(�̂u)

Fig. 6. Illustration of the principle for Frisch
estimation.

model order, while curve B applies for the
increased model order. The coordinates of
the common point P give precisely the true
noise variances �u; �y.

For a finite data set the situation is less
ideal, and there is not a distinct point P
where the curves A and B share a common
point. We refer to Beghelli et al. (1990),
Soverini and Söderström (2000) for more
detailed aspects on how this type of the
Frisch scheme can be implemented.� Another alternative is to compute residuals,
and compare their statistical properties with
what can be predicted from the model. This
alternative was proposed in Diversi et al.
(2003). It is presented here in a slightly more
general form. Define the residuals"(t; �̂) = Â(q�1)y(t)� B̂(q�1)u(t); (98)

and compute sample covariance elementsr̂"(k) =
1N NXt=1

"(t; �̂)"(t+ k; �̂): (99)

Compute also theoretical covariance ele-
ments r̂"o(k) based on the model"o(t) = Â(q�1)ˆ̃y(t)� B̂(q�1)ˆ̃u(t); (100)

where ˆ̃y(t) and ˆ̃y(t) are independent white
noise sequences withE hˆ̃y2(t)i = �̂y; E hˆ̃u2(t)i = �̂u: (101)

Next, define a criterion for comparing fr̂"(k)g
and fr̂"o(k)g. A fairly general way to do this
is to take VN (�̂u) = Æ>WÆ; (102)

where W is a user chosen, positive definite
weighting matrix, and the vector Æ isÆ =

0B� r̂"(1)� r̂"o(1)
...r̂"(m)� r̂"o(m)

1CA : (103)
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m
choice. The estimate �̂u is determined as the
minimizing element of the criterion�̂u = arg min�u VN (�u): (104)

In summary the Frisch scheme algorithm consists
of the equations (96), (97) and (104). In its
implementation, there is an optimization over one
variable, �̂u, in (104). Possibly minimization of the
criterion (102) is substituted by some other form
of searching for the point P in Figure 6. In the
evaluation of the loss function VN (�̂u), also (96)

and (97) are used to get �̂y and �̂, respectively.

The following result describes the asymptotic dis-
tribution of the parameter estimates for the Frisch
scheme.

Result 11.1. Under the given assumptions the
parameter estimates #̂ are asymptotically Gaus-
sian distributed,pN(#̂� #o) dist�! N (0; PF): (105)

where # is given by (83). A detailed expression for
the matrix PF is given in Söderström (2005).

In its basic form the Frisch scheme is somewhat
restrictive in that white output noise is assumed.
Extensions of the Frisch scheme to situations
where ỹ(t) is autocorrelated (that is, using As-
sumption AN3b rather than AN3c) are pro-
posed in Söderström (2006).

12. TOTAL LEAST SQUARES

The total least squares (TLS) method is in prin-
ciple a method for treating overdetermined linear
systems of equations where both the coefficient
matrix and the right hand side are subject to
errors. Consider the overdetermined system of
equations Ax � b; (106)

where it is assumed that the m� n matrix A has
full rank n. The least squares solution to (106) isxLS = (A>A)�1A>b (107)

and can also be formulated as the solution to the
following optimization problem

min k ∆b k2 subject to AxLS = b+ ∆b: (108)

The TLS problem is different, and takes into
account also uncertainties in the coefficient matrixA. The TLS problem tracks it roots to orthogonal
regression, Adcock (1877), Adcock (1878) and
have been given a detailed treatment in Golub
and Van Loan (1980), Van Huffel and Vandewalle
(1991). There are several connections between
TLS and the EIV problems, as manifested in
the workshop proceedings Van Huffel (1997), Van

can be formulated as, compare (108),

min k [∆A ∆b] k2F s: t: (A+ ∆A)xTLS = b+ ∆b:
(109)

Note that in (109) it is important to use the
Frobenius norm, while for (108) the Frobenius
norm and the common 2-norm coincide as b is a
vector.

Computationally, the TLS solution is obtained
from a singular value decomposition of [∆A ∆b].
Indeed the right singular vector associated with
the smallest singular value of this matrix can after

scaling be written as
�
1 � x>TLS

�>
.

