Final exam: Computer-controlled system (Datorbaserad styrning, 1TV450, 1TS250)

Date: April 19, 2007
Responsible examiner: Torsten Söderström
Preliminary grades: $3=23-32 \mathrm{p}, 4=33-42 \mathrm{p}, 5=43-50 \mathrm{p}$.

Instructions

The solutions to the problems can be given in Swedish or in English.
Problem 4 is an alternative to the homework assignment. (In case you choose to hand in a solution to Problem 4 you will be accounted for the best performance of the homework assignments and Problem 4.)

Solve each problem on a separate page.
Write your name on every page.

Provide motivations for your solutions. Vague or lacking motivations may lead to a reduced number of points.

Aiding material: Textbooks in automatic control (such as 'Reglerteori - flervariabla och olinjära metoder', 'Reglerteknik - Grundläggande teori', and others), mathematical handbooks, collection of formulas (formelsamlingar), textbooks in mathematics, calculators. Note that the following are not allowed: Exempelsamling med lösningar, copies of OH transparencies.

Good luck!

Problem 1

Consider a system with three inputs and two outputs, having a transfer function

$$
G(s)=\left(\begin{array}{ccc}
\frac{2}{s+1} & \frac{3}{s+2} & \frac{3}{s+2} \\
\frac{1}{s+1} & \frac{1}{s+1} & \frac{1}{s+1}
\end{array}\right)
$$

(a) Determine the poles and the zeros of the system.

3 points
(b) The system can be represented in state space form as

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

with

$$
A=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right), \quad C=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

and B a suitable matrix of dimension 3×3. Determine the matrix B.
6 points

Problem 2

When Internal Model Control (IMC) is applied, one can in a general case for a minimum-phase system use

$$
Q(s)=\frac{1}{A(s)} G^{-1}(s)
$$

where $A(s)$ is a polynomial of degree k. When λ-tuning is applied one makes the specific choice $A(s)=(1+\lambda s)^{k}$.
(a) What condition on $A(s)$ has to be applied for the controller to work? What additional condition should $A(s)$ satisfy in order to guarantee that the sensitivity function fulfils $S(0)=0$?

3 points
(b) Consider the SISO case. Can one choose $A(s)$ so that the stationary error vanishes when the reference signal is a ramp, that is the error coefficient e_{1} satisfies $e_{1}=0$?

4 points

Problem 3

Consider LQ control of the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right) x+\binom{1}{0} u \\
y & =\left(\begin{array}{ll}
1 & 1
\end{array}\right) x
\end{aligned}
$$

The criterion to be minimized is

$$
V=\int\left[\alpha^{2} y^{2}(t)+u^{2}(t)\right] d t, \quad(\alpha>0)
$$

and hence

$$
Q_{1}=\alpha^{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad Q_{2}=1
$$

(a) Determine the optimal feedback gain vector L. Determine also the loop gain $L(p I-A)^{-1} B$.

5 points

Hint. In this example, the nondiagonal elements of the solution to the Riccati equation will be positive.
(b) Show that the transfer function from u to y for the given system is in fact of first order. Use this fact, to derive the loop gain in a simpler way than in part (a).

3 points

Problem 4

Consider a simple feedback system where the nominal model is $G(s)=1 / s$, the feedback is a proportional regulator $F(s)=K$ and the true system is

$$
G_{o}(s)=\frac{1}{s(1+s T)}
$$

Both K and T can be assumed to be positive.
(a) Determine the relative model error $\Delta_{G}(s)$.

2 points
(b) Assume that the criterion

$$
\left\|\Delta_{G}\right\|_{\infty}\|T\|_{\infty}<1
$$

is used to examine for which values of K the closed loop system can be guaranteed to be stable. What is the result?

2 points
(c) Assume that the criterion

$$
\left\|\Delta_{G} T\right\|_{\infty}<1
$$

is used to examine for which values of K the closed loop system can be guaranteed to be stable. What is the result?

3 points
(d) Determine the poles of the closed loop system. Find out when the closed loop system is asymptotically stable.

