
IDA Technical Report ����
LiTH�IDA�R������
ISSN������	���

Department of Computer
and Information Science

Link�oping University

S���� �� Linkping
 Sweden

LH�lh� A Scalable High

Performance Data Structure for

Switched Multicomputers

Jonas S Karlsson
Email jonka�ida�liu�se

Witold Litwin
Email litwin�cidmac�dauphine�fr

Tore Risch
Email torri�ida�liu�se

Abstract

LH�lh is a new data structure for scalable high�performance hash �les

on the increasingly popular switchedmulticomputers� i�e��MIMDmulti�

processor machines with distributed RAM memory and without shared

memory� An LH�lh �le scales up gracefully over available processors

and the distributed memory� easily reaching Gbytes� Address calcu�

lus does not require any centralized component that could lead to a

hot� spot� Access times to the �le can be under a millisecond and the

�le can be used in parallel by several client processors� We show the

LH�lh design� and report on the performance analysis� This includes

experiments on the Parsytec GC	PowerPlus multicomputer with up to

�
� Power PCs and �
 MB of distributed RAM per node� We prove the

eciency of the method and justify various algorithmic choices that

were made� LH�lh opens a new perspective for high�performance appli�

cations� especially for the database management of new types of data

and in real�time environments�

This work has been supported by the Swedish National Board for Industrial and
Technical Development �NUTEK� and Center for Industrial Information Technol�
ogy �CENIIT��

This report has been accepted to EDBT��� �Extended Database Technology��
in Avinon� France� March 	����

LH�lh� A Scalable High Performance Data

Structure for Switched Multicomputers

Jonas S Karlsson
Email jonka�ida�liu�se

Witold Litwin
Email litwin�cidmac�dauphine�fr

Tore Risch
Email torri�ida�liu�se

September
�� ����

Abstract

LH�lh is a new data structure for scalable high�performance hash �les on
the increasingly popular switched multicomputers� i�e�� MIMD multiprocessor
machines with distributed RAM memory and without shared memory� An
LH�lh �le scales up gracefully over available processors and the distributed
memory� easily reaching Gbytes� Address calculus does not require any cen�
tralized component that could lead to a hot� spot� Access times to the �le can
be under a millisecond and the �le can be used in parallel by several client
processors� We show the LH�lh design� and report on the performance analy�
sis� This includes experiments on the Parsytec GC�PowerPlus multicomputer
with up to ��	 Power PCs and
� MB of distributed RAM per node� We prove
the e�ciency of the method and justify various algorithmic choices that were
made� LH�lh opens a new perspective for high�performance applications� es�
pecially for the database management of new types of data and in real�time
environments�

� Introduction

New applications of databases require increased performance� One way is to use
parallel and distributed architectures �������� The multicomputers
 i�e�
 networks
of multiple CPUs with local storage become a popular hardware platform for this
purpose������������ In particular
 multicomputer �les need to be able to scale to large
sizes over the distributed storage
 especially the RAM� The Scalable Distributed
Data Structures �SDDSs����� is an approach towards this goal� An SDDS �le can
gracefully expand with the inserts from a single storage site to as many as needed

e�g�
 thousands
 appended dynamically to the �le� The data sites termed servers can
be used from any number of autonomous sites termed clients� To avoid a hot�spot

there is no central directory for the addressing accross the current structure of the
�le� Each client has its own image of this structure� An image can become outdated
when the �le expands� The client may then send a request to an incorrect server�
The servers forward such requests
 possible in several steps
 towards the correct
address� The correct server appends to the reply a special message to the client

called Image Adjustment Message �IAM�� The client adjusts its image
 avoiding to
repeat the error� A well designed SDDS should make addressing errors occasional

�

and forwards few
 and should provide for the scalability of the access performance
when the �le grows�
Up to now
 the design of SDDSs was aimed at networkmulticomputers constitut�

ed of autonomous PCs and WSs linked through a local network� A promising type
of multicomputer is also shared�nothing multiprocessor multicomputers
 also called
switched multicomputers �SM� ����� Both types of multicomputers share the idea
of cooperating autonomous CPUs communicating through message passing� This
suggests that an SDDS could be useful for an SM as well� We have developed and
implemented a variant of LH�
 which we call LH�lh
 designed speci�cally for this
purpose� Performance analysis showed that LH�lh should be an attractive data
structure for CPU and RAM intensive multiprocessor applications�

LH�lh allows for scalable RAM �les spanning over several CPUs of an SM and
its RAMs� On our testbed machine
 a Parsytec GC�PowerPlus with �	 nodes of ��
MB RAM each
 a RAM �le can scale up to almost � GB with an average load factor
of ���� A �le may be created and searched by several �client� CPUs concurrently�
The access times may be about as fast as the communication network allows it
to be� On our testbed
 the average time per insert is as low as ��� ms per client�
Eight clients building a �le concurrently reach a throughput of ���� inserts�second
i�e�
 	�� �s�insert� These access times are more than an order of magnitude better
than the best ones with the current disk �le technology and will probably never be
reached by mechanical devices�
Below we present the LH�lh design and performance� With respect to LH�

����
 LH�lh is characterized by several original features� Its overall architecture is
geared towards an SM while that of LH� was designed for a network multicomputer�
Then
 the design of LH�lh involves local bucket management while in ���� this
aspect of LH� design was left for further study� In LH�lh one uses for this purpose
a modi�ed version of main�memory Linear Hashing de�ned in ���� on the basis
of ����� An interesting interaction between LH and LH� appears
 allowing for much
more e�cient LH� bucket splitting� The reason is that LH�lh allows the splitting
of LH��buckets without visiting individual keys�
The average access time is of primary importance for any SDDS on a network

computer or SM� Minimizing the worst case is
 however
 probably more important
for an SM where processers work more tightly connected than in a network com�
puter� The worst case for LH� occurs when a client accesses a bucket undergoing
a split� LH� splits should be infrequent in practice since buckets should be rather
large� In the basic LH� schema
 a client�s request simply waits at the server till
the split ends� In the Parsytec context
 performance measurements show that this
approach may easily lead to several seconds per split
 e�g� three to seven seconds
in our experiences �as compared to �� � msec per request on the average�� Such a
variance would be detrimental to many SM applications�

LH�lh is therefore provided with an enhanced splitting schema
 termed concur�
rent splitting� It is based on ideas sketched in ��	� allowing for the client�s request
to be dealt with while the split is in progress� Several concurrent splitting schemes
were designed and experimented with� Our performance studies shows superiority of
one of these schemes
 termed concurrent splitting with bulk shipping� The maximal
response time of an insert while a split occurs decreases by a factor of three hundred
to a thousand times� As we report in what follows
 it becomes about � msec for one
active client in our experiences and �� msec for a �le in use by eight clients� The
latter value is due to interference among clients requesting simultaneous access to
the server splitting�
Given the space limitations
 in what follows we assume basic knowledge of LH�

as in ����
 and of LH as de�ned in ����� Section � discusses related work� Section �
presents the Parsytec machine� Section 	 describes LH�lh� Section � shows perfor�
mance study� Section � concludes the paper�

�

� Related work

In traditional distributed �les systems
 in implementations like NFS or AFS
 a
�le resides entirely at one speci�c site� This gives obvious limitations not only on
the size of the �le but also on the access performance scalability� To overcome
these limitations distributions over multiple sites have been used� One example of
such a scheme is round�robin ��� where records of a �le are evenly distributed by
rotating through the nodes when records are inserted� The hash�declustering ���
assigns records to nodes on basis of a hashing function� The range�partitioning �	�
divides key values into ranges and di�erent ranges are assigned to di�erent nodes� All
these schemes are static which means that the declustering criterion does not change
over time� Hence
 updating a directory or declustering function is not required� The
price to pay is that the �le cannot expand over more sites than initially allocated�
To overcome this limitation of static schemes
 the dynamic partitioning started

appearing� The �rst such scheme is DLH ����� This scheme was designed for a
shared memory system� In DLH
 the �le is in RAM and the �le parameters are
cached in the local memory of each processor� The caches are refreshed selectively
when addressing errors occur and through atomic updates to all the local memories
at some points� DLH shows impressively e�cient for high insert rates�
SDDSs were proposed for distributing �les in the network multicomputer en�

vironment
 hence without a shared memory� The �rst scheme was LH� ����� Dis�
tributed Dynamic Hashing �DDH� ��� is another SDDS
 it is based on Dynamic
Hashing ����� The idea with respect to LH� is that DDH allows greater splitting
autonomy by immediately splitting over�owing buckets� One drawback is that while
LH� limits the number of forwardings to two� when the client makes an addressing
error
 DDH may use O�log�N � forwardings
 where N is the number of buckets in
the DDH �le�
Another SDDS has been de�ned in ����� It extends LH� and DDH to more

e�ciently control the load of a �le� The main idea is to manage several buckets of a
�le per server while LH� and DDH have basically only one bucket per server� One
also controls the server load as opposed to bucket load for LH��
Finally
 in ��� and in ���� SDDSs for �primary key� ordered �les are proposed�

In ��� the access computations on the clients and servers use a distributed binary
search tree� The SDDSs in ����
 collectively termed RP�
 use broadcast or distributed
n�ary trees� It is shown that both kinds of SDDSs allow for much larger and faster
�les than the traditional ones�

� The Parsytec multicomputer

The Parsytec GC�PowerPlus architecture �Figure �� is massively parallel with
distributed memory
 also know as MIMD �Multiple Instruction Multiple Data��
The machine used for the LH�lh implementation has ��� PowerPC���� RISC�
processors
 constituting �	 nodes� One node is shown in Figure �a� Each node has
�� MB of memory shared between two PowerPC processors and four T��� Trans�
puter processors� The latter are used for communication� Each Transputer has four
bidirectional communication links� The nodes are connected through a bidirectional
fat �multiple� grid network with packet message routing�
The communication is point�to�point� The software libraries ���� support both

synchronous and asynchronous communication and some other types of communi�
cation
 e�g� mailboxes�
The response time of a communication depends on the actual machine topology�

The closer the communicating nodes are the faster is the response� Routing is done

�In theory� communication delays could trigger more forwarding �����

�

cache

PowerPC
PowerPC

cache

cache

Transputer
T805

cache

Transputer
T805

cache

Transputer
T805Transputer

T805

cache

RAM

�a� One node� �b� 	
 nodes interconnection grid�

Figure � The Parsytec architecture�

statically by the hardware as in Figure �b with the packages �rst routed in the
horizontal direction�

� LH�lh Overview

��� Overall Architecture

An LH�lh�client is a process that accesses an LH�lh �le on the behalf of the appli�
cation� An LH�lh�server at a node stores data of LH�lh �les� An application can
use several clients to explore a �le� This way of processing increases the throughput

as will be shown in Section �� Both clients and servers are created dynamically� The
allocation of clients start from the higher numbered nodes� The servers are allocated
from the lower nodes
 as in Figure �a�
At a server
 one bucket per LH� �le contains the stored data� The bucket man�

agement is described in Section 	��� The �le starts at one server and expands to
others when it overloads the buckets already used�

��� LH� addressing scheme

The global addressing rule in LH�lh �le is that every key C is inserted to the
server sC whose address s � �� �� ���N � � is given by the following LH addressing
algorithm ����

sC � hi�C�

if sC � then sC � hi���C��

	

0 1 2 3

Clients

Servers

3129 3028

�a� Allocation
of clients and
servers�

a

3

2

1

level of hash function

Split token moves

DataClient

70 1 2 3 4 5 6

Insert

forward

forward

IAM

pointer = 0
level = 1 Client image

s’ s’’’s’’

8

n

DataServers

N

�b� LH� File Expansion Scheme

Figure � Clients and Servers�

where i �LH� �le level� and n �split pointer address� are �le parameters evolving
with splits� The hi functions are basically

hi�C� � C mod ��i �K��K � �� �� ��

and K � � in what follows� No client of an LH� �le knows the current i and n of
the �le� Every client has its own image of these values
 let it be i� and n�� typically
i� � i ����� The client sends the query
 e�g� the insert of key C
 to the address
s�C�i

�� n���
The server s�C veri�es upon query reception whether its own address s

�

C is s
�

C �
sC using a short algorithm stated in ����� If so the server processes the query�
Otherwise
 it calculates a forwarding address s��C using the forwarding algorithm
in ���� and sends the query to server s��C � Server s

��

C acts as s
�

C and perhaps resends
the query to server s���C as shown for Server � in Figure �b� It is proven in ���� that
then s���C must be the correct server� In every case
 of forwarding
 the correct server
sends to the client an Image Adjustment Message �IAM� containing the level i of
the correct server� Knowing the i and the sC address
 the client adjusts its i� and
n� �see ����� and from now on will send C directly to sC �

��� LH� File Expansion

LH� �le expands through bucket splits as in Figure �� The bucket next to split is
generally noted bucket n
 n � � in the �gure� Each bucket keeps the value of i used
�called LH��bucket level� in its header starting from i � � for bucket � when the �le
is created� Bucket n splits through the replacement of hi with hi�� for every C it
contains� As result
 typically half of its records move to a new bucket N
 appended
to the �le with address n �i� In Figure �
 one has N � �� After the split
 n is set
to �n �� mod �i� The successive values of n can thus be seen as a linear move of
a split token through the addresses �� �� �� �� �������� ���� �i� �� �� ���� The arrows of
Figure � show both the token moves and a new bucket address for every split
 as
resulting from this scheme�
There are many strategies
 called split control strategies
 that one can use to

decide when a bucket should split ��	� ���� ����� The overall goal is to avoid the �le

�

Servers & Clients

LH* Manager

LH* Concurrent Splitter

Communication

LH Splitter

LH Manager

�a� Data Server�

0

1

2

3

4

5

6

7

8

LH-Buckets = "rows" Linked List of Objects

�b� LH�structure�

Figure � The Data Server and the LH�structure�

to overload� As no LH� bucket can know the global load
 one way to proceed is to
�x some threshold S on a bucket load ��	�� Bucket n splits when it gets an insert
and the actual number of objects it stores is at least S� S can be �xed as a �le
parameter� A potentially more performant strategy for an SM environment is to
calculate S dynamically through the following formula

