Functional Queries to Wrapped Educational
Semantic Web Meta-Data *

Tore Risch
Dept. of Information Technology, Uppsala University, Sweden
email: Tore.Risch@it.uu.se

2004

Abstract

The aim of the Edutella project is to provide a peer-to-peer infras-
tructure for educational material retrieval using semantic web meta-data
descriptions of educational resources. Edutella uses the semantic web
meta-data description languages RDF and RDF-Schema for describing
web resources. The aim of this work is to wrap the Edutella infrastruc-
ture with a functional mediator system. This makes it possible to define
general functional queries and views over educational and other material
described using RDF and RDF-Schema. It is based on the observation
that RDF-Schema definitions are easily mapped into a functional data
model. This allows any RDF-Schema file to be wrapped by a functional
mediator system. The RDF-Schema definitions are translated into a cor-
responding functional meta-data schema consisting of a type hierarchy
and a set of functions. Queries then can be expressed in terms of the
translated semantic functional schema. Since meta-data descriptions can
contain both RDF and RDF-Schema definitions the system allows both
to co-exist with the difference that queries over basic RDF meta-data are
expressed on a lower level in terms of a generic functional schema repre-
senting all RDF structures.

1 Introduction

In most query languages the queries are expressed against schema that provides
a meta-data description of the data to be queried. Not only does the schema
provide for efficient data management, but, very importantly, it provides also
a 'map’ for the user of the structure of the data to be queried. A well known
example of queries without schemas are free text searches in web search engines,
e.g., where most users have been frustrated by the lack of guidance how to

*Published in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.):
Functional Approach to Computing with Data, Springer, ISBN 3-540-00375-4, 2004.



find the information relevant for a subject. By contrast, SQL-databases always
have a detailed database schema for efficient access, documentation, and user
guidance. The goal of this paper is to show how web search can be enhanced
by means of a schema.

RDF (Resource Description Framework) [9] is an XML based notation for
associating arbitrary properties with any web resource (URI). However, there
is no real schema description in RDF since there are no restrictions on the
kinds of properties a given class of web resources can have. In contrast, RDF-
Schema [3] extends RDF with schema definition capabilities. For example, for
a particular class of web resources an RDF-Schema provides a description of
allowed properties along with an inheritance mechanism.

The observation of this work is that the semantic data model of RDF-Schema
can be regarded as a functional data model as well. Given that observation, we
show how RDF-Schema definitions can be mapped to typed functions. We then
develop a wrapper for RDF-Schema definitions allowing a functional mediator
engine, Amos II [14], to import RDF-Schema definitions. The imported RDF-
Schema definitions are translated to the functional data model used in Amos II.
The user can then specify high-level functional queries in the query language
AmosQL [14] of data described by the translated schema.

A particular problem in the semantic web environment is that RDF and
RDF-Schema descriptions can be freely mixed. Thus, some web resources for
a subject may be described only though RDF while others have RDF-Schema
descriptions. Furthermore, a class of resources described through RDF-Schema
may have additional RDF properties not included in the schema. Therefore,
it is important to be able to transparently query both RDF and RDF-Schema
meta-data.

Edutella [11] provides a peer-to-peer standardized interface and infrastruc-
ture for searching and accessing educational material known to Edutella. Web
sources described by RDF or RDF-Schema are accessed through Edutella and
can be queried through a family of RDF-based query languages, QFLi, of in-
creasing expressibility. In this way the data and knowledge in educational
sources provided through Edutella can be queried.

The system presented here, RDFAmos, can directly wrap any RDF- or RDF-
Schema-based data source on the web. Its mediator functionality allows rec-
onciliation of differences and similarities between different kinds of wrapped
sources, e.g. different RDF-Schema views, RDF-standards such as Dublin Core
[5], relational databases, etc. General functional queries of mediated views over
different sources are then allowed [14].

RDFAmos provides mediation services for Edutella. This means that RD-
FAmos peers are made accessible through Edutella’s JXTA-based [13] peer-to-
peer (P2P) infrastructure. Through the infrastructure RDFAmos receives QEL3
queries for execution. The query result is delivered back to Edutella through
the same infrastructure.

Edutella-based sources can be wrapped as well. A wrapper including a
QEL3 query generator is being developed. It can generate QEL3 query expres-
sions executed through Edutella’s distributed P2P search facilities. This allows



mediating functional views to be defined that combine heterogeneous learning
material from Edutella with data from other sources.