2 points

Problem 5

Consider a system with a zero on the imaginary axis, so $G\left(i \omega_{z}\right)=0$. For the design, use a weighting

$$
W_{S}(s)=\frac{s+\omega_{0}}{S_{0} s}, \quad S_{0}=2
$$

Determine what the design condition

$$
\left|W_{S}\left(i \omega_{z}\right)\right| \leq 1
$$

Problem 6

Consider the control system below, where a DC motor is controlled by using a saturizing amplifier.

In the figure we have

$$
\begin{aligned}
G(s) & =\frac{K}{s(T s+1)} \quad(K>0, T>0) \\
f(e) & =\left\{\begin{array}{rl}
-1 & e<-1 \\
e & -1<e<1 \\
1 & 1<e
\end{array}\right.
\end{aligned}
$$

The task is to use different techniques to find out for which values of T and K the closed loop system is guaranteed to be stable.
(a) Use the small gain theorem directly to find sufficient conditions on K and T for the closed loop system to be stable.
(b) Use the circle criterion to find sufficient conditions on K and T for the closed loop system to be stable.
(c) Write the system on state space form using y and \dot{y} as state variables.

2 points
(d) Analyse stability of the closed loop system, using Lyapunov theory. Use the state space model derived in part (c). Try a Lyapunov function of the form

$$
V(x)=\frac{1}{2} x_{2}^{2}+K g\left(x_{1}\right)
$$

where $g\left(x_{1}\right)$ is some suitable function.
Hint. Choose $g\left(x_{1}\right)$ after examining $\dot{V}(x)$.

Uppsala University
Department of Information Technology
Systems and Control
Prof Torsten Söderström

Computer-controlled system, April 19, 2007 Answers and brief solutions

Problem 1

(a) Determine first the pole polynomial. The 1×1 minors are the matrix elements. It is enough to consider

$$
\frac{2}{s+1}, \quad \frac{3}{s+2}
$$

There are 3 different 2×2 minors (each obtained by deleting one column of $G(s)$ when forming the determinant). These minors are

$$
\begin{aligned}
& \frac{2}{s+1} \times \frac{1}{s+1}-\frac{3}{s+2} \times \frac{1}{s+1}=\frac{2(s+2)-3(s+1)}{(s+1)^{2}(s+2)}=\frac{(-s+1)}{(s+1)^{2}(s+2)}, \\
& \frac{2}{s+1} \times \frac{1}{s+1}-\frac{3}{s+2} \times \frac{1}{s+1}=\frac{2(s+2)-3(s+1)}{(s+1)^{2}(s+2)}=\frac{(-s+1)}{(s+1)^{2}(s+2)}, \\
& \frac{3}{s+2} \times \frac{1}{s+1}-\frac{3}{s+2} \times \frac{1}{s+1}=0
\end{aligned}
$$

The least common denominator for all the minors, that is the pole polynomial, is hence

$$
(s+1)^{2}(s+2)
$$

The system has a double pole in $s=-1$ and a single pole in $s=-2$.

To find the zeros of the system, consider the numerators of the 2×2 minors. These minors have already the pole polynomial as denominator. The zero polynomial is therefore $-s+1$, and the system has one zero in $s=1$.
(b) Set

$$
B=\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)
$$

We then get the transfer function

$$
\begin{aligned}
G(s) & =C(s I-A)^{-1} B \\
& =\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
s+1 & 0 & 0 \\
0 & s+1 & 0 \\
0 & 0 & s+2
\end{array}\right)^{-1}\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{1}{s+1} & 0 & \frac{1}{s+2} \\
0 & \frac{1}{s+1} & 0
\end{array}\right)\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{ccc}
\frac{b_{11}}{s+1}+\frac{b_{31}}{s+2} & \frac{b_{12}}{s+1}+\frac{b_{32}}{s+2} & \frac{b_{13}}{s+1}+\frac{b_{33}}{s+2} \\
\frac{b_{21}}{s+1} & \frac{b_{22}}{s+1} & \frac{b_{23}}{s+1}
\end{array}\right)
$$

Comparing with the given expression for $G(s)$ we find that

$$
B=\left(\begin{array}{lll}
2 & 0 & 0 \\
1 & 1 & 1 \\
0 & 3 & 3
\end{array}\right)
$$

Problem 2

(a) It holds

$$
S(s)=I-Q(s) G(s)=\left(1-\frac{1}{A(s)}\right) I=\frac{A(s)-1}{A(s)} I
$$

The conditions to impose on $A(s)$ are

- $A(s)$ must have all zeros in the left half plan.
- $A(s)$ must have sufficient degree so that $Q(s)$ is proper.
- $A(0)=1$.
(b) Write the polynomial $A(s)$ as

$$
A(s)=a_{o} s^{k}+a_{1} s^{k-1}+\ldots+a_{k}
$$

Now, $A(0)=1 \Rightarrow a_{k}=1$, and

$$
e_{1}=\left.\frac{d S}{d s}\right|_{\mid s=0}=\frac{\frac{d A}{d s} A-(A-1) \frac{d A}{d s}}{A^{2}}=\frac{d A}{d s=0}{ }_{\mid s=0}=a_{k-1}
$$

As the polynomial $A(s)$ must have all zeros inside the left half plan it is necessary that $a_{k-1}>0$, so it is not possible to achieve $e_{1}=0$.

Problem 3

One has to solve the Riccati equation

$$
0=A^{T} S+S A+Q_{1}-S B Q_{2}^{-1} B^{T} S, \quad L=Q_{2}^{-1} B^{T} S
$$

If $L=\left(\begin{array}{ll}\ell_{1} & \ell_{2}\end{array}\right)$, the loop gain $H(p)$ will be

$$
H(p)=L(p I-A)^{-1} B=\left(\begin{array}{ll}
\ell_{1} & \ell_{2}
\end{array}\right)\left(\begin{array}{cc}
p+1 & 0 \\
-1 & p
\end{array}\right)^{-1}\binom{1}{0}=\frac{\ell_{1} p+\ell_{2}}{p(p+1)}
$$

(a) The Riccati equation becomes

$$
\begin{aligned}
0= & \left(\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{12} & s_{22}
\end{array}\right)+\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{12} & s_{22}
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right)+\alpha^{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
& -\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{12} & s_{22}
\end{array}\right)\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
s_{11} & s_{12} \\
s_{12} & s_{22}
\end{array}\right)
\end{aligned}
$$

Written elementwise, this becomes

$$
\begin{aligned}
& 0=-2 s_{11}+2 s_{12}+\alpha^{2}-s_{11}^{2} \\
& 0=-s_{12}+s_{22}+\alpha^{2}-s_{11} s_{12} \\
& 0=0+\alpha^{2}-s_{12}^{2}
\end{aligned}
$$

The last equation gives

$$
s_{12}= \pm \alpha
$$

The first equation then gives

$$
s_{11}^{2}+2 s_{11} \mp 2 \alpha-\alpha^{2}=0 \Rightarrow s_{11}=-1 \pm\left[1 \pm 2 \alpha+\alpha^{2}\right]^{1 / 2}=-1 \pm(1 \pm \alpha)
$$

There are two possibilities to get s_{11} positive.

$$
\begin{aligned}
I: & s_{12}=\alpha, \quad s_{11}=\alpha \\
I I: & s_{12}=-\alpha, \quad s_{11}=-2+\alpha(\text { requires } \alpha>2)
\end{aligned}
$$

The middle equation gives

$$
s_{22}=s_{12}\left(1+s_{11}\right)-\alpha^{2}
$$

This gives the two cases

$$
\begin{aligned}
& I: \quad s_{22}=\alpha(1+\alpha)-\alpha^{2}=\alpha, \quad \text { and } S \text { will be singular and } \\
& \\
& \text { positive semidefinite for all } \alpha>0
\end{aligned}
$$

$$
I I: \quad s_{22}=-\alpha(-1+\alpha)-\alpha^{2}=\alpha-2 \alpha^{2}
$$

In case II, we need to examine whether or not the determinant of S is nonnegative definite. (It should hardly be so as the solution in case I gives a positive semidefinite solution). In case II it holds that

$$
\begin{aligned}
\operatorname{det} S & =(-2+\alpha) \alpha(1-2 \alpha)-\alpha^{2} \\
& =\alpha\left(-2+4 \alpha-2 \alpha^{2}\right) \\
& =-2 \alpha(1-\alpha)^{2}<0
\end{aligned}
$$

As the determinant is negative, S will be indefinite in this case, and thus case I applies.
The feedback vector L is easily obtained as

$$
L=\left(\begin{array}{ll}
s_{11} & s_{12}
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \alpha
\end{array}\right)
$$

The loop gain becomes

$$
L(p I-A)^{-1} B=\left(\begin{array}{ll}
\alpha & \alpha
\end{array}\right)\left(\begin{array}{cc}
p+1 & 0 \\
-1 & p
\end{array}\right)^{-1}\binom{1}{0}=\frac{\alpha(p+1)}{p(p+1)}=\frac{\alpha}{p}
$$

(b) The system has a common pole and zero in $s=-1$, and its transfer function can be simplified to $G(s)=1 / s$. Treating the system as a first order system one would get

$$
A=0, B=1, C=1, Q_{2}=1, Q_{1}=\alpha^{2}
$$

The Riccati equation becomes

$$
0=\alpha^{2}-S^{2} \Rightarrow S=\alpha \Rightarrow L=\alpha
$$

and the loop gain is $G(p) L=\alpha / p$.

Problem 4

(a) As $G_{o}=G\left(1+\Delta_{G}\right)$ holds, we find that

$$
\Delta_{G}(s)=\frac{G_{o}(s)-G(s)}{G(s)}=\frac{\frac{1}{s} \frac{1}{1+s T}-\frac{1}{s}}{\frac{1}{s}}=-\frac{s T}{1+s T}
$$

(b) We find easily

$$
\left\|\Delta_{G}\right\|_{\infty}=\sup _{\omega}\left|\Delta_{G}(i \omega)\right|=\sup _{\omega}\left|\frac{i \omega T}{1+i \omega T}\right|=\sup _{\omega} \frac{\omega T}{\sqrt{1+\omega^{2} T^{2}}}=1
$$

Furthermore,

$$
T(s)=\frac{G(s) F(s)}{1+G(s) F(s)}=\frac{K / s}{1+K / s}=\frac{K}{s+K} \Rightarrow\|T\|_{\infty}=1
$$

Hence, the stated sufficient stability condition is not satisfied for any value of K.
(c) In this case we need to examine

$$
\left\|\Delta_{G}(s) T(s)\right\|_{\infty}=\left\|\frac{-s K T}{(s+K)(1+s T)}\right\|_{\infty}
$$

Here we have

$$
\left|\Delta_{G}(i \omega) T(i \omega)\right|^{2}=\frac{\omega^{2} K^{2} T^{2}}{\left(K-\omega^{2} T\right)^{2}+\omega^{2}(1+K T)^{2}}
$$

Seek maximum with respect to ω^{2} ! This leeds to

$$
\begin{aligned}
& K^{2} T^{2}\left[\omega^{4} T^{2}+\omega^{2}\left(1+K^{2} T^{2}\right)+K^{2}\right]-\omega^{2} K^{2} T^{2}\left[2 \omega^{2} T^{2}+\left(1+K^{2} T^{2}\right)\right]=0 \\
& \Rightarrow-K^{2} T^{4} \omega^{4}+K^{4} T^{2}=0 \Rightarrow \omega^{2}=K / T \\
& \left\|\Delta_{G} T\right\|_{\infty}^{2}=\frac{K^{3} T}{K / T(1+K T)^{2}}=\frac{K^{2} T^{2}}{(1+K T)^{2}}<1
\end{aligned}
$$

Hence, stability is guaranteed for all positive values of K.
(d) The closed loop system becomes

$$
G_{c}(s)=\frac{G_{o}(s) K}{1+G_{o}(s) K}=\frac{K}{s(1+s T)+K}
$$

which apparently has both poles in the left half plan for all $K>0$.

Problem 5

$$
\begin{aligned}
\left|W_{S}\left(i \omega_{z}\right)\right| & =\left|\frac{i \omega_{z}+\omega_{0}}{i 2 \omega_{z}}\right|=\frac{\sqrt{\omega_{o}^{2}+\omega_{z}^{2}}}{2 \omega_{z}} \leq 1 \\
& \Rightarrow \omega_{0}^{2}+\omega_{z}^{2} \leq 4 \omega_{z}^{2} \quad \omega_{0} \leq \sqrt{3} \omega_{z}
\end{aligned}
$$

Problem 6

(a) As $G(s)$ does not have a finite gain, the small gain theorem cannot be applied.
(b) The nonlinearity gives

$$
k_{1} \leq \frac{|f(e)|}{|e|} \leq k_{2}
$$

leading to $k_{1}=0, k_{2}=1$.
Hence the circle in the circle criterion will be the area to the left of the line $\operatorname{Re}(s)=-1$. The (sufficient) stability condition is therefore that the Nyqvist curve lies to the right of this line, that is

$$
\begin{aligned}
\operatorname{Re}(G(i \omega)) \geq-1, \quad \forall \omega & \Rightarrow \operatorname{Re}\left(\frac{K(-i \omega)(-i \omega T+1)}{\omega^{2}\left(\omega^{2} T^{2}+1\right)}\right) \geq-1, \quad \forall \omega \\
& \Rightarrow\left(\frac{-K T \omega^{2}}{\omega^{2}\left(\omega^{2} T^{2}+1\right)}\right) \geq-1, \quad \forall \omega \\
& \Rightarrow\left(\frac{K T}{\left(\omega^{2} T^{2}+1\right)}\right) \leq 1, \quad \forall \omega \Rightarrow K T<1
\end{aligned}
$$

(c) The input-output relation applies

$$
Y(s)=G(s) U(s) \Rightarrow T \ddot{y}+\dot{y}=K u
$$

Set $x_{1}=y, \quad x_{2}=\dot{y}$. Then

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=\ddot{y}=-\frac{1}{T} x_{2}+\frac{K}{T} u=-\frac{1}{T} x_{2}+\frac{K}{T} f(e)=-\frac{1}{T} x_{2}-\frac{K}{T} f\left(x_{1}\right)
$$

(d) Try a Lyapunov function of the form

$$
V(x)=\frac{1}{2} x_{2}^{2}+\frac{K}{T} g\left(x_{1}\right)
$$

Then one gets

$$
\begin{aligned}
\dot{V} & =x_{2} \dot{x}_{2}+\frac{K}{T} \frac{\partial g}{\partial x_{1}} \dot{x_{1}} \\
& =x_{2}\left[-\frac{1}{T} x_{2}-\frac{K}{T} f\left(x_{1}\right)\right]+\frac{K}{T} \frac{\partial g}{\partial x_{1}} x_{2} \\
& =-\frac{1}{T} x_{2}^{2}+\frac{K}{T} x_{2}\left[-f\left(x_{1}\right)+\frac{\partial g}{\partial x_{1}}\right]
\end{aligned}
$$

Now choose $g(e)$ so that

$$
\frac{\partial g}{\partial e}=f(e)
$$

Then we have $\dot{V}=-\frac{1}{T} x_{2}^{2} \leq 0$. Further, there is no solution (except $x \equiv 0$) that satisfies $\dot{V}=0$. Hence the system is stable for all positive values of K and T, and all solutions converge to $x=0$. The precise choice of the function $g(e)$ is a primitive function of $f(e)$:

$$
g(e)= \begin{cases}0.5+(-e-1) & e<-1 \\ 0.5 e^{2} & -1<e<1 \\ 0.5+(e-1) & 1<e\end{cases}
$$