If the errors in the various A and b elements
are independent and identically distributed, the
TLS solution to the problem (106) coincides with
the maximum likelihood estimate, Gleser (1981).
Further, both consistency and the asymptotic dis-
tribution of the estimates are examined under this
condition. Unfortunately, the analysis described
above is not of much help, when TLS is applied for
identification of dynamic systems. In fact, in many
cases there are couplings between various elements
in A and b. The matrix may be constructed to be
Toeplitz of Hankel for example. For such cases one
can apply a structured total least squares (STLS)
or constrained total least squares solution, that
takes couplings into account. Consider a simple
example, and let the system dynamics be given
by (39), with '(t) as in (43). Repeating (39) for
various values of t gives0B� '>(1)

...'>(N)

1CA � =

0B� y(1)
...y(N)

1CA : (110)

As the matrix in (110) is block Hankel (with
equal elements along the block diagonals), the
structured TLS solution is more relevant than the
basic TLS solution in general.

The statistical properties of the solution to a
structured TLS problem is considered in several
papers, for example Kukush et al. (2005). A quite
general TLS situation is examined. In the anal-
ysis, however, it is assumed that the covariance
structure may vary from row to row, but that the
total covariance structure is known up to a scalar
factor. This corresponds in the BCLS framework
in Section 11 to the simpler, but not so realistic,
case of a one degree of freedom problem.

13. FREQUENCY DOMAIN METHODS

The methods described in the previous sections
are all based on time domain techniques. It is,
however, also possible to work in the frequency
domain. Then, typically, as a first step the spec-
trum of the observations is determined.
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satisfies in the SISO case, see (2), (4), (5),�z =

�G
1

��G� 1
��uo +

� �y 0
0 �u � : (111)

If the spectral density matrix �z is known, and an
appropriate diagonal matrix is subtracted, then
one would get a rank 1 matrix, corresponding to
the first term of (111), for all frequencies !. In
case the decomposition as in (111) can be carried
out, the first term would easily lead to estimates
of the transfer function G(ei!) and the true input
spectrum �uo(!).

The idea here is similar to that of the Frisch
scheme, with the important difference that the full
spectral information in the data is used instead of
the covariance matrix (55).

As the first term in (111) is singular, it must hold
for each frequency !k; k = 1; 2; : : : ; that

[�y(!k)��y ][�u(!k)��u]�j�yu(!k)j2 = 0: (112)

This relation is exploited in Söderström et al.
(2003) as a linear regression with �y ; �u; �y�u
as three unknowns, to derive an estimate of the
noise variances. Once estimates of �y and �u are
available, it is straightforward to estimate the
transfer function, for example asĜ(ei!k) = �yu(!k)=[�u(!k)� �̂u]: (113)

In this approach the spectrum �z is estimated as a
first step. In order to guarantee that the estimated
spectrum �̂z(!) indeed is positive definite, it is
important to use a more sophisticated spectrum
estimator than a straightforward Discrete Fourier
Transform.

The above idea is developed in Beghelli et al.
(1997) using an FFT-based spectral estimator.
The quality of the estimate is moderate. A more
promising approach, based on a black-box mod-
eling of the spectral density �z(!), is described
in Söderström et al. (2003). A nonparametric ap-
proach is considered, where the spectrum �z(!)
(111) is modeled using a two-dimensional ARMA
model and a two step procedure for fitting its
parameters. Two parametric estimators with fur-
ther improved performances are also derived. In
one of them a parametric model is fitted to the
nonparametric one. The other parametric method
is exploiting information in the two-dimensional
ARMA model in a more direct way. In qualitative
terms, the performance of the two parametric
estimators is at least as good as typical IV-based
estimators.

In Castaldi et al. (2002) another Frisch domain
approach is used. The problem is formulated as
a bilinear matrix inequality. An H1 estimate is
proposed in Agüero et al. (2005), see also (18).
The degree of freedom is used such that the H1

quency domain IV method for multivariable sys-
tems is developed in Hsiao and Robinson (1978).
In general, an iterative procedure is needed to
tope with nonlinear dependencies, but it is shown
how consistent and efficient parameter estimates
can be found using a three step procedure.

A general treatment of frequency domain estima-
tors for the EIV problem is given in Pintelon et al.
(1994). As in many of these methods it is assumed
that the noise-free input uo(t) is periodic. More
details are provided in Section 15.