S �M � V �
�i n

�i
�

where i is the LH��bucket level
M is a �le parameter
 and V is the bucket capacity
in number of objects� Typically one sets M to some value between ��� and ����
The performance analysis in Section ��� shows indeed that the dynamic strategy

should be preferred in our context� This is the strategy adopted for LH�lh�

��� Communication Mode

In the LH�lh implementation on the Parsytec machine a server receiving a request
must have issued the receive call before the client can do any further processing�
This well known rendezvous technique enforces entry �ow control on the servers
 pre�
venting the clients from working much faster than the server could accept requests��
Insert operations do not give any speci�c acknowledge messages by the LH� man�
ager since communication is !safe" on the Parsytec machine �if send returns ok the
message is guaranteed to be received�� IAMs
 split messages with the split token

and general service messages use the asynchronous type of communication�

��� Server architecture

The server consists of two layers
 as shown in Figure �a� The LH��Manager handles
communications and concurrent splits� The LH�Manager manages the objects in the
bucket� It uses the Linear Hashing algorithm �����

�The overloaded server could run out of memory space and could send outdated IAMs �	��

�

����� The LH Manager

LH creates �les able to grow and shrink gracefully on a site� In our implementation

the LH�manager stores all data in the main memory� The LH variant used is a
modi�ed implementation of Main Memory Linear Hashing �����
The LH �le in an LH��bucket �Figure �b� essentially contains �i� a header with

the LH�level
 an LH�splitting pointer
 and the count x of objects stored
 and �ii�
a dynamic array of pointers to LH�buckets
 and �iii� LH�buckets with records� An
LH�bucket is implemented as a linked list of the records� Each record contains the
calculated hash value
 called a pseudo�key� Both the pointer to the actual key
 and
the pointer to the object are stored as bitstrings� Pseudo�keys make the rehashing
faster� An LH�bucket split occurs when L � �
 with

L �
x

b�m
�

where b is the number of buckets in the LH �le
 and m is a �le parameter to control
the required mean number of objects in an LH�bucket �linked list��

����� LH� partitioning of an LH �le

The use of LH allows the LH� splitting in a particularly e�cient way� The reason is
that individual keys are not visited for rehashing� Figure 	 and Figure � illustrates
the ideas�

LH*-bitsLH-bits

31 0

l

l:=l+1

l:=l+1

j

j:=j-1

j’ > j

j’:=j-1

After LH* Split

Before LH* Split

After next LH* Split

Before next LH* Split

l

Figure 	 Pseudo�key usage by LH and LH��

LH and LH� share the pseudo�key� The pseudo�key has J bits
 in Figure 	�
J � �� at every bucket� LH� uses the lower l bits �bl��� bl��� ���b��� LH uses j
bits �bj�l��� bj�l��� ���bl�
 where j l � J � During an LH��split l increases by one
whereas j decreases by one� The value of the new lth bit determines whether an
LH�bucket is to be shipped� Only the odd LH�buckets i�e� with bl � � are shipped
to the new LH��bucket N � The array of the remaining LH�buckets is compacted

the count of objects is adjusted
 the LH�bucket level is decreased by one �LH uses
one bit less�
 and the split pointer is halved� Figure � illustrates this process�
Further inserts to the bucket may lead to any number of new LH splits
 increasing

j in Figure 	 to some j�� Next LH� split of the bucket will then decrease j� to
j� � j� � �
 and set l � l � again�

�

...000 0

...001 0

...010 0

...011 0

...100 0

LH*LH

...000 1

...001 1

...010 1

...011 1

...100 1

LH LH*

LH-Buckets = "rows"

...0000

...0001

...0010

...0100

...0111

...0011

...0101

...0110

...1000

...1001

Linked List of Objects

Ship

Stays

Figure � Partitioning of an LH��le by LH� splitting�

����	 Concurrent Request Processing and Splitting

A split is a much longer operation than a search or an insert� The split should also
be atomic for the clients� Basic LH� ���� simply requires the client to wait till the
split �nishes� For the high�performance applications on an SM multicomputer it is
fundamental that the server processes a split concurrently with searches and inserts�
This is achieved as follows in LH�lh�
Requests received by the server undergoing a split are processed as if the serv�

er had not started splitting
 with one exception a request that concerns parts of
the local LH structure processed by the Splitter is queued to be processed by the
Splitter�
The Splitter processes the queue of requests since these requests concern LH�

buckets of objects that have been or are being shipped� If the request concerns an
LH�bucket that has already been shipped the request is forwarded
 since the data
is guaranteed to arrive at the destination� If the request
 concerns an LH�bucket
not yet shipped it is processed in the local LH table as usual� The requests that
concerns the current LH�bucket being shipped is �rst searched among the remaining
objects in that LH�bucket� If not found there it is forwarded by the Splitter� All
forwardings are serialized within the Splitter task�

����� Shipping

Shipping means transferring the objects selected during the LH��bucket split to the
newly appended bucket N � In LH� ��	� the shipping was assumed basically to be
of the bulk type with all the objects packed into a single message� After shipping
has been completed
 bucket N sends back a commit message� In LH�lh there is
no need for the commit message� The communcation is safe
 and the sender�s data
cannot be updated before the shipping is entirely received� In particular
 no client
can directly access bucket N before the split is complete�
In the LH�lh environment there are several resons for not shipping too many

objects in a message
 especially all the objects in a single message� Packing and
unpacking objects into a message requires CPU time and memory transfers
 as
objects are not stored contiguously in the memory�One also needs bu�ers of sizes at
least proportional to the message size
 and a longer occupation of the communication
subsystem� Sending objects individually simpli�es these aspects but generates more
messages and more overhead time in the dialog with the communication subsystem�
It does not seem that one can decide easily which strategy is �nally more e�ective
in practice�

�

0

50

100

150

200

250

300

350

50000 100000 150000 200000

T
b(

n)
 [s

]

n

Build

�a� Build time

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50000 100000 150000 200000

T
i(n

)
[m

s]

n

Global Insert

�b� Global insert time

Figure � Build and insert time for LH�lh for di�erent number of clients ������

The performance analysis in Section ��� motivated the corresponding design
choice for LH�lh� The approach is that of bulk shipping but with a limited message
size� At least one object is shipped per message and at most one LH�bucket� The
message size is a parameter allowing for an application dependent packing factor�
For the test data using bulks of a dozen of records per shipment showed to be much
more e�ective than the individual shipping�

� Performance evaluation

The access performance of our implementation was studied experimentally� The
measurements below show elapsed times of various operations and their scalability�
Each experiment consists of a series of inserts creating an LH� �le� The number of
clients
 the �le parameters M and m
 and the size of the objects are LH�lh pa�
rameters�
At the time when the tests were performed only �� nodes were available at our

site� The clients are allocated downwards from node �� and downwards and servers
from node � and upwards� The clients read the test data �a random list of words�
from the �le system in advance to avoid that the I�O disturbs the measurements�
Then the clients start inserting their data
 creating the example LH�lh��le� When
a client sends a request to the server it continues with the next item only when the
request has been accepted by the server �rendezvous�� Each time before the LH� �le
is split measures are collected by the splitting server� Some measurements are also
collected at some client
 especially timing values for each of that client�s requests�

��� Scalability

Figure �a plots the elapsed time to constitute the example LH�lh �le through
n inserts� n � �� ���N and N � �������� performed simultaneously by k clients
k � �� ����� This time is called build time and is noted Tb�n�
 or Tbk�N � with k as
a parameter� In Figure �a
 Tb�N � is measured in seconds� Each point in a curve
corresponds to a split� The splits were performed using the concurrent splitting with
the dynamic control and the bulk shipping� The upper curve is Tb��n�� Next lower
curve is Tb��n�
 etc�
 until Tb��n��
The curves show that each Tbk�n� scales�up about linearly with the �le size n�

This is close to the ideal result� Also
 using more clients to build the �le
 uniformly

�

500

1000

1500

2000

2500

3000

50000 100000 150000 200000

T
hr

ou
gh

pu
t [

in
s/

s]

n

Global Insert

�a� Throughput

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

re
la

tiv
e

th
ro

ug
hp

ut

clients

Scalability

�b� Scalability

Figure � Throughput scale�up for di�erent number of clients�

decreases Tbk
 i�e�
 k� � k��� � Tbk
�

�n��Tb k���n� for every n� Using two clients
almost halves Tb
 especially Tb�N �
 from Tb��N � � ��� sec to Tb��N � � ��� sec�
Building the �le through eight clients decreases Tb further
 by a factor of four� Tb�N �
becomes only Tb��N � � �� sec� While this is in practice an excellent performance

the ideal scale�up could reach k times
 i�e�
 the build time Tb��N � � 	� sec only�
The di�erence results from various communication and processing delays at a server
shared by several clients
 discussed in the previous sections and in what follows�
Figure �b plots the curves of the global insert time T ik�n� � Tbk�n��n �msec��

T i measures the average time of an insert from the perspective of the application
building the �le on the multicomputer� The internal mechanics of LH�lh �le is
transparent at this level including the distribution of the inserts among the k clients
and several servers
 the corresponding parallelism of some inserts
 the splits etc� The
values of n�N and k are those from Figure �a� To increase k improves T i in the same
way as for Tb� The curves are also about as linear
 constant in fact
 as they should be�
Higly interestingly
 and perhaps unexpectedly
 each Tbk�n� even decreases when n
grows
 the gradient increasing with k� One reason is the increasing number of servers
of a growing �le
 leading to fewer requests per server� Also
 our allocation schema
decreases the mean distance through the net between the servers and the clients of
the �le�
The overall result is that T i always is under ��� msec� Increasing k uniformly

decreases T i
 until T i��n� � ��� msec
 and T i��N � � ��	 msec� These values are
about ten to twenty times smaller than access times to a disk �le
 typically over ��
msec per insert or search� They are likely to remain forever beyond the reach of any
storage on a mechanical device� On the other hand
 a faster net and more e�cient
communication subsystem than the one used should allow for even much smaller
T i�s
 in the order of dozens of �secs ��	� �����
Figure �a plots the global throughput T k�n� de�ned as T k�n� � ��T i�n��i�sec�

�inserts per second�� The curves express again an almost linear scalability with n� For
the reasons above discussed
 T k even increases for larger �les
 up to ���� i�sec� An
increase of k also uniformly increases T for every n� To see the throughput scalability
more clearly
 Figure �b plots the relative throughput Tr�k� � T k�n��T ��n� for a
large n� n � N � One compares Tr to the plot of the ideal scale�up that is simply
T �r�k� � k� The communication and service delays we spoke about clearly play
an increasing role when k increases� Although Tr monotonically increases with
k
 it diverges more and more from T �r� For k � �
 one has Tr � 	 which is
only the half of the ideal scale�up� It means that the actual throughput per client

��

0

50

100

150

200

250

300

350

400

450

50000 100000 150000 200000

T
b(

n)
 [s

]

n

Static
Dynamic

�a� One client

0

50

100

150

200

250

50000 100000 150000 200000

T
b(

n)
 [s

]

n

Static
Dynamic

�b� Four clients

Figure � Static and dynamic split control�

Tck�n� � T k�n��k
 comparatively also decreases until the half of the throughput
T � of a single client�
Figure � shows the comparative study of the dynamic and the static split control

strategies� The plots show build times
 let it be Tb��n� for the static control and
Tb�n� for the dynamic one� The curves correspond to the constitution of our example
�le
 with k � � in Figure �a and k � 	 in Figure �b� The plots Tb are the same as
in Figure �a� Figure � clearly justi�es our choice of the dynamic control strategy�
Static control uniformly leads to the longer build time
 i�e�
 for every n and k one
has Tb��n� � Tb�n�� The relative di�erence �Tb� � Tb��Tb reaches ��� for k � �

e�g� Tb��N � � 		� and Tb�N � � �	�� For k � 	 the dynamic strategy more than
halves the build time
 e�g from ��� to ��� sec�
Note that the dynamic strategy also generates splits generally more uniformly

over the inserts
 particularly for k � �� The static strategy leads to short periods
when a few inserts generate splits of about every bucket� This creates a heavier load
on the communication system and increases the insert and search times during that
period�

��� E�ciency of Concurrent Splitting

Figure � shows the study of comparative e�ciency of individual and bulk shipping
for LH� atomic splitting �non�concurrent�
 as described earlier� The curves plot the
insert time T i��t� measured at t seconds during the constitution of the example �le
by a single client� A bulk message contains at most all the records constituting an
LH�bucket to ship� In this experiment there are �	 records per bulk on the average�
A peak corresponds to a split in progress
 when an insert gets blocked till the split
ends�
The average insert time beyond the peaks is ��� msec� The corresponding T i�s

are barely visible at the bottom of the plots� The individual shipping
 Figure �a

leads to a peak of T i � ��� sec� The bulk shipping plot
 Figure �b
 shows the highest
peak of T i � ���� sec
 i�e�
 �	 times smaller� The overall build time Tb�N � decreases
also by about ���
 from 	�� sec in Figure �a
 to ��� sec in Figure �b� The �gures
clearly prove the utility of the bulk shipping�
Observe that the maximal peak size got reduced accordingly to the bulk size�

It means that larger bulks improve the access performance� However
 such bulks
require also more storage for themselves as well as for the intermediate commu�
nication bu�ers and more CPU for the bulk assembly and disassembly� To choose

��

�a� Individual Shipping �b� Bulk Shipping

Figure � E�ciency of �a� individual and �b� bulk shipping�

the best bulk size in practice
 one has to weight all these factors depending on the
application and the hardware used�
Figure �� shows the results of the study where the bulk shipping from Figure � is

�nally combined with the concurrent splitting� Each plot T i�t� shows the evolution
of the insert time at one selected client among k clients� k � ���	� �� concurrently
building the example �le with the same insert rate per client� The peaks at the
�gures correspond again to the splits in progress but they are much lower� For
k � �
 they are under � msec
 and for k � � they reach �� msec� The worst insert
time with respect to Figure � improves thus by a factor of �� for k � � and of ��
for k � 	� This result clearly justi�es the utility of the concurrent splitting and our
overall design of the splitting algorithm of LH�lh�
The plots in Figures ��a to ��e show the tendency towards higher peaks of T i

as well as towards higher global average and variances of T i over T i�t�
 when more
clients build the �le� The plot in Figure ��f con�rms this tendency for the average
and the variance� Figures ��d and ��e show also that the insert times become
especially a�ected when the �le is still small
 as one can see for t � �� in these
�gures� All these phenomena are due to more clients per server for a larger k� A
client has then to wait more for the service� A greater k is nevertheless advantageous
for the global throughput as it was shown earlier�
Figure �� hardly allows to see the tendency of the insert time when the �le scales

up
 as non�peak values are buried in the black areas� Figure �� plots therefore the
evolution of the corresponding marginal client insert time Tmk� Tmk is computed as
an average over a sliding window of ��� inserts plotted in Figure ��� The averaging
smoothes the variability of successive values giving the black areas in Figure ���
The plots Tmk�t� show that the insert times not only do not deteriorate when the
�le grows
 but even improve� Tm� decreases from ���� msec to under ��� msec
 and
Tm� from � msec to ��� msec� This nice behavior is due again to the increase in
the number of servers and to the decreasing distance between the clients and the
servers�
The plots show also that Tmk�t� uniformly increases with k
 i�e� k�� � k��Tmk���t� �

Tmk ��t�
 for every t� This phenomena is due to the increased load of each server�
Also interestingly
 the shape of Tmk becomes stepwise
 for greater k�s
 with insert
times about halving at each new step� A step corresponds to a split token trip at
some level i� The drop occurs when the last bucket of level i splits and the split
token comes back to bucket �� This tendency seems to show that the serialization

��

�a� One active client �b� Two active clients

�c� Three active clients �d� Four active clients

�e� Eight active clients

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

m
s/

in
s

clients

Mean
Deviation

�f� Average� std� deviation

Figure �� E�ciency of the concurrent splitting�

��

�a� One active client �b� Two active clients

�c� Three active clients �d� Four active clients

�e� Eight active clients

Figure �� LH�lh client insert time scalability�

�	

of inserts contributing most to a Tmk value occurs mainly at the buckets that are
not yet split�
The overall conclusion from Figure �� is that the insert times at a client of

a �le equally shared among k clients
 is basically either always under � msec
 for
k � �
 or tends to be under this time when the �le enlarges� Again this performance
shows excellent scale�up behavior of LH�lh� The performance is in particular largely
superior to the one of a typical disk �le used in a similar way� For k � � clients
 for
example
 the speed�up factor could reach 	� times
 i�e�
 � msec versus � � �� msec�

� Conclusions

Switched multicomputers such as the Parsytec GC�PowerPlus are powerful tools for
high�performance applications� LH�lh was shown an e�cient new data structure
for such multicomputers� Performance analysis showed that access times may be in
general of the order of a milisecond
 reaching ��	 msec per insert in our experiences

and that the throughput may reach thousands of operations per second
 over ����
in our study
 regardless of the �le scale�up� An LH�lh �le can scale�up over as much
of distributed RAM as available
 e�g�
 � Gbytes on the Parsytec
 without any access
performance deterioration� The access times are in particular an order of magnitude
faster than one could attain using disk �les�
Performance analysis con�rmed also various design choices made for LH�lh�

In particular
 the use of LH for the bucket management
 as well as of the con�
current splitting with the dynamic split control and the bulk shipping
 e�ectively
reduced the peaks of response time� The improvement reached a thousand times in
our experiences
 from over �sec that would characterize LH�
 to under � msec for
LH�lh� Without this reduction
 LH�lh would likely to be inadequate for many
high�performance applications�
Future work should concern a deeper performance analysis of LH�lh under

various conditions� More experiments with actual data should be performed� A
formal performance model is also needed� Such models yet lack in general for the
SDDSs� The task seems of even greater complexity than for more traditional data
structures�
The ideas put into the LH�lh design should apply also to other known SDDSs�

They should allow for the corresponding variants for switched multicomputers� One
bene�t would be scalable high performance ordered �les� SDDSs in ����
 or ��� should
be a promising basis towards this goal�
A particularly promising direction should be the integration of LH�lh as a

component of a DBMS� One may expect important performance gain
 opening to
DBMSs new application perspectives� Video servers seem one promising axis
 as it
is well known that major DBMS manufacturers look already upon switched multi�
computers for this purpose� The complex real�time switching data management in
telephone networks seems another interesting domain�
To approach these goals
 we plan to make use of the implementationof LH�lh for

high�performance databases� We will interface it with our research platform AMOS
���
 which is an extensible object�relational database management system with a
complete query language ���� AMOS would then reside on an ordinary workstation

whereas some datatypes�relations�functions would be stored and searched by the
MIMD machine� AMOS will then act as a front�end system to the parallel stored
data� The query optimization of AMOS will have to be extended to also take into
account the communication time and possible speed�up gained by using distributed
parallel processing� Other SDDSs than LH� are also of interest for evaluation
 a
new candidate is the RP� ���� that handles ordered data sets�

��

Acknowledgment

This project was supported by NUTEK �The Swedish National Board for Industrial
and Technical Development�
 and CENIIT �The Center for Industrial Information
Technology��

References

��� Teradata Corporation� DBC����� data base computer concepts and facilities�
Technical Report Teradata Document C���������
 Teradata Corporation
 �����

��� D� Culler� NOW Towards Everyday Supercomputing on a Network of Work�
stations� Technical report
 EECS Tech� Rep� UC Berkeley
 ���	�

��� R� Devine� Design and implementation of DDH A distributed dynamic hashing
algorithm� In Proc� of the
th Intl� Conf� on Foundations of Data Organization
and Algorithms �FODO�
 �����

�	� D� DeWitt
 R� Gerber
 G� Graefe
 M� Heytens
 K� Kumar
 and M� Muralikr�
ishna� GAMMA A high performance data�ow database machine� In Proc of
VLDB
 August �����

��� G� Fahl
 T� Risch
 and M� Sk�old� AMOS � An Architecture for Active Mediators�
In IEEE Transactions on Knowledge and Data Engineering
 Haifa
 Israel
 June
�����

��� J� S� Karlsson� LH�LH Architecture and Implementation� Technical report

IDA
 Linkping University
 Sweden
 �����

��� J� S� Karlsson
 S� Larsson
 T� Risch
 M� Sk�old
 and M� Werner�
AMOS User�s Guide� CAELAB
 IDA
 IDA
 Dept� of CS and IS

Link�oping University
 Sweden
 memo �	��� edition
 Mars ���	� URL
http��www�ida�liu�se�labs�edslab�amos�amosdoc�html�

��� M� Kitsuregawa
 H� Tanaka
 and T� Moto�Oka� Architecture and performance
of relational algebra machine GRACE� In Proc� of the Intl� Conf� on Parallel
Processing
 Chicago
 ���	�

��� B� Kroll and P� Widmayer� Distributing a Search Tree Among a Growing
Number of Processors� In ACM�SIGMOD Int� Conf� On Management of Data

���	�

���� P�#A� Larson� Dynamic hashing� BIT
 �������	$���
 �����

���� P�#A� Larson� Dynamic hash tables� In Communications of the ACM
 volume
���	�
 pages 		�$��� April �����

���� W� Litwin� Linear Hashing A new tool for �le and table addressing� Montreal

Canada
 ����� Proc� of VLDB�

���� W� Litwin� Linear Hashing A new tool for �le and table addressing� In Michael
Stonebraker
 editor
 Readings in DATABASE SYSTEMS� �nd edition
 pages
��$���� ���	�

��	� W� Litwin
 M�A� Neimat
 and D� Schneider� LH� A Scalable Distributed Data
Structure� submitted for journal publication
 Nov �����

��

���� W� Litwin
 M�A Neimat
 and D� Schneider� LH� Linear hashing for distributed
�les� ACM SIGMOD International Conference on Management of Data
 May
�����

���� W� Litwin
 M�A Neimat
 and D� Schneider� RP� A Family of Order Preserving
Scalable Distributed Data Structures� VLDB Conference
 ���	�

���� M� Tamer �Ozsu and Patrick Valduriez� Principles of Distributed Database
Systems� Number ISBN �������������� Prentice Hall
 �����

���� Parsytec Computer GmbH� Programmers Guide� Parix 	���PowerPC
 ���	�

���� M� Pettersson� Main�Memory Linear Hashing � Some Enhancements of Larson�s
Algorithm� Technical Report LiTH�IDA�R�����	
 ISSN������	���
 IDA
 �����

���� C� Severance
 S� Pramanik
 and P� Wolberg� Distributed linear hashing and
parallel projection in main memory databases� In Proceedings of the 	�th In�
ternational Conference on VLDB
 Brisbane
 Australia
 �����

���� Andrew S� Tanenbaum� Distributed Operating Systems� �����

���� R� Wingralek
 Y� Breitbart
 and G� Weikum� Distributed �le organisation with
scalable cost�performance� In Proc of ACM�SIGMOD
 May ���	�

��

