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Final exam: Computer-controlled system (Dator-
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Responsible examiner: Torsten Söderström

Preliminary grades: 3 = 23–32p, 4 = 33–42p, 5 = 43–50p.

Instructions

The solutions to the problems can be given in Swedish or in English.

Problem 4 is an alternative to the homework assignment. (In case you choose to
hand in a solution to Problem 4 you will be accounted for the best performance
of the homework assignments and Problem 4.)

Solve each problem on a separate page.

Write your name on every page.

Provide motivations for your solutions. Vague or lacking motivations may lead to
a reduced number of points.

Aiding material: Textbooks in automatic control (such as ‘Reglerteori – flervari-
abla och olinjära metoder’, ‘Reglerteknik – Grundläggande teori’, and others),
mathematical handbooks, collection of formulas (formelsamlingar), textbooks in
mathematics, calculators. Note that the following are not allowed: Exempelsam-
ling med lösningar, copies of OH transparencies.

Good luck!
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Problem 1

Consider a system with three inputs and two outputs, having a transfer functionG(s) =

0B� 2s+1

3s+2

3s+2

1s+1

1s+1

1s+1

1CA
(a) Determine the poles and the zeros of the system. 3 points

(b) The system can be represented in state space form asẋ = Ax + Buy = Cx
with A =

0B� �1 0 0
0 �1 0
0 0 �2

1CA ; C =

 
1 0 1
0 1 0

!
and B a suitable matrix of dimension 3 � 3. Determine the matrix B.

6 points

Problem 2

When Internal Model Control (IMC) is applied, one can in a general case for a
minimum-phase system use Q(s) =

1A(s)G�1(s)
where A(s) is a polynomial of degree k. When �-tuning is applied one makes the
specific choice A(s) = (1 + �s)k.

(a) What condition on A(s) has to be applied for the controller to work? What
additional condition should A(s) satisfy in order to guarantee that the sen-
sitivity function fulfils S(0) = 0? 3 points

(b) Consider the SISO case. Can one choose A(s) so that the stationary error
vanishes when the reference signal is a ramp, that is the error coefficient e1

satisfies e1 = 0? 4 points

Problem 3

Consider LQ control of the systemẋ =

 �1 0
1 0

! x +

 
1
0

!uy =
�

1 1
�x

The criterion to be minimized isV =
Z

[�2y2(t) + u2(t)]dt; (� > 0)
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and hence Q1 = �2

 
1 1
1 1

! ; Q2 = 1

(a) Determine the optimal feedback gain vector L. Determine also the loop gainL(pI � A)�1B. 5 points

Hint. In this example, the nondiagonal elements of the solution to the Ric-
cati equation will be positive.

(b) Show that the transfer function from u to y for the given system is in fact
of first order. Use this fact, to derive the loop gain in a simpler way than in
part (a). 3 points

Problem 4

Consider a simple feedback system where the nominal model is G(s) = 1=s, the
feedback is a proportional regulator F (s) = K and the true system isGo(s) =

1s(1 + sT )

Both K and T can be assumed to be positive.

(a) Determine the relative model error ∆G(s). 2 points

(b) Assume that the criterion k ∆G k1k T k1< 1

is used to examine for which values of K the closed loop system can be
guaranteed to be stable. What is the result? 2 points

(c) Assume that the criterion k ∆GT k1< 1

is used to examine for which values of K the closed loop system can be
guaranteed to be stable. What is the result? 3 points

(d) Determine the poles of the closed loop system. Find out when the closed
loop system is asymptotically stable. 2 points

Problem 5

Consider a system with a zero on the imaginary axis, so G(i!z) = 0. For the
design, use a weighting WS(s) =

s + !0S0s ; S0 = 2

Determine what the design conditionjWS(i!z)j � 1
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implies for the bandwidth !0? 4 points

Problem 6

Consider the control system below, where a DC motor is controlled by using a
saturizing amplifier. f(e) G(s)�1

- -�e u y
In the figure we have G(s) =

Ks(Ts+ 1)
(K > 0; T > 0)f(e) =

8><>: �1 e < �1e �1 < e < 1
1 1 < e

The task is to use different techniques to find out for which values of T and K the
closed loop system is guaranteed to be stable.

(a) Use the small gain theorem directly to find sufficient conditions on K and T
for the closed loop system to be stable. 2 points

(b) Use the circle criterion to find sufficient conditions on K and T for the closed
loop system to be stable. 4 points

(c) Write the system on state space form using y and ẏ as state variables.
2 points

(d) Analyse stability of the closed loop system, using Lyapunov theory. Use the
state space model derived in part (c). Try a Lyapunov function of the formV (x) =

1

2
x2

2 + Kg(x1)

where g(x1) is some suitable function.

