REPRESENTATION OF FACTUAL INFORMATION BY EQUATIONS
AND THEIR EVALUATION

Peter Lucas and Tore Risch x

IBM Research Laboratory, San Jose, California 95193

ABSTRACT

This paper describes a methodology for application

software development, the objective being the
reduction of volume of code and ease of
maintenance. It is shown that constants as well as
rules and regulations typically found in business

applications should be factored out and stored sep-
arately from the application programs in a data
base. Definitional equations are proposed as a
method for specifying such rules and regulations.
The equations can be used as parameters to various

types of interpreters to be used by application
programs.
As an jllustration of the methodology, one such

interpreter has been implemented. This paper shows
1ts application to a screen handling program; other
uses are discussed. The interpreter and fts imple-
mentation are outlined.

Key Words and Phrases: Interpreter, Application

Development, Knowledge Representation, Applicative
Language.

1. INTRODUCTION

There is widespread consensus that progress in pro-
grammers' productivity has not kept pace with the
rapid technological advances in computer hardware.
D.Mc.Cracken [4] estimates a factor of two to three
In performance improvement for programmers over the
past 25 years; in contrast, the significant charac-
teristics of hardware, such as storage capacity,
speed, and price performance, have been improved by
orders of magnitude. Many applications that could
well be justified on the basis of hardware cost
remain uneconomic as a consequence, much to the
regret of users and manufacturers al ike.

A related phenomenon is the fact that the percent-
age of programming personnel devoted to the mainte-
nance of installed and operational applications bhas
steadlly increased, leaving a decreasing percentage
of programmers and other resources for the develop-
ment of new applications.

* This work was done while Tore Risch was visiting
scientist at IBM from UPMAIL, Uppsala University,
Computer Science Dept., Box 2059, 750 02 Uppsala,
Sweden. .

0270-5257/82/0000/0367$00.75 © 1982 IEEE

367

The underlying hypothesis of the methodology pro-
posed in this paper is that the volume of code typ-
ical for business applications 1is unnecessarily
large. More precisely, it is claimed that the ove-
rall application code as it exists in an installa-
tion or an enterprise contains considerable useless
redundancy. Avoiding this wuseless redundancy
should reduce the volume of code for the benefit of
production and maintenance cost.

Redundancy has different sources:
a. repetitive programming of the same function,
b. failure to generalize,

c. encoding of essentially the same information In
different forms for different purposes.

The first item represents a management problem to
be solved by global management of libraries of pro-
grams and specifications together with the neces-
sary administrative procedures to ensure that
commonly useful functions are not re-programmed.

The above issue is not further addressed 1in this
paper which is solely concerned with items b. and
c.

The latter two issues are more subtle; their satis-
factory resolution requires a programming style
hithertio not widely used for business applications.
For illustration of the programming style necessary
addressing items b. and ¢. it is useful to consider
a well known example: syntax driven parsers.

A special parser takes a character string as argu-
ment and produces a parse tree; the parser's proce-
dural body encodes the underlying grammar.
Conceptually, a generalized parser takes two argu-
ments: a syntax and a character string; it produces
a parse tree according to the specified syntax.
BNF or one of its variants is typically used as the
specification language.

The step of generalization leading from special
parsers to general parsers is analogous to the gen-
eral ization proposed for business applications.

The following observations characterize the
analogy:
a. Generalized syntax parsers separate specific

methods of
syntax of

parsing from the definition of the
specific languages. Having accom~

plished this separation one may freely combine
methods of parsing with any language whose syn-
tax is specified. For example, three
implemented parsing methods and four language
specifications are in effect equivalent to 12
different special parsers. <Collectively these
parsers would contain redundancy 1in the form of
repeated specifications of syntax as well as
methods of parsing.

BNF is a simple equational form of specification
which s not biased towards particular uses.
The same specification can not only be supplied
to general ized parsers but can also be wused in
conjunction with other algorithms, for example
for analysing BNF specifications for interesting

properties.
c. Changing a BNF syntax 1{s easier than changing
one or more special parsers; the maintenance

characteristics have therefore been improved.

The ratio of volumes of code between a set of
special purpose processing programs and the same
functions implemented with generalized programs
and separate syntax specifications depends on
the number and complexity of the specified lan-
guages and the processes to be applied.
Dramatic effects on the volume of code can be
expected as the number of languages and process-
ing programs increases.

There are many opportunities to carry
into the area of business applications. Examples
are: the separation of generalized dialogue pat-
terns from particular dialogue content, e.g. a gen-
eral fill-in~the-form-and-stiore-in-the-data-base
dialog applicable to some large class of forms, the
separation of generalized formatting procedures
from specific format specifications for classes of
documents, etc.

the analogy

The questions as to which procedures are in need of
generalization and what information s usefully
factored are not easily answered. In our opinion
this is the central technical question in applica-
tion development. Program generators, such as
IBM's ADFL7] and DMSC81, are contributions in this
direction and so are knowledge based systems.

The specific problem addressed here is the factor-

ing of rules and regulations typically found in
business applications. Examples are: tax rules
(income tax, sales tax, etc.), and company regu-

latfons pertaining to overtime compensations and

travel expenses.

Definitional equations are proposed as a method for
specifying rules. The external specifications and
some implementation detalls of an equation inter-
preter are presented. The interpreter supports one

particular use of definitional equations (i.e. is
analogous to @ generalized syntax parser in the
previous discussion). The interpreter would be

useful as part of an interactive program implement-
ing the completion of forms that has been mentioned
before. It has been developed as a part of the IBA
project, a research project at the IBM Research

368

¢enter, San Jose, California,
tion development methodology.

focusing on applica-

The interpreter is a variation and extension of
the interpreter described in [101.

The example presented in the following section

illustrates the factoring and specification of
rules. The detailed syntax and semantics of rules
are defined in section 3. The interpreter fis

described in section 4. The last section discusses
the relation of the proposed methodology with
related published efforts.

2. AN EXAMPLE APPLICATION

2.1 The Display Frame

Consider a dialog fragment starting with a form
being displayed by the machine. It is assumed that
the form consists of a c¢ollection of labelled sca-
lar fields, some for input by the user, some for
output by the machine. To be more specific, let
ARTICLE, QUANTITY, and STATE be the names of input
fields, and let TOTAL-DUE be the name of the only

output field of the assumed form. Further, let the
format of the blank form be as shown in Fig. 1
below.

ARTICLE:

QUANTITY:

STATE:

TOTAL~DUE:

Fig. 1: Blank Form

In practice there would usually be various other
components contained by the display frame, e.g. @

command field, message fields, a surface area visu-
alizing the current assighments of commands to pro-
gram function keys, etc. However, as the
discussion will focus entirely on the data fields
any further detail may safely be suppressed.

2.2 The Dialog

The contemplated dialog consists of the the follow-
ing steps:

(1) The machine displays a blank form;

(2) the wuser responds

input fields;

by filling in some or all

(3) If the user’'s input is acceptable, i.e. all
required inputs are present and syntactically
correct, the machine calculates the outputs and

displays the result using the appropriate out-

put fields of the displayed form; the dialog
fragment under consideration then ends; other-
wise, appropriate messages urge the user to

fill in missing inputs and/or correct erroneous
ones;

(4> the user modifies some or all input fields and

the dialog proceeds with step (3);.

Similar to the specification of the display frame,
all detail considered unimportant t{o the further
discussion is suppressed, such as the nature of the
imbedding dialog that leads into step (1), the con-
tinuation of the fragment, and various convenient
options one might expect from a well engineered
interactive program, e.g. a help function, the pos-
sibility to leave the dialog unfinished and quit,
etc.

2.3 A Straightforward Implementation

We proceed to sketch a program that implements the
specified dialog fragment.

The calculation of the total-due for a given arti-
cle code, quantity and state of delivery is based
on the unit price of the specified article and the
rules in effect for computing the sales tax depend-
ing on the state of delivery. For the sake of this
example it is further assumed that certain articles
are exempt from sales tax by federal law; i.e. the
exempt status of an article is independent from the
state of delivery. As a consequence, the user need
not to be prompted for the state in case the arti-
cle is exempt.

The Business Factors

Business factors describe either characteristics of
the environment in which a business operates, such
as federal and state laws, or characteristics of
the business itself, such as its products and
organization 1).

Since business factors are of potential use to many
applications they should be kept external to appli-
cation programs. To avoid duplication business
factors should be managed centrally.

Their rate of change, albeit slow, makes it desira-
ble to Keep them in easily updatable form.

Unit prices of articles, their exempt status, and
the tax rate for each state are business factors
pertaining to the present example. The information
on unit prices and the exempt status of the various
articles may be viewed as functions (1, {f2) from
valid article codes to dolilar amounts and truth
values respectively. The sales tax is given by a
function (f3) from states to percentage figures.

All three functions are assumed to be represented
by tables as indicated in Fig. 2.
12 fa:
article + wunit-price article | exempt
________ o) (P
A00% I 23.50 A0O1 ! yes
A002 1 180.0% A002 I no
oo bl oo V...
£3:
state | tax
...... [
CA I 6.00
cee I
Fig.2: Business Factors

369

The Dialog Procedure

The following is only a sketch of

a procedure
implementing the example dialog.

proc DIALOG;
dcl article, quantity, state,
total, taxrate, tax ... ;

total -due,

display blank form;
wait for response;
until all required inputs are specified
prompt for missing input and error correction;

es e

taxrate

.=

if f2tarticle) then 0 else
f3(stated/100;

.=

total fitarticledxquantity;
tax := totalxtaxrate;
total-due total+tax;
display form;

wait for response;

oo

Fig. 3: Dialog Procedure

The content of the program variables: article,
quantity, state, and total-due, reflect the content
of the correspondingly labelled fields in the dis-
play frame, converted, if necessary to the internal
representation required by the operations to be
applied to the variables.

At program point 'L:' 1t is assumed that all
required input variables have suitable values, such
that the computation can be completed as programmed
without further Intervention from the user; this
implies that the code fragment indicated by 'prompt
for missing input and error correction’ has to
check that the user inputs are valid; more precise~
ly, that the article code occurs in table f1 and
that the state is listed in table {3 etc., Further-
more, if the wuser is not to be prompted
unnecessarily for the state, this code fragment
must check the exempt status of the article when
specified by the user.

2.4 Implementation using General ized Procedures

Two observations guide this second design. First,
the program encodes the rules in effect for comput-
ing the sales tax, a piece of information presuma-
bly useful in context other than this particular
program. It would therefore appear desirable to
represent this information separately. Second, the
general dialog pattern seems useful for collections
of data elements other than the specific sales
related data elements of the example. All refer-
ences to the specifics of the data elements must be
parametrized to achieve this generality. The con-
sequences of both observations will be elaborated
in turn.

1) The concept and term is due to Dennis Burk (Mo-

torola)d

Some of the +tax related information has
been separated in the form of business

These business factors can be

applications and changed without
the application code.

already
factors.
used by multiple
having to adapt

However, this separation has not gone far enough.
Changes in the computational rules for the sales
tax, rather than the percentages or exempt status,

induce modifications to the application code; if
these computational rules are used by several
applications, all copies of the rules have to be

found and changed (redundancy).
be practical to separate
the business factors.

1t would therefore
the rules together with

Next, a method of representation for the tax rules
has to be found. The obvious factoring of the tax
rules in form of a subroutine, upon closer examina-
tion, is inappropriate; the reason is analogous to
that cited in the introduction in support of BNF
for syntax specifications, i.e. a representation of
the essence of the information without bias towards
a particular use. Definitional equations, dis-
cussed next, are the proposed solution.

Definitional Equations

The functional dependencies among the quantities
involved can be conveniently defined by the set of
definitional equations below.

(1) exempt = f2(article)
(2> taxrate = if exempt then 0 else f3(state)/100
(3> total = fi(articiel*quantity
(4) tax = totalxtaxrate
(5) total-due = total+tax

Fig. 4: Definitional Equations for Sales Tax
With f1, 2 and f3 bound to specific tables (see
Fig. 2), the collection of equations defines a

function from value assignments to the input vari-
ables: article, state, and total, io the output
variables: exempt, taxrate, tax, and total-due.
The collection of equations is not a program, i.e.
an executable unit defining a computation on a real
or hypothetical machine, but s merely a statement
of dependencies.

The equations are used as parameters to interpret-
ers of one Kind or another, which may define any
desirable dynamic behavior. One example is an
interpreter supporting the example dialog to be
discussed later.

The remaining problem to be discussed is the gener-
alization of the dialog. As will be argued, the
dialog and equation interpreter are best imple-
mented as separate tasks. The ADA rendezvous mech-
anism [1] will be used to present the example; the
mechanism 1s briefly reviewed below.

ADA-1ike Process Communication Discipline

The mechanism is only sketched as far as necessary
for the purpose of the present example.

370

The linguistic representation of an independent
process is called 'task'.

A task consists of @ specification, defining the
external interface, and a body. The specification

of a task defines its nhames, parameters, and entry
points, each with its own parameter list.

Below are specifications of two tasks P, and Q.

task P(x);

entry P1(a);
entry P2(b);

Fig.

task Q(x;
entry Q1(al;

5: Task Specifications

bodies for tasks P and G
constructs used for
of tasks.

The outline of
below show the
synchronization

in Fig. 6
initiation and

body of P:

inttiate QCA1);

accept P1(x) .. end; accept

Q1(A2);

select
accept P1(a) ... end

body of Q:
P1CA3);
Q1(al

end;

or
accept P2(b) ...

> ee

Fig. 6: Task Initiation and Communication con-
structs

Assuming that task P is initiated and running, task
G is started with the initiate statement passing
the argument Al. 1f task Q reaches the call of the
entry P1 before the entry is activated through an

accept P1 statement, task Q waits for this event to
occur.

1f, on the other hand, task P reaches an accept P1
statement before a corresponding call is issued, it
will wait until this event occurs.

In case the entry has been activated by an accept
statement and a call has been issued, the called
task proceeds by executing the clause associated
with the accept statement, delimited by a matching
end. This sequence of events s called a 'rendez-
vous'.

As soon as the clause is executed, the calling task
is released and can proceed independently.

The select construct activates several entries sim-
ul taneously, e.g. the select construct contained
in the body of P activates the entries P1 and P2.

Generalization of the Dialog

In the straightforward Implementation of the exam-
ple dialog, the prompting for missing input is com-
plicated by the fact that the -state of purchase
need not specified in case the article is
exempt. Thus, in general, the prompting mechanism
needs to take 1into account dependencies between
variables. One way to accomplish the effect in the
general case is to start the computation with what-
ever input the user provides initially and prompt
for further information as the need arises. This
evaluation mechanism is contained 1in a task called
‘compute’ whose specification is detailed below.

be

task computelequations);
entry update(in);
entry request(out);

entry cancel;
entry retvalue(val);

in: ID->VAL mappings from identifiers to values
out: ID-> null mappings from identifiers to null
val: VAL one value

Fig. 7: General Compute Task

The interface provides a late binding for the col-
lection of equations to be used; The collection of
equations Is passed as argument when the compute
task is fnittated. Which specific form the argu-
ment may take depends on dictionary and data base

functions for storing and retrieving sets of
equat ions.
After the compute task is initialized, the

updateCin) entry 1s used to pass a value assignment
to some or all finput variables of the equations
previously bound. The entry request(out) is used
to request computation of some or all output vari-
ables of the equations.

As indicated, value assignments to variables are
represented as maps from identifiers to values.
The set of requested output variables is repres-
ented as a value assignment: a map from the identi-
fiers to null values.

The compute task assumes that the task requesting
its service provides two entries: an entry called
'prompt(var)' to be used when further input s
needed and an entry "result(out)' to be used for
delivery of the result.

The entry prompt(var) is called whHen the compute
task needs the value of some input variable, var,
which was not initialized by updatelin). The
value, val, of the prompted variable can be
returned to the compute task with the entry retva-
lue(val) continuing the interpretation where it was
Interrupted.

The entry cancel permits the cancelation of a pend-
ing request, and resets all variables so far
defined or computed to null.

371

Finally the example shall be completed with a
sketch of the generalized dialog program. The
external interface as far as relevant to the dis-

cussion is shown in Fig. 8 below.

task dialog(form, equations)

ee s

entry prompt{varl;
entry result(outl;

o

var: ID one identifier
out: ID->VAL mappings from identifiers to values
Fig. 8: Specification of the Dialog Task

The argument 'form' provides all information about
the data elements involved 1in the dialog necessary
to display the corresponding fields, check for syn-
tactic correctness of the inputs, and conversions
from external to internal representation of values.
The equations define the dependencies among those
elements.

The two arguments are therefore not independent and
should be derived from a consistent database rep-
resentations of the information.

The two entries specified are those expected by the
compute task.

Fig. 9 shows
task.

the internal structure of the dialog

task dialog(form, equations)
display blank form and obtain initial input;
initiate computelequations);
update(in);
request(out);

while request uncompleted
select

accept prompt(var); vari := var end;
prompt user for a value assignment to the
variable named var. if successful return
with retvalue(val), otherwise cancel
Ce.g.).

or

accept resultlout); outt := out end;
request completed;

The task may continue with further requests for
additional output variables to be computed, or can-
cel (reset) the compute task and start again with a
blank form;

oo

The types of referenced variables are:
in: ID -> VAL
out, out1: ID -> VAL
var, vart: ID
val: VAL

Fig. 9: Outline of Internal Dialog Structure

The dialog task starts by displaying a blank form
with the input and output fields available to the
user, these correspond, of course to some input and
output variables of the equations on which the dia-
log is to be based.

The dialog obtains some initial set of inputs from
the user, initiates the compute task, passes the
available inputs to compute using the update entry,
and requests that the output variables of the form
be computed, using the request entry.

The dialog task then enables
entries, thus waiting

either come back with
further input.

the prompt and result
for the compute task to

the result, or prompt for

In both cases, the critical section is used to copy
the argument passed by the compute task to some
program local variable.

The generalized program now separates the defi-
nition of the data elements and their functional
dependencies, a particular evaluation algorithm,
and the code accomplishing the communication with
the end user.

2.5 Discussion

The generalized version of the example application,
lately discussed, was decomposed into three major
parts:

the definition of a set of variables and
their functional dependencies, pertaining to
sales tax regulations, and represented in the
form of definitional equations,

a.

an evaluation algorithm
the values of some
dependent variables,
inputs,

capable of computing
arbitrary subset of
prompting for needed

a dialog task which takes responsibility to
communicate with the end user, calling the
evaluation algorithm when appropriate.

Any one of these three parts is potentially useful

in more than one context. The equations of part a.
can be used in any application involving the par-
ticular encoded rules, but not necessarily with the
specific evaluation algorithm of part b.

On the other hand, the evaluation algorithm can be
applied to any set of equations as long as these
conform to the syntactic and semantic restrictions
specified in more detail in the next section.

Finally, part c. embodies the detailed flow of a
user-machine interaction but is independent of the
sub ject of the dialog, 7.e. the number and kind of
variables involved. The dialog part has received a
sketchy treatment but would deserve a more detailed
study including the specifications of display for-
mats, type information to be associated with
variables, etc.

32

However, here the latter subject is not further
pursued. The fcllowing sections detail the general
form and meaning of equations exemplified in part
a. and the associated evaluation algorithm of part
b.

3. SYNTAX AND SEMANTICS OF RULES

The language defined below is somewhat richer than
was indicated by the examples of the previous sec-
tion. In particular auxiliary functions may be
defined as part of a package; large expressions may
be avoided using variables local to an expression.

No particuiar value domain or type system is intro-

duced at this point. It is, however assumed that
the boolean values are contained in the domain.

3.1 Names

<fnsymb> i1z <identifier>

<variable> ti= <identifier>

Names are drawn from the syntactic category of

<identifiers>. Although identifiers do not have
any inherent meaning, two classes of names are dis-
tinguishable by context: function names and vari-
able names.

3.2 Expressions

<expression> ::=z <constant> |
<variable> |
<term> 1
<select expression> |
<where-expression>
c:= <fnsymb>(<argument list>) |
<expression><fnsymb><expression>
<argument list>
<expression> I
<expression> , <argument list> |
<empty>
<select expression>::= select; <select body>
<select body>::= <select clause> ; |
<select clause> ; <select body>)
otherwise <expression> ;

<term>

end

<select clause>
when(<expression>)<expression>
<where-expression> ::=
<expression> where <declarations>
<declarations> end
<declarations> ::=
<variable definition> ; |
<variable definition> ; <declarations>
<variable definition>::= <variable> = <expression>

Each expression contains a set of free variable
names and a set of free function names; these sets
are determined by the rules specified below. Given
an interpretation for these free names, i.e. a val-
ue assignment for the variable names and an assign-
ment of partial functions to the function names,
the expression denotes a value or undefined.

Since the value domain has not been elaborated at
this point, constants are left undefined.

Terms are constructed from functiion names and argu-

ment lists. The interpretation of the function
name is restricted to functions whose number of
formal parameters agrees with the number of argu-

ments. Infix-notation may be used for binary func-
tion names. The set of free names is the union of
the free names of the argument expressions and the
function name of the construction.

Select expressions are used as a generalized form
of if-then-else expressions. Given an interpreta-
tion, select expressions are evaluated by examining
each select clause in turn. The expression follow-
ing the Keyword when must denote a truth wvalue.
The set of free names of a select expression is the

union of the free names of the component
expressions.
The where-expression permits the definition of

local variable names. All variable names defined
in the declaration part of the construct are bound,

their scope 1is the where-expression. The set of
free names is the set of free names of the
expression compenents minus the bound variable

names defined in the declaration part.
3.3 Rules

<rule package>

=/ g set of rules x/
<rule> =

<variable definftion> § 1

<function definition> ;

<variable definition> ::= <variable> = <expression>

<function definition> ::= <fnsymb>(<parms>)=
<expression>

::= <variable> 1 <variable>,<parms>

..
..
-

<parms>

Function definitions have the wusual meaning.
Parameters are variable names bound in the scope of
the function definition, i.e. the free names of the
construction are the free names of the expression
minus the names of the parameters. The scope of
the function name defined by the construct s the
rule package in which the construct is embedded.

In contrast, variables names defined by a variable
definition are considered free in the context of a
rule package. The set of free names of a variable
definition are the free names of the expression and
the variable name being defined.

A rule package is an unordered set of function
definitions and variable definitions. The set of
free names of a rule package is the union of the
free names of variable definfitions and the union of
the free names occurring in function definitions
but excluding the function names being defined.

Some important constraints on rule packages heed to
be mentioned.

The

a. names defined by any two rules of a given
package must be distinct.
b. Let R’ be a relation defined among the free var-

iable names of a rule package as follows: a R'" b
holds if there is a rule defining a and if b is

373

a free variable of the right hand side of the
definition. Let R be the transitive closure of
R'. The constraint is that R must be antisymmet-

ric, i.e. variable definitions must not be
circular.
Note that this constraint need not hold for func-
tion definitions which may be recursive.
One may take two quite different views of the
semantics of a rule package. We assume that all

free function names are bound to suitable specific
functions. A rule package together with this bind-
ing can then be viewed as an open sentence: given
a value assignment to the free variables, the rule
package denotes a truth value, i.e. the value
assignment may or may not satisfy the equations.
Due to the partiality of the functions there is of
course also the possibility that neither is the
case.

Due to the restricted forms of the equations, with
a single variable on the left hand side and no two
equations defining the same variable one may view
the semantics of rule packages differently. The
variables occurring on the left hand side of the
equatfons can be viewed as dependent variables
defined in terms of the other free variables, the
independent variables.

More precisely, let V be the set of free variables
of a given rule package. This set of free vari-
ables can be partitioned into two sets, the set of
variables occurring on the left hand side of vari-
able definitions called the set of output variables
0, and the set of all other variables called input
varigbles I. Given interpretations for the free
function names, a rule package denotes a function
from value assignments of the input variables 1 to
value assignments of the output variables 0.

More formally, the meaning of a rule package p is a
function M(p) of the following kind:

M(p): (F -> Funct) -> ((I -> Val) -> (0 -> val))

where: F ... set of free function names in p
Funct ... set of functions on Vval
I ... input variables of p
Yal ... value domain
0 ... output variables of p

The interpreter described in
is based on the latter
ages,

the following section
semantic view of rule pack-

4. A Rule Interpreter

4.1 Problem Statement

The rule interpreter implemented In the context of
the IBA project, and described in this section sup-
ports but one particular use of rule packages. A
complete description of the interpreter is found in
[12]. Given a rule package, the interpreter com-
putes the values of a given subset of output
variables based on a given value assignment to a

subset of the input wvariables.
prompts for further input as
specified request.

The interpreter
needed to satisfy the

4.2 External Specifications

Yalue Domain

The interpreter handles data values of several dif-
ferent data types. For example, a variable need
not be bound only to scalars, but 1t can be bound
to, e.g., arrays and records as well. The inter-
preter supports an abstract data type system, where
a few basic data types (e.g. integers, real
numbers, and records) are built-in and where the
programmer can define new data types in terms of
other data types. All data types, basic as well as
user defined, are treated in a uniform way by the
interpreter. The type system is stored in a System
R [2] database.

The rule interpreter internally wuses four data
types, named CHARS (text strings), INTEGER, REAL,
and BOOL (logical values).

Literals. A literal in the rule language fs
regarded as a typed constant. Therefore every
literal has an associated data type, indicated by

the format of the literal, e.g., 123 is an integer,
1.23 is a real number, and 'Ape' is a string. The
literals are encoded into type tagged data values
when a rule package fis accessed.

Literals may be defined for data values of any data
type, provided that the programmer has specified a
conversion routine from text strings to data values
of the data type, as will be described Jater. Once
that conversion routine is defined, literals of the
data type may be written as a gualified literal:
T<text string>'<type>

where <text siring> is the string representation of
a data value of type <type>. For example, the
literal "1'INTEGER is equivalent to 1.

Overloaded functijons. There is a mechanism in the
system for calling external PL/I subroutines as
functions from rules, by using overloaded functions
An overloaded function accepts actual parameters of
several different data types, and it has several
different definitions depending on the data types
of its actual arguments. Each overloaded function
is associated with one or several specific subrou-

tines Each specific subroutine implements the
overloaded function for a particular number of
arguments and particular types of arguments. The

specific subroutines are defined as separately com-
piled PL/I subroutines with standardized formal
parameters. When the interpreter encounters a call
to an overloaded function a generic selection mech-
anism 1is invoked to get the name of the actual
specific subroutine. When the specific subroutine
Is found the subroutine will be dynamically loaded
and executed by the interpreter.

When an overloaded function is defined, the pro-
grammer must specify the data type combinations
which are allowed for its actual parameters. The

name of a specific subroutine must always be asso-
ciated with each combination of data types.

374

The conversion routines mentioned for qualifyed
literals are implemented as overloaded functions.

See [12] for a complete description of how over-
loaded functions are handled by the system.

System Environment

The interpreter can access a number of
ages stored in a data base. In the present imple-~
mentation the rule packages are stored in flat
fiies as sequences of variable and function defi-~
nitions in source form.

rule pack~

The union of two rule packages, Pt U P2, is defined
by adding the variable and local function defi-
nitions of P2 to those of P1. If a variable or
local function is defined in both P1 and P2, only
the one defined in P2 will be defined in P1 U P2.

A global rule package, INIT, is available. When
the interpreter is initialized for a rule package,
P, the interpreter will perform INIT U P, and the
interpretation will be done with the package INIT U

The global rule package contains some variable and
function definitions which are commonly used, name-
ly .

~ The variables TRUE and FALSE for boolean values.
~ The logical functions AND, OR, and NOT are
defined with their normal meanings.

- select expressions are internally represented as
function calls to a system function, *SELECT.

Internal State

The internal state of the interpreter is defined by

the following data:

1. The interpreter must have access to a rule pack-
age or a union of several rule packages which
are used for the interpretation.

2. The interpreter must also be able to describe
bindings between variable names and their
values.,

3. Finally, the bindings between f{ree function

names and their definitions must be known.

Multiple activations of the interpreter may exist
simul taneously. With each new activation a new
internal state is created and identified with an
activation identifier. The internal state can be
successively updated by successive calls to rule
interpreter entries referring to the same acti-
vation identifier.

Operations

The interpreter can be called from a PL/I program
through some external entry points. A number of
PL/1 macros are defined for simplifying the inter-
face. The interface is somewhat modified compared
to the rendezvous interface of section 2.6 so that
it can be implemented with PL/I macros and a
coroutine extension to PL/I.

4.3 The Evaluation Algorithm

We begin this section with an informal description
of the evaluation algorithm, and its motivation.

The interpreter tries to calculate the output vari-
ables using input variables, and the the functions
and variables defined in a rule package. Eventual-
ly the interpreter may find that some variables are
undefined. When the interpreter finds an undefined
variable, it will call the entry PROMPT in the rou-
tine which called the interpreter. This entry may
either prompt the user for the value or get the
value from some other source, e.g. the screen.

Unnecessary prompting should be avoided during the
evaluation, Therefore the interpreter tries to
minimize the number of prompt variables by minimiz-
ing the number of expressions evaluated. The num-
ber of expressions that need to be evaluated to
solve a problem using our method is greater than or
equal to the minimal number of expressions.

The minimization is achieved

in two ways:

~ Once a variable is prompted during an evaluation,
it will not be prompted again. In general, once

in our implementation

the definition of any variable has been
evaluated, the definition will be replaced with
that value. The interpreter has a feature for

unbinding varisbles when, e.g., an interpretation
is cancelled.

- The commonly used methods to pass arguments to
functions will cause too much evaluation. ’Call
by value' will evaluate the arguments before the
function definition is evaluated whether or not
the value of every argument is needed for the
calculation. 'Call by name' may possibly evalu-
ate the arguments several times. Therefore a
method, ‘'call by need’, iIs used 1in which the
arguments are evaluated only when needed and only
once.

An example of a case where 'call by need’ is useful
Is when defining the function sales_tax as in fig-

ure 11. If f2Carticle) is true then the value of
the function s fIndependent on the parameter
'state'. Our call by need mechanism ensures that

the parameter ‘'state’
f2larticle) is false.

is evaluated only when

sales_tax(article, state, totall=
totalxselect;
when(f2(articlel) 0;
otherwise f3(state)/100;
end;

Fig. 11: Illustration to call by need

Internal representation

When the rule interpreter is initialized, 1t will
access the specified rule package and sequentially

375

read the variable and function definitions in the

package. After a variable or function definition
is read, a parser is called which transforms a
statement 1in the external rule language into an
abstract syntax tree. One rule package will thus
result in several abstract syntax trees, which are
stored in the work space of the interpreter. The
abstract syntax trees are finally interpretied.

The abstract syntax trees are represented as

strictly binary trees, using a representation simi-
lar to Lisp's S-expressions.

Figure 12 shows examples of S-expressions repres-
enting a variable and a function definition respec-

tively. We use the notation <el e2 etc..> to
denote @ list with the elements el,e2,etc.. The
examples should fllustrate clearly the rules for
the transformation from the external to the

abstract syntax. Conventional LAMBDA expressions
are used for representing function definitions.
Variables are represented similarly, except that
their definition is tagged VLAMBDA Insteat of LAMB-

DA.
The definition of
taxrate = select;
when(exempt) 0;

otherwise f3(state)/100;
end;

is internally represented as the structure

<YLAMBDA
<SELECT
<EXEMPT 0>
<TRUE </ <F3 STATE> 100> >> >

The definition of
difix,yd=x-yt+i;
is internally represented as

<LAMBDA <X Y>
<= X <+ Y 1> >

Fig. 12: the internal representation of an equation
and a function

The abstract syntax

three data structures:

1. List cells are used for representing nodes of
binary trees. List cells have the two fields
HEAD and TAIL which contain pointers to any of
the other two data structures.

trees are represented using

Symbols (atoms) have unique representations by
using hash technique. Each symbol have one
field, the definition cell (DEFCELL), which is
used when a variable or a function definition is
associated with the symbol. VWhen the interpret-
er parses a variable or a function definftion it
will store a LAMBDA or a VLAMBDA expression in
the definition cell.

3. Finally the abstract syntax trees may contain
references to data values. The parser will
transform literals into such references. In the
definition of the variable 'taxrate' in figure
12, '0', and '100' are examples of data values.

The definition cell

The definition cell of a symbol
ating rule definitions with
nition cell contains a list structure describing
the definition. If the symbol s defined as a
function or a variable it will contain LAMBDA or
VLAMBDA expressions respectively. The HEAD of the
list structure in the function cell (LAMBDA or
VLAMBDA) is a tag, indicating the type of the defi-
nition of the symbol. The tag informs the
interpreter how to evaluate a reference to the sym-
bol.

is used for associ-
the symbol. The defi-

The function cell is also used for
data value with a variable. If the function cell
of a variable contains a pair, (VALUE . <obj>), it
means that the variable 1is assigned to the data
value <ob j>, which is a pointer to a data value.

associating a

There are also other tags allowed in the definition
cell, used for defining internal functions and var-
iables.

5. DISCUSSION

Lazy evaluation is an evaluation
method introduced by [61. The principle of that
method is that calls to the constructor of LISP
(CONS) does not create new objects, but rather it
returns descriptions of what to evaluate in order
to get the values of each field of the objects.
The selectors (CAR,CDR) know how to wuse these
descriptions for getting the field values. Thus
all evaluation is performed by the selectors.

and optimization

A similar technique is used by [S5] for APL ob jects.
By using this technique they avoid constructions of
intermediate objects (e.g. arrays) during the exe-
cution of an APL program.

In contrast to [6]1 and [5], our evaluation opti-
mization method tries not to avoid evaluations when
constructing objects, but rather it optimizes eval-
uations of function calls. We do so by evaluating

variables only once, and by using the 'call by
need' mechanism when calling parametrized
functions. A similar method was proposed by [151.

The interpreter is related to Lisp in that we use
the Lisp's S-expressions for internal represen-
tation of expressions, and a similar classification
of function types as in Interlisp [14]1. However,
our evaluation algorithm is different. For
example, Lisp does not use 'call by need' or global
variable substitution.

Other techniques which can be used for interpreting
definitional equations include production systems
[111, logic programming [91, and programming with
constraints [3,13). These types of techniques make
it possible in some cases to use the equations in

376

different directions, f.e. a given set of equations

does not

vari

[13

[21

£33

£43

[5]

L61

£71

8l

9l

£i01

[111

121

[13]

[14

151

restrict the possible input,
ables respectively.

and output

EFERENCES

'The Reference Manual for the Ada Programming
Language', Superintendent of Documents, U.S..
Government Printing Office, Washington, D.C.
20402, Order No. L.008-000-00354-8, 1980.

M.M. Astrahan, et. al.: 'System R: Relational
Approach to Database Management', ACM Trans-
actions on Database Systems, June 1876,

A.Borning: 'The Programming Language Aspects of
Thinglab, a Constraint-Oriented Simulation
Laboratory’, ACM Transactions on Programming
Languages and Systems, Vol. 3, No. 4, Oct
1981,

D.McCracken: *'The Changing Face of Application
Programming', Datamation, Nov. 15, 1978.

L.J.Guibas, D.K.Wyott: 'Compilation and Delayed
Evaluation in APL', Proc. 5th ACM Symposium on
Principles of Programming Languages, 1978.

P.Henderson, J.Morris: 'A Lazy Evaluator’',
Proc. 3rd ACM Symposium on the Principles of
Programming Languages, 1976.

1BM Corp.: 'IMS Application Development Facili-
ty Program Description/Operations Manual’,
SH20-1931-1, 1977.

1BM Corp.: 'Development Management System/ Dis-
tributed Processing Programming Executive:
Program Reference and Operations Manual',
SH20-2420-0, 1980.

R.Kowalski: 'Algorithm = Logic + Control’,
CACM, Vol. 22, No. 7, July 1878.

P.Lucas: 'On the Structure of Application Pro-
grams', in: D.Bjorner (ed.): ‘'Abstract Soft-
ware Specifications', Lecture Notes in
Computer Science No. 86, Springer-Verlag, Ber-
lin-Heidelberg-New York, 1979.

N.J.Nilsson: 'Principles
ligence', Tioga Publishing Co.,
California, 1980.

of Artificial Intel-
Palo Alto,

T.Risch: 'An Interpreter for Functional
Rules', IBM Research Report RJ3360, 1982.

G.L.Steeie Jr., G.J.Sussman: ‘'Constraints.’,
APL '79: Conf. Proc., APL Quote Quad (ACM SIG-
PLAN/STAPL) Vol.9, No. 4, June 1979.

W.Teitelman et. al.: 'Interlisp Reference Man-
ual', Xerox Palo Alto Res. Cen., 1878.

J.Vuillemin: 'Correct and Optimal Implementa-
tions of Recursion in a Simple Programming
Language', Journal of Computer and System Sci-
ences, vol. 9, No. 3, Dec 1974.