14. PREDICTION ERROR AND MAXIMUM
LIKELIHOOD METHODS

In this approach the errors–in–variable model of
Figure 4 is regarded as a multivariable system
with both y(t) and u(t) as outputs, Söderström
(1981). Of crucial importance for this approach
is the assumption AI3, i.e., the noise–free inputuo(t) is characterized by a rational spectrum.
It can thus be represented by its innovations
form, described as an ARMA process of the type
(27). In this way, the whole errors–in–variables
model can be considered as a system with a two–
dimensional output vector z(t) = (y(t)u(t))> and
three mutually uncorrelated white noise sourcese(t), ỹ(t) and ũ(t):� y(t)u(t)� =

0BB� B(q�1)C(q�1)A(q�1)D(q�1)
1 0C(q�1)D(q�1)
0 1

1CCA0� e(t)ỹ(t)ũ(t)1A :
(114)

Thus the model C(q�1)=D(q�1) of the undis-
turbed input is a part of the errors–in–variables
representation and its coefficients must be esti-
mated together with the parameters of A(q�1)
and B(q�1).

The model (114) is transformed to a general
state-space model, which in turn is transformed
into innovations form, obtained from the Kalman
filter, see for example, Söderström (2002). The
prediction errors "(t; �) = z(t)�ẑ(tjt�1; �) depend
on the data and the model matrices. Let Q denote
the covariance matrix of the prediction errors.
The parameter vector � is estimated from a data
sequence fz(t)gNt=1 by minimizing a loss function:�̂N = arg min� VN (�): (115)

Assume that VN (�) is a (sufficiently) smooth func-
tion of �, and that VN (�) converges (uniformly

on compact subsets) as N ! 1. Then �̂N is
consistent.

There is no unique way of defining a prediction
error method (PEM) criterion that penalizes the
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sequence f"(t; �)gNt=1. The most common choice is
to takeVN (�) = det

 
1N NXt=1

"(t; �)">(t; �)! : (116)

One has then also to make use of the minimal
value of the criterion, VN (�̂N ), Söderström (2006).
The estimation error is asymptotically Gaussian
distributed, Ljung (1999), Söderström and Stoica
(1989). In fact,pN(�̂N � �o) dist�! N(0; PPEM); (117)

withPPEM =
�Ef >(t)Q�1(�o) (t)g��1 : (118)

In (118),  (t) denotes (t; �) = ���"(t; �)�� �> : (119)

The maximum likelihood (ML) estimate (for
Gaussian distributed data, AN2, AI2) minimizesVN (�) =

1N NXt=1

`("(t; �); �; t); (120)

with`("; �; t) =
1

2
log detQ(�) +

1

2
">(t; �)Q�1(�)"(t; �):

(121)

In principle it is straightforward to extend the
PEM and ML estimates to MIMO EIV systems.

For the EIV problem considered the ML estimate
will be more accurate than the PEM estimate, in
the sense that it gives a smaller covariance matrix
for the parameter errors. The reason is that in
(121), the innovations covariance matrix Q(�) and
the prediction errors f"(t; �)g are parameterized
with joint parameters (in contrast to ‘standard
identification’ problems).

Also the ML estimate is asymptotically Gaussian
distributed, Söderström (2006),pN(�̂N � �o) dist�! N(0; PML); (122)

withPML =
�Ef >(t)Q�1(�o) (t)g+ P ��1 ; (123)

whereP ij =
1

2
tr[Q�1QiQ�1Qj ]; Qi =

�Q��i : (124)

From (118), (123), it is obvious that the presence
of the term P in (123) implies that the ML
estimate is more accurate than the PEM estimate.
Furthermore, the Cramér-Rao bound turns out to
be equal to the matrix PML, (123), for Gaussian
data.

in the frequency domain, Pintelon and Schoukens
(2006), even if there are differences in how tran-
sient effects are handled. The inherent spectral
factorization may be easier to carry out in the
frequency domain.

The main disadvantage of PEM and ML for the
EIV problem is that the numerical optimization
procedure is, in general, quite complex since at
every iteration a Riccati equation must be solved
in order to find the innovations "(t) used in (116)
or (120). The procedure may fail to give good
results if only poor initial parameter estimates are
available.

15. METHODS DESIGNED FOR PERIODIC
DATA

The methods described in this section are partly
tied to periodic data. However, we also include
the case when there is more than one experiment.
Should the unperturbed input signal, uo(t), be
the same in all experiments, and the experiments
of equal length, then concatenating the measure-
ments will indeed produce periodic data.

First recall from Section 5, see Examples 5.1 and
5.2, that under mild conditions the system will be
identifiable if the noise-free input signal uo(t) is
periodic.

A straightforward way to handle multiple exper-
iments using time-domain data is the following,
which is an instrumental variable estimator. Con-
sider the linear regression modely(t) = '>(t)� + "(t); (125)

where "(t) denotes the equation error. Assume
that more than one data set is available, so thaty(i)(t) = '(i)T (t)� + "(i)(t); i = 1; 2; : : : (126)

The true parameter vector fits perfectly the mod-
els when undisturbed data are used:y(i)o (t) = '(i)To (t)�o: (127)

Assume now that AE2b applies. Hence, the noise
is independent in the different data sets, and

the unperturbed regressor vector '(i)o (t) is (well)
correlated in the different data sets. Using two
data sets, one getsE['(1)(t)'(2)T (t)]�o �E['(1)(t)y(2)(t)]

= E'(1)o (t)['(2)To (t)�o � y(2)o (t)] = 0: (128)

Assume that the matrix E['(1)o (t)'(2)To (t)] is non-
singular. This is partly a condition on the inputs
being persistently exciting. It is also a condition
on sufficient correlation between the data sets.
The consequence is that from two data sets, it
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mator as"
1N NXt=1

'(1)(t)'(2)T (t)# �̂ =
1N NXt=1

'(1)(t)y(2)(t);
(129)

which is indeed an instrumental variable estima-
tor, Söderström and Stoica (1989).

It is though also possible to apply the estimator
(129) in other situations, and the ‘experiments’
can be allowed to be overlapping, as long as the
basic assumptions are satisfied. More extended
versions of this idea including the use of opti-
mal weightings are described in Söderström and
Hong (2005). The principle to use IV estimation
using cross-correlation between the different ex-
periments has earlier been reported by van den
Bos (1992) and Pintelon et al. (1994).

In some situations it happens that one can have
repeated experiments where the noise-free re-

gressor vector remains the same, that is '(i)o (t)
does not change from one experiment to another.
This case is treated in the frequency domain in
Schoukens et al. (1997), Guillaume et al. (1995),
and in the time domain with TLS techniques in
Forsell et al. (1999). With periodic excitation it
is possible to separate the driving signals and
the disturbances. A nonparametric noise model is
applied, and the noise can be allowed to have an
arbitrary correlation structure.

For the (frequency-domain) sample maximum
likelihood method (SML) in Schoukens et al.
(1997), see also Pintelon and Schoukens (2001),
it is assumed that at least four full periods of
the data (or four independent experiments) are
available. The method has a quite good statisti-
cal performance, and is close to statistically ef-
ficient. The achieved covariance matrix is (M �
2)=(M � 3) times the Cramér-Rao lower bound,
where M � 6 is the number of periods in the
experiment. The data are first pre-processed to
estimate the noise covariance functions (or equiv-
alently, the frequency dependent variances of the
DFT of the input and output noise). Note that
the SML method can be extended to handle also
cases where the input noise ũ(t) is correlated with
the output noise ỹ(t). Let U(!k) and Y (!k), with!k = 2�k=N , denote the discrete Fourier trans-
forms of the input and output measurements, re-
spectively, and assume that the transfer function
is G(z) = B(z)=A(z). The ML criterion in the
frequency domain used in Schoukens et al. (1997)
can be written asVML(�; Z) =

1N NXk=1

��B(ei!k ; �)U(!k)�A(ei!k ; �)Y (!k)
��2D(!k)

(130)

D(!) = �2u(!)jB(ei!; �)j2 + �2y(!)jA(ei!; �)j2�2Re [�2yu(!)A(ei!; �)B(e�i!; �)] (131)

and �2u(!k) is the variance of the DFT Ũ(!k) of
the input noise ũ(t) at frequency !k, etc.

The method described in Markovsky et al. (2006a)
is also based on two experiments. Formally,
though, it is presented as that there is a clustering
in time of the data, so that the statistical proper-
ties of the noise-free input, such as its spectrum�uo(!), change at some point of time, cf. AE2a.
The same type of idea is discussed in Wald (1940)
under the name of grouping.

16. CONCLUDING REMARKS

It has been demonstrated in the paper that EIV
systems in general suffer from an identifiability
problem. There are several ways to add some
extra condition to achieve identifiability. Various
parameter estimation methods are designed to
work under such an additional condition.

An attempt to compare some of the principal
approaches, in terms of underlying additional as-
sumption, computational complexity, and statis-
tical accuracy (asymptotic variances of the pa-
rameter estimates), is presented in Table 1. One
extreme case is basic IV, which is very simple com-
putationally, and gives only crude estimates. The
other extreme is the ML estimator which is based
on a complex optimization problem, and can give
very accurate estimates. It is fairly natural that
PEM and ML have high computational complex-
ity, as they involve a nonlinear optimization prob-
lem, where each function evaluation requires a
considerable amount of calculations. There is also
a ‘middle group’ of methods that are computa-
tionally much simpler than PEM and ML, but on
the other hand give much more accurate estimates
than the basic IV. It is also worth stressing that
for basic IV only the system parameters are esti-
mated. For both ML and PEM model parameters
for describing the true input are estimated as well.
For the ‘middle group’ of estimators parameters
describing the measurement noises are estimated.

It is important to read the comparison with some
caution. The statements are certainly qualitative,
not quantitative. The precise results will depend
on the actual coding, and also on the system, the
frequency properties of the true input, the signal-
to-noise ratios on the input and output sides, etc.

As illustration two examples are provided.

Example 16.1. We compare the computational
load in terms of Matlab flops for basic IV, the
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identification problem. *): In the basic version ỹ(t) is assumed to be white.
Extensions to an arbitrarily correlated ỹ(t) are available. **): SML method defined
by (130). ***): Note that in this case ũ(t) and ỹ(t) can be allowed to be cross-

correlated.

Method Noise Experimental Computational Statistical
condition condition complexity accuracy

Basic IV ũ(t) MA AN3a - very low low
IV + WSF ũ(t) MA AN3a - medium medium-high
BCLS ũ(t) white, ỹ(t) *) AN3bc - low medium-high
Frisch ũ(t) white, ỹ(t) *) AN3bc - low medium-high

TLS ũ(t); ỹ(t) white AN3c medium medium-high
and �y=�u known, or repeated exp’s AE2a

Frequency domain **) ũ(t); ỹ(t) ARMA AN3a repeated exp’s AE2b ***) medium-high very high
PEM ũ(t); ỹ(t) ARMA AN3a - high high
ML ũ(t); ỹ(t) ARMA AN3a - high very high

Frisch scheme, and PEM. These methods were
applied to a first and a second order system, dis-
turbed with white measurement noises, and where
the noise-free input is a first order ARMA process.
The effective number of estimated parameters dif-
fer between the methods. The mean values of the
number of Matlab flops from 10 realizations, each
with N = 200 data points, are presented in Figure
7. The figure supports the statements above on
how the load differs between the methods.

2 3 4 5 6 7 8
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PEM
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#
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o
p
s

Fig. 7. Illustration of the computational loads.

Example 16.2. The theoretical asymptotic vari-
ances of the system parameter estimates were ex-
amined for some methods. In other papers, these
theoretical expressions are shown to quite well
predict what happens in simulations. Consider
a second order system with the true parameter
values a1 = �1:5; a2 = 0:7; b1 = 2; b2 = 1. The
measurement noises were white with �u = 1; �y =
10. The noise-free input was an ARMA(1,2) pro-
cess with the parameters 
1 = 0:7; 
2 = 0:2; d1 =�0:5. The noise variance �e was varied and the
asymptotic normalized variance of the parameter
estimates were computed. The results are plotted
in Figure 8. The plots demonstrate clearly that
the basic IV method produces quite crude esti-
mates. No method produces as accurate estimates
as the ML method. Sometimes (say for b1) there
is a quite significant difference in performance

between PEM and ML. There is no uniformly
valid ordering between Frisch, BCLS and PEM:
no method is always better than the other.
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Fig. 8. Normalized variances of â1; â2; b̂1 and b̂2,

for the Frisch scheme, PEM, BCLS, basic IV
and the Cramer-Rao lower bound.

It is also worth stressing that the experimental
condition and a priori information can have pro-
found implications on the estimation results. For
example, if there are repeated experiments, the
frequency domain methods described in Section
13 exploit this knowledge in an efficient way and
can produce very accurate results.

Another case is when the noise variance ratio�y=�u is known. When this happens, the funda-
mental loss of identifiability vanishes. Further, the
TLS based estimators become perfectly feasible
due to the possibility for rescaling variables, so
that scaled input and output measurements have
equal levels of noise. It is also possible to de-
rive a maximum likelihood estimator in this case,
where all values of the noise-free input uo(t); t =
1; : : : ; N , are treated as additional nuisance pa-
rameters, Diversi et al. (2006). The resulting esti-
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J. C. Agüero, G. C. Goodwin, and M. E. Salgado.
On the optimal estimation of errors in variables
models for robust control. In 16th IFAC World
Congress, Prague, Czech Republic, July 4-8
2005.

B. D. O. Anderson. Identification of scalar errors-
in-variables models with dynamics. Automatica,
21:709–716, 1985.

B. D. O. Anderson and M. Deistler. Identifiability
of dynamic errors-in-variables models. J. Time
Series Analysis, 5:1–13, 1984.

B. D. O. Anderson and M. Deistler. Dynamic
errors-in-variables systems in three variables.
Automatica, 23:611–616, 1987.

T. W. Anderson. Estimating linear statistical re-
lationships. The Annals of Mathematical Statis-
tics, 12(1):1–45, 1984.

M. Aoki and P. C. Yue. On a priori error estimate
of some identification methods. IEEE Trans-
actions on Automatic Control, AC-15:541–548,
October 1970.

S. Beghelli and U. Soverini. Identification of
linear relations from noisy data: Geometrical

339–346, 1992.
S. Beghelli, R.P. Guidorzi, and U. Soverini. The

Frisch scheme in dynamic system identification.
Automatica, 26:171–176, 1990.

S. Beghelli, P. Castaldi, and U. Soverini. A fre-
quential approach for errors-in-variables mod-
els. In Proc. European Control Conference,
ECC ’97, Brussels, Belgium, July 1–4 1997.

P. Castaldi and U. Soverini. Identification of dy-
namic errors-in-variables models. Automatica,
32(4):631–636, April 1996.

P. Castaldi, M.Montanari, and A. Tilli. Induc-
tion motor model identification via frequency-
domain Frisch scheme. In IFAC World
Congress, Barcelona, Spain, 2002.

C. L. Cheng and J. W. Van Ness. Kendall’s
library of statistics: Statistical Regression With
Measurement Error, volume 6. Edward Arnold,
1999.

C. T. Chou and M. Verhaegen. Subspace algo-
rithms for the identification of multivariable dy-
namic errors-in-variables models. Automatica,
33(10):1857–1869, October 1997.

M. Deistler. Linear dynamic errors-in-varibles
models. Journal of Applied Probability, 23A:
23–39, 1986.

M. Deistler and B. D. O. Anderson. Linear
dynamic errors-in-varibles models. Some struc-
ture theory. Journal of Econometrics, 41:39–63,
1989.

R. Diversi, R. Guidorzi, and U. Soverini. A
new criterion in EIV identification and filter-
ing applications. In 13th IFAC Symposium on
System Identification, Rotterdam, The Nether-
lands, August 27-29 2003.

R. Diversi, R. Guidorzi, and U. Soverini. Max-
imum likelihood identification of noisy input-
output models. 2006. Submitted for publica-
tion.

R. Eising, N. Linssen, and H. Rietbergen. System
identification from noisy measurements of in-
puts and outputs. Systems and Control Letters,
2:348–353, 1983.

M. Ekman. Identification of linear systems with
errors in variables using separable nonlinear
least squares. In 16th IFAC World Congress,
Prague, Czech Republic, July 04-08 2005.

M. Ekman, M. Hong, and T. Söderström. A
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