The next section presents an overview of the RDFAmos system, followed by
a description of how it is being integrated into the Edutella P2P infrastructure.
Two subsequent sections show how RDF-Schema and basic RDF meta-data
descriptions are translated.

2 Architecture

Graphical Query Goovi
Model Editor Ul Browser
| |
Functional Query API
Amos |l Mediating Functions
RDF-Schema Wrapper \ JDBC
Basic RDF Wrapper Wrapper

www

I B
[
RDF-Schema Lu

F:
Relational
databases

Figure 1: RDFAmos Architecture

Figure 1 illustrates the architecture of RDFAmos, and how it accesses various
data sources, including RDF and RDF-Schema meta-data definitions describing
web resources. The meta-data definitions of each source are imported to the
mediator where they are represented using the Amos II functional data model.
Users and applications can formulate queries over the imported meta-data in
terms of a functional schema automatically created in the mediator from the
imported meta-data definitions. In Fig. 1 there are examples of three kinds of
applications: The GOOVI Browser is a general browser of functional Amos II
databases [4], the Query API is a query executor for ad-hoc functional queries,



and the Graphical Model Editor is a system for editing meta-data structures and
graphically specifying RDF-based queries [12].

The Mediating Functions of RDFAmos define functional views over com-
binations of data from different sources. Applications and users may specify
arbitrary queries and views in terms of the mediated sources and combinations
of them.

In Fig. 1 there are examples of three kinds of data sources: relational
databases, RDF-Schema, and basic RDF web sources. For each kind of data
source the mediator needs a wrapper which is a program module to import any
schema definition for that kind of data source and translate it to functions and
types in the functional data model. Once a particular schema is imported,
the wrapper can translate queries in terms of the translated functional schema
into accesses to the source. For example, relational databases can be accessed
through JDBC and there is a JDBC Wrapper that imports relational schema
descriptions through the standard JDBC relational database API and translates
functional queries to SQL.

For RDF based sources the Basic RDF Wrapper allows import of any RDF
meta-data description. All imported RDF objects are represented in the medi-
ator using a simple functional schema, the basic functional RDF representation.
It can represent any RDF-based meta-data. An RDF parser [2] translates RDF
statements to corresponding binary relationships (triples) imported to the me-
diator. Once imported to the mediator, the RDF-structures can be analyzed
through queries to the basic functional RDF representation. Such queries are
relatively primitive with little user guidance on what properties are available
for a resource, its classifications, etc.

On top of the basic RDF wrapper the RDF-Schema wrapper translates the
RDF-Schema meta-data definitions expressed in RDF to a functional repre-
sentation called a functional RDFS view. Since RDF-Schema provides schema
information for RDF sources, unlike basic RDF, RDF-Schema definitions can be
translated to data-source-specific function and type definitions in the mediator.
Once a functional RDFS view for a web source has been imported by the wrap-
per it can be queried. Thus location-independent queries utilizing the full power
of the semantic functional data model can be specified and executed. In par-
ticular web sources describing learning material can be imported and queried.
The result of such a query is a set of web resources that can be browsed by the
user using a web browser or GOOVI [4].

In contrast to basic RDF, RDF-Schema requires further processing to seman-
tically enrich the basic functional RDF representation to include the data source
specific functions (properties), types (classes), and inheritance. Therefore, af-
ter an RDF meta-data document is loaded using the basic RDF wrapper, the
system goes through the loaded binary RDF relationships (triples) to find the
RDF-Schema type, inheritance, and property definitions. From these definitions
the corresponding meta-definitions in RDFAmos are automatically generated as
a set of type and derived function definitions. The function definitions are de-
fined in terms of the basic RDF binary relationships as views. In this way we
maintain both the basic functional RDF representation of meta-data along side



with semantic views that access it, thus making it possible to query the data
using different models with different semantic expressiveness.

One difference between relational database sources and web sources is that in
RDF-Schema there is no clear distinction between schema and data definitions,
and RDF-Schema and RDF definitions can be freely mixed. This requires a
system that can dynamically extend the schema at run time.

The RDFAmos architecture allows functional queries and views over any
web source described by RDF or RDFSchema alone, or combined with any
other wrapped data source. Applications can be written in C, C++, Java, or
Lisp. The applications do not have to know any details of the data sources,
but need only see mediated data. For Java there is a ’bean’ package [1] that
generates transparent Java interface class definitions from the mediator schema.
This allows navigating the mediated structures as regular Java classes, while at
the same time being able to dynamically execute from Java functional queries
over the mediated structures.