Hint. Choose g(x1) after examining V̇ (x). 5 points
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Uppsala University
Department of Information Technology
Systems and Control
Prof Torsten Söderström

Computer-controlled system, April 19, 2007 —
Answers and brief solutions

Problem 1

(a) Determine first the pole polynomial. The 1 � 1 minors are the matrix ele-
ments. It is enough to consider

2s + 1
; 3s + 2

There are 3 different 2� 2 minors (each obtained by deleting one column ofG(s) when forming the determinant). These minors are

2s + 1
� 1s + 1

� 3s + 2
� 1s + 1

=
2(s + 2)� 3(s + 1)

(s + 1)2(s + 2)
=

(�s + 1)

(s + 1)2(s + 2)
;

2s + 1
� 1s + 1

� 3s + 2
� 1s + 1

=
2(s + 2)� 3(s + 1)

(s + 1)2(s + 2)
=

(�s + 1)

(s + 1)2(s + 2)
;

3s + 2
� 1s + 1

� 3s + 2
� 1s + 1

= 0

The least common denominator for all the minors, that is the pole polyno-
mial, is hence

(s + 1)2(s + 2)

The system has a double pole in s = �1 and a single pole in s = �2.

To find the zeros of the system, consider the numerators of the 2� 2 minors.
These minors have already the pole polynomial as denominator. The zero
polynomial is therefore �s + 1, and the system has one zero in s = 1.

(b) Set B =

0B� b11 b12 b13b21 b22 b23b31 b32 b33

1CA
We then get the transfer functionG(s) = C(sI � A)�1B

=

 
1 0 1
0 1 0

!0B� s + 1 0 0
0 s + 1 0
0 0 s + 2

1CA�10B� b11 b12 b13b21 b22 b23b31 b32 b33

1CA
=

0B� 1s+1
0 1s+2

0 1s+1
0

1CA0B� b11 b12 b13b21 b22 b23b31 b32 b33

1CA
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=

0B� b11s+1
+ b31s+2

b12s+1
+ b32s+2

b13s+1
+ b33s+2b21s+1

b22s+1

b23s+1

1CA
Comparing with the given expression for G(s) we find thatB =

0B� 2 0 0
1 1 1
0 3 3

1CA
Problem 2

(a) It holds S(s) = I �Q(s)G(s) =

 
1� 1A(s)! I =

A(s)� 1A(s) I
The conditions to impose on A(s) are� A(s) must have all zeros in the left half plan.� A(s) must have sufficient degree so that Q(s) is proper.� A(0) = 1.

(b) Write the polynomial A(s) asA(s) = aosk + a1sk�1 + : : :+ ak
Now, A(0) = 1 ) ak = 1, ande1 =

dSds js=0

=
dAdsA� (A� 1)dAdsA2 js=0

=
dAds js=0

= ak�1

As the polynomial A(s) must have all zeros inside the left half plan it is
necessary that ak�1 > 0, so it is not possible to achieve e1 = 0.

Problem 3

One has to solve the Riccati equation

0 = ATS + SA + Q1 � SBQ�1

2 BTS; L = Q�1

2 BTS
If L =

� `1 `2

�
, the loop gain H(p) will beH(p) = L(pI � A)�1B =

� `1 `2

� p + 1 0�1 p !�1  
1
0

!
=

`1p + `2p(p + 1)

(a) The Riccati equation becomes

0 =

 �1 1
0 0

! s11 s12s12 s22

!
+

 s11 s12s12 s22

! �1 0
1 0

!
+ �2

 
1 1
1 1

!� s11 s12s12 s22

! 
1
0

!�
1 0

� s11 s12s12 s22

!
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Written elementwise, this becomes

0 = �2s11 + 2s12 + �2 � s2

11

0 = �s12 + s22 + �2 � s11s12

0 = 0 + �2 � s2

12

The last equation gives s12 = ��
The first equation then givess2

11 + 2s11 � 2�� �2 = 0 ) s11 = �1 � h1� 2� + �2
i1=2

= �1 � (1� �)

There are two possibilities to get s11 positive.I : s12 = �; s11 = �II : s12 = ��; s11 = �2 + � (requires � > 2)

The middle equation givess22 = s12(1 + s11)� �2

This gives the two casesI : s22 = �(1 + �)� �2 = �; and S will be singular and

positive semidefinite for all � > 0II : s22 = ��(�1 + �)� �2 = �� 2�2;
In case II, we need to examine whether or not the determinant of S is non-
negative definite. (It should hardly be so as the solution in case I gives a
positive semidefinite solution). In case II it holds that

detS = (�2 + �)�(1� 2�)� �2

= � ��2 + 4�� 2�2
�

= �2�(1� �)2 < 0

As the determinant is negative, S will be indefinite in this case, and thus
case I applies.

