
Calculus-Based Transformations of Queries over Object-Oriented Views in a
Database Mediator System

Vanja Josifovski and Tore Risch
Laboratory for Engineering Databases

Linköping University
Sweden

vanja@ida.liu.se, torri@ida.liu.se

Abstract

The concept of object-oriented (OO) views has been a
popular approach to data integration. Nevertheless, there
have been few reported results on optimization of queries
over integrated OO views. In our work, we have devel-
oped an OO view system for data integration based on the
AMOS database mediator system. The paper describes a
system architecture and implementation that takes advan-
tage of query optimization techniques to improve the per-
formance of queries to integrated OO views. The main fea-
tures of the system are: 1) A passive mediation framework
that preserves the autonomy of the data sources. 2) A selec-
tive materialization mechanism that minimizes the number
of materialized view objects. 3) A predicate based mecha-
nism to guarantee the validity of the materialized view ob-
jects as well as the completeness of queries to the view. In
order to reduce the overhead of the passive view integra-
tion, we use inexpensive calculus based transformations to
generate minimal query expressions before the query de-
composition and the cost-based algebraic optimization take
place.

1. Introduction

An important factor of the strength of a modern enter-
prise is its capability to effectively store and process infor-
mation. As a legacy of the mainframe computing trend in
the previous decades, large enterprises often have several
isolated data repositories used only within portions of the
organization. The development of the network technology
bridged the gap between these systems, but the access of the
data in their diverse native formats is a burden to the user.
Another trend is that terminals as access points are replaced
by more powerful workstations having substantial process-

ing capabilities, but which are nevertheless too small to hold
all the data that a user might need. In this kind of comput-
ing environment we can assume that the big volume data
will still reside in dedicated data processing servers. Be-
yond this, some data will reside in the users’ workstations
either because it is mainly of local interest, or because the
user wishes to have local control of the access.

A user in such an environment should be provided with a
location transparent and semantically coherent view of the
data in the different repositories. Thewrapper-mediatorap-
proach, described in [19], divides a system with this kind
of functionality into two subsystems. The wrapper system
translates the data expressed in the local data models of the
data sources into a common data model (CDM). The task
of the mediator is to provide a semantically coherent CDM
representation of the data in the repositories that each may
contain different (meta)data describing the same real world
entities.

The research in the field of mediator systems has identi-
fied two basic approaches. One uses eager materialization
of the queried data, trying to reduce the response time by
performing most of the costly operations before the query
is issued [8]. The other approach, which we name passive,
fetches the required data when it is requested. Which ap-
proach yields better results depends on factors such as avail-
able resources, the size of the data and the query and update
frequencies [8].

In this paper, we present an approach to database media-
tion based on passive evaluation techniques. We use object-
oriented (OO) views to provide the user with a unified ap-
pearance of data in different repositories. The queries over
the views are transformed to queries over the data in the
repositories. When the passive approach is used, the medi-
ator system has to provide for complete and consistent an-
swers to the queries over the OO views at the time when the
queries are issued. An advantages of the approach described

in this paper is that it provides an efficient view support
mechanism by describing the system tasks using predicates
inserted in the calculus representation of the queries over
the integrated views. This allows for query optimization of
the view support tasks together with the user-specified part
of the query. Another advantage is that the view mainte-
nance operations, as well as the user-specified operations,
are specified and performed over a set of objects/tuples as
opposed to individual instances.

The focus of the paper is a query transformation tech-
nique which, for a certain class of queries, allows for a re-
duction of the number of predicates by applying calculus-
based optimization. The calculus-based optimization re-
moves redundant computations that often result from merg-
ing system-specified and user-specified predicates in the
query. This reduces the query complexity and, because it
is performed by simple rewrite rules, it imposes minimal
increase in the query processing time. The cost based opti-
mization executed later in the query processing is concerned
with the order of the execution rather than the removal the
redundant computations.

The work presented in this paper should be contrasted
with the traditional approach where the view support tasks
are performed by code within the system. In this approach,
used for example in [15] and [6], most of the view support
tasks are performed on an individual instance level, and the
optimizations described in this paper are therefore not ap-
plicable.

The paper is organized as follows. In section 2 we intro-
duce the AMOS database mediator system that serves as a
platform for the work presented later in the paper. Section
3 introduces our OO views architecture for database medi-
ation. Section 4 describes the query transformation tech-
niques for the queries over the OO views and the use of
rewrite rules to reduce the number of query predicates. Ap-
proaches related to our work are outlined in section 5. A
summary and future directions of our research are given in
section 6.

2 Overview of the AMOS system

As a platform for our research we use the AMOS medi-
ator database system [4] developed from a workstation ver-
sion of the Iris system, WS-Iris [14]. The core of AMOS
is an open, light-weight, and extensible database manage-
ment system (DBMS). The aim of the AMOS architecture
is to provide for efficient integration of data stored in differ-
ent repositories by both active and passive techniques. To
achieve better performance, and because most of the data
reside in the data repositories, AMOS is designed as a main-
memory DBMS. Nevertheless, it contains all the traditional
database facilities, such as a recovery manager, a transac-
tion manager, active rules, and a OO query language. An

AMOS server provides services to applications and to other
AMOS servers.

The data model used in AMOS, which is also used as a
CDM for mediation, is an OO extension of the DAPLEX
[17] functional data model. It has three basic constructs:
objects, typesandfunctions. Objects model entities in the
domain of interest. An object can be classified into one
or more types which makes the object aninstanceof that
type(s). The set of all instances of a type is called theex-
tent of the type. Object properties and their relationships
are modeled by functions.

The types in AMOS are divided into literal types (e.g
real andcharstring) and surrogate types. The literal types
have fixed, possibly infinite extents and self identifying in-
stances. Each instance of a surrogate type is identified by a
unique, system-generated object identifier (OID). The types
are organized in a multiple inheritance, supertype/subtype
hierarchy where an instance of a type is also an instance
of all the supertypes of that type; conversely, the extent of
a type is a subset of the extent of a supertype of that type
(extent-subset semantics).

The functions are divided by their implementations into
three groups. The extension of astoredfunction is physi-
cally stored in the database.Derived functions are imple-
mented in the AMOS’ query language AMOSQL.Foreign
functions are implemented in other programming language
as, for example, Lisp or C++.

The AMOSQL query language is based on the OSQL
[14] language with extensions of multi-way foreign func-
tions, active rules, late binding, overloading, etc. The fol-
lowing example illustrates the AMOSQL syntax. Assum-
ing that three stored functionparent, nameandhobbyare
defined, it retrieves the names of the parents of the persons
who have ’sailing’ as a hobby:

select p, name(parent(p))
from person p
where hobby(p) = ’sailing’;

Figure 1, presents an overview of the query processing
in AMOS. The first five steps, also calledquery compila-
tion steps, translate a query expressed in AMOSQL to an
object algebra plan that can be stored and interpreted many
times without repeating the compilation. To illustrate the
query compilation we use the query from the previous ex-
ample. From the parsed query tree, the calculus generator
generates a calculus expression with flattened and type re-
solved predicates. Flattened predicates have a variable or
constant as a left-hand side (or a tuple of variables or con-
stants when the function returns a tuple as a result), and an
unnested function call, variable or constant as a right-hand
side. The head of the calculus query expression contains the
result variables. A