An RDFAmos peer can be also a data source for other RDFAmos peers [14].
There is thus a special wrapper for interfacing other RDFAmos peers. This
mechanism allows modularization of mediators for scalable mediation [7, 8].

3 Mediating Edutella Peers

Figure 2 illustrates how RDAmos is interfaced with the Edutella infrastruc-
ture for P2P access to educational material. Edutella uses QEL3 as its query
language. QEL3 is a Datalog-based query language for basic RDF data. RD-
FAmos is made available as a peer to Edutella by being able to execute queries
in QEL3 (top of Figure). Our approach thus accepts basic RDF queries in QEL3
to RDFAmos which processed the query over mediated data sources.

Edutella P2P Infrastructure

QEL3
RDFAmMos
W1 | W2 | W3

QEL3

Edutella P2P Infrastructure

QEL3

IS’I J I82 J I8\3 J

Figure 2: Edutella Interfaces



A special property of QELi is that the general structure of, e.g., QEL3
queries is described by a special RDF-Schema, the query schema for QELS3,
which is imported to RDFAmos through the RDF-Schema wrapper as other
schemas. Once the QEL3 schema is imported the system can import any QEL3
query as data producing a functional representation of the query itself in the
mediator. Thus queries are regarded as yet another RDF-Schema data source.
The functional representation of QEL3 query structures can be queried as other
data.

In order to not only represent but also execute QEL3 queries, we have cre-
ated a query building AmosQL function that produces an AmosQL query string
from an imported QEL3 query description. The query generation itself is im-
plemented as query functions concatenating query elements retrieved from the
imported query structure!. The query string is then evaluated using a system
function eval and the result is converted and delivered back to Edutella as a
QELS3 result structure in RDF. This makes RDFAmos an Edutella peer capable
of executing arbitrary QEL3 queries over its mediated data.

Some wrapped sources may be interfaced from mediators using the regular
web-based wrapper interfaces of Fig. 1. In Fig. 2 wrapper W3 illustrates this. In
this way, e.g., relational databases and RDF-Schema web sources are mediated
and made available to Edutella.

A wrapper is also being developed for treating Edutella as a QEL3 based
source, as illustrated by W1 in Fig. 2. This wrapper will allow mediation of
data from Edutella based QEL3 compliant peers. Similar as is done for SQL [6]
the wrapper will generate QEL3 query specifications in RDF to the wrapped
Edutella source. After the query has been processed by some peers managed by
Edutella, the result is delivered back to the mediator as RDF structures. Some
of the processing peers might be other RDFAmos mediators.

One limitation of the current implementation is that it is based on using
QEL3 as query language when interfacing with Edutella. QEL3 is equivalent
to basic Datalog over RDF statement without recursion. Rules allow named
and disjunctive queries. Even though QEL3 itself is described through RDF-
Schema, the QEL3 queries range only over basic RDF statements. It supports
object abstraction only through explicit predicates over the RDF-Schema type
system. Thus the QEL3 queries must be specified over the basic functional RDF
representation which has little semantics.

In order to fully utilize the functional data model, a next step is to define
a QELf for functional queries and support these in RDFAmos. An Edutella
based wrapper for RDFAmos data sources can then be defined, illustrated by
W2 in Fig. 2). In order to allow one mediator to access mediator definitions
from other mediators through Edutella, the mediator definitions of RDFAmos
should be exportable as RDF-Schema.

I AmosQL has string construction and concatenation functions.



4 Functional Wrapping of RDF-Schema Defini-
tions

The RDF-Schema wrapper can import any RDF-Schema meta-data description
document from the web. The RDF-Schema definitions are thereby translated
into corresponding function and type definitions. Data described by the RDF-
Schema definitions are translated into object instances.

Types in RDFAmos are equivalent to classes in RDF-Schema. Both RD-
FAmos and RDF-Schema use extent-subset semantics [14] for inheritance. Only
stored functions [14] have correspondence in RDF-Schema and they correspond
to properties there. Meta-objects (schema elements) in RDFAmos mediators,
such as types and function, are first class and can be queried as any other
objects, as in RDF-Schema.

For example, assume the following RDF-Schema definition of learning ma-
terials [11]:

<rdf :Description ID="Book">

<rdf:type resource=
"http://www.w3.o0rg/2000/01/rdf-schema#Class" />

<rdfs:subClass0f rdf:resource=
"http://www.w3.org/2000/01/rdf-schema#Resource" />

</rdf:Description>

<rdf:Description ID="Title">

<rdf:type resource=
"http://www.w3.org/2000/01/rdf-schema#Property" />

<rdfs:domain rdf:resource="#Book"/>

<rdfs:range rdf:.resource=
"http://www.w3.org/2000/01/rdf-schema#Literal" />

</rdf:Description>

<rdf :Description ID="AI_Book">

<rdf:type
resource="http://www.w3.0rg/2000/01/rdf-schema#Class" />
<rdfs:subClassOf rdf:resource="#Book"/>

</rdf:Description>

The RDF-Schema definitions are imported into the mediator and automat-
ically translated to the following type and function definitions, as illustrated
graphically by Fig. 3.

create type Book;

create function title(Book b)->Literal as
select getprop(b,"Title");

create type AI_Book under Book;



Al-Book

4 Inheritance

1 Function

Figure 3: Functional Schema

Notice that short, readable type and function nick names are constructed
from the URIs. For example, the nick name of
http://www.edutella.org/edutella#Title is Title. The nick names allow
readable query statements without having to specify full URIs as function and
type names. The function getprop is a function accessing properties of objects
stored using the basic functional RDF representation.

The following database instances satisfy the above RDF-schema definitions:

<rdf:RDF xml:lang="en"
xmlns:rdf="http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"

xmlns:sch="http://user.it.uu.se/ torer/rdf/schema#"
>

<sch:Book about="http://www.xyz.com/sw.html">
<sch:Title>Software Engineering</sch:Title>
</sch:Book>

<sch:Book about="http://www.xyz.com/ai.html">
<sch:Title>Artificial Intelligence</sch:Title>
</sch:Book>

<sch:AI_Book about="http://www.xyz.com/pl.html">
<sch:Title>Prolog</sch:Title>
</sch:AI_Book>



</rdf :RDF>

Once the instances are imported to the mediator they can be queried in terms of
functions and types using the functional query language AmosQL of RDFAmos.
The general syntax for AmosQL queries is:

select <result>
from <domain specifications>
where <condition>

For example,

select distinct X
from Book X, AI_Book Y
where title(X) = ’Artificial Intelligence’ or
X =1Y;

The query searches for Al-books by looking for books where either the title is
"Artificial Intelligence’ or the book is an instance of type AI-book. It is an ex-
ample of a query to a functional RDFS view where the types Book and AI-Book
are defined as RDF-Schema classes and the function title is a property. Each
domain specification associates a query variable with a type where the variable
is universally quantified over the extent of the type.

5 Basic Functional RDF Representation

The schema used in basic RDF descriptions (http://www.w3.org/TR/rdf-mt/)
is rudimentary and provides little guidance at all for the user. In general one
may associate freely chosen properties about any web resource, e.g.:

<edu:Book about="http://www.xyz.com/sw.html">
<edu:Title>Software Engineering</edu:Title>
</edu:Book>

The above states that the Edutella registered book in
http://www.xyz.com/sw.html has the title Software Engineering. In basic
RDF the user can choose any property for the annotation (here Title), while
RDF-Schema allows to restrict the allowable properties.

The basic functional RDF representation is described by the following func-
tional schema:

create type Resource;
create function uri(Resource) -> String as stored;
create function rl(String u) -> Resource r
as select r
where uri(r)=u;



create function name(Resource) -> String as stored;
create type Statement under Resource;
create function triple(Statement s) -> <Resource subject,
Resource predicate,
Resource object>
as stored;
create function stmt(Resource s, Resource p, Resource o)
-> Boolean
as select true
from Statement st
where triple(st)= <s,p,0>;
create function getprop(Resource r, String propname)
-> Resource v
as select v
from Resource p
where stmt(r,p,v) and
name (p) =propname;

When RDF data is imported, the wrapper creates Resource and Statement
objects and adds instances to the functions uri (resources) and triple (state-
ments). The RDF statements always have an OID in the wrapper. In RDF only
reified statements have URIs. By treating all statements as objects we are able
to easily reason about statements and treat reified statements as a subtype of
type Statement.

The function getprop is a convenience function for accessing properties of
objects without having to specify long and complex URIs. Examples of queries:

getprop(uri("http://www.xyz.com/sw.html") ,"Title")
Answer: "Artificial Intelligence"

select r
from Resource r
where "Artificial Intelligence" = getprop(r,"Title");

Answer: uri("http://www.xyz.com/sw.html")

Further abstractions can be made manually by defining functions accessing prop-
erties such as title above. Such property function are automatically generated
by the wrapper for RDF-Schema properties.