The feedback vector L is easily obtained asL =
� s11 s12

�
=
� � � �

The loop gain becomesL(pI � A)�1B =
� � � � p + 1 0�1 p !�1  

1
0

!
=

�(p + 1)p(p + 1)
=

�p
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(b) The system has a common pole and zero in s = �1, and its transfer function
can be simplified to G(s) = 1=s. Treating the system as a first order system
one would get A = 0; B = 1; C = 1; Q2 = 1; Q1 = �2

The Riccati equation becomes

0 = �2 � S2 ) S = �) L = �
and the loop gain is G(p)L = �=p.

Problem 4

(a) As Go = G(1 + ∆G) holds, we find that

∆G(s) =
Go(s)�G(s)G(s) =

1s 1

1+sT � 1s
1s = � sT

1 + sT
(b) We find easilyk ∆G k1= sup! j∆G(i!)j = sup! ���� i!T

1 + i!T ���� = sup! !Tp
1 + !2T 2

= 1

Furthermore,T (s) =
G(s)F (s)

1 + G(s)F (s) =
K=s

1 + K=s =
Ks + K )k T k1= 1

Hence, the stated sufficient stability condition is not satisfied for any value
of K.

(c) In this case we need to examinek ∆G(s)T (s) k1=k �sKT
(s + K)(1 + sT )

k1
Here we have j∆G(i!)T (i!)j2 =

!2K2T 2

(K � !2T )2 + !2(1 + KT )2

Seek maximum with respect to !2! This leeds toK2T 2
h!4T 2 + !2(1 + K2T 2) + K2

i� !2K2T 2
h
2!2T 2 + (1 + K2T 2)

i
= 0) �K2T 4!4 + K4T 2 = 0 ) !2 = K=Tk ∆GT k21=

K3TK=T (1 + KT )2
=

K2T 2

(1 + KT )2
< 1

Hence, stability is guaranteed for all positive values of K.
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(d) The closed loop system becomesG(s) =
Go(s)K

1 + Go(s)K =
Ks(1 + sT ) + K

which apparently has both poles in the left half plan for all K > 0.

Problem 5

jWS(i!z)j =

���� i!z + !0i2!z ���� =

q!2o + !2z
2!z � 1) !2

0 + !2z � 4!2z !0 � p
3!z

Problem 6

(a) As G(s) does not have a finite gain, the small gain theorem cannot be applied.

(b) The nonlinearity gives k1 � jf(e)jjej � k2

leading to k1 = 0; k2 = 1.

Hence the circle in the circle criterion will be the area to the left of the line
Re(s) = �1. The (sufficient) stability condition is therefore that the Nyqvist
curve lies to the right of this line, that is

Re(G(i!)) � �1; 8! ) Re

 K(�i!)(�i!T + 1)!2(!2T 2 + 1)

! � �1; 8!)  �KT!2!2(!2T 2 + 1)

! � �1; 8!)  KT
(!2T 2 + 1)

! � 1; 8! ) KT < 1

(c) The input-output relation appliesY (s) = G(s)U(s) ) T ÿ + ẏ = Ku
Set x1 = y; x2 = ẏ. Thenẋ1 = x2; ẋ2 = ÿ = � 1T x2 +

KT u = � 1T x2 +
KT f(e) = � 1T x2 � KT f(x1)

(d) Try a Lyapunov function of the formV (x) =
1

2
x2

2 +
KT g(x1)
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Then one gets V̇ = x2ẋ2 +
KT �g�x1

ẋ1

= x2

�� 1T x2 � KT f(x1)
�

+
KT �g�x1

x2

= � 1T x2

2 +
KT x2

"�f(x1) +
�g�x1

#
Now choose g(e) so that �g�e = f(e)
Then we have V̇ = � 1T x2

2 � 0. Further, there is no solution (except x � 0)

that satisfies V̇ = 0. Hence the system is stable for all positive values ofK and T , and all solutions converge to x = 0. The precise choice of the
function g(e) is a primitive function of f(e):g(e) =

8><>: 0:5 + (�e� 1) e < �1
0:5e2 �1 < e < 1
0:5 + (e� 1) 1 < e
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