It would be possible to automatically define the property functions from basic
RDF definitions as the triples were asserted. However, this might generate very
many functions and would not really guide the user further. The RDF-Schema
provides a better solution by explicitly specifying allowable properties.

10



6 Summary

RDFAmos extends Amos II [14] by providing transparent functional media-
tion over RDF- and RDF-Schema-based meta-data descriptions of web sources.
Wrappers are defined for other sources too, e.g. relational databases [6] or en-
gineering systems [10]. Applications can access mediated data using an API
based on functional queries. The RDF and RDF-Schema wrappers can import
any RDF(-Schema) definition and make it available for functional queries. The
data model of RDF-Schema is very similar to a subset of the functional data
model used in Amos II which makes it particularly straight-forward to mediate
RDF-Schema described web sources.

The Edutella P2P infrastructure allows queries over distributed educational
material. RDFAmos can run as an Edutella peer thus providing general media-
tion services. In Edutella both schema, data, and queries are represented using
a mixture of RDF and RDF-Schema. Since the approach makes no clear distinc-
tion between data, schema, and query definitions, the mediator engine treats all
three kinds of data in a uniform way as wrapped data. Edutella queries in the
Datalog based query language QEL3 are transformed by RDFAmos queries to
functional query strings for evaluation.

This work shows that the functional data model is very well suited for man-
aging and mediating RDF and RDF-Schema based data.

References

[1] M.Bendtsen and M.Bjérknert: Transparent Java Access to Me-
diated Database Objects, http://user.it.uu.se/~udbl/publ/ace.pdf,
2001

[2] J.Carroll: ARP: Another RDF Parser,
http:/ /www-uk.hpl.hp.com /people/jjc/arp/, 2001.

[3] D.Brickley, R.V.Guha: RDF  Vocabulary  Description
Language 1.0: RDF-Schema, @ WC3  Working Draft,
http://www.wS.org/ TR /rdf-schema, 2003.

[4] K.Cassel and T.Risch: An Object-Oriented Multi-Mediator
Browser. 2nd International Workshop on User Interfaces to Data
Intensive Systems, Ziirich, Switzerland, May 31 - June 1, 2001

[5] Dublin Core Metadata Initiative, http://dublincore.org/, 2003.

[6] G. Fahl, T. Risch: Query Processing over Object Views of Rela-
tional Data. The VLDB Journal, Springer, 6(4), 261-281, 1997.

[7] V.Josifovski, T.Katchaounov, T.Risch: Optimizing Queries in Dis-
tributed and Composable Mediators. 4th Conference on Coopera-
tive Information Systems, CooplS’99, 291-302, 1999.

11



8]

[12]

T.Katchaounov, V.Josifovski, and T.Risch: Scalable View Expan-
sion in a Peer Mediator System, Proc. 8th International Conference
on Database Systems for Advanced Applications (DASFAA 2003),
Kyoto, Japan, March 2003.

G.Klyne and J.J.Carroll: Resource Description Framework (RDF):
Concepts and Abstract Syntax, W3C Working Draft,
http:/ /www.wS.org/ TR /rdf-concepts/, 2003

M.Koparanova and T.Risch: Completing CAD Data Queries for
Visualization, International Database Engineering and Applica-
tions Symposium (IDEAS 2002), Edmonton, Alberta, Canada,
July 17-19, 2002.

W.Neidl, B.Wolf, C.Qu, S.Decker, M.Sinek, A.Naeve, M.Nilsson,
M.Palmer, and T.Risch: EDUTELLA: A P2P Networking Infras-
tructure Based on RDF. 11th International World Wide Web Con-
ference (WWW2002), Honolulu, Hawaii, USA, 2002.

M.Nilsson, M.Palmer, A.Naeve: Semantic Web Meta-data for e-
Learning - Some Architectural Guidelines, 11th World Wide Web
Conference (WWW2002), Hawaii, USA, 2002.

S.Oaks, B.Traversat, and L.Gong: JXTA in a Nutshell, ISBN 0-
596-00236-X, O’Reilley, 2002.

T.Risch, V.Josifovski, T.Katchaounov: Functional Data In-
tegration in a Distributed Mediator System, in P.Gray,
L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional Ap-
proach to Computing with Data, Springer, ISBN 3-540-00375-4,
http://user.it.uu.se/torer /publ/FuncMedPaper.pdf, 2004.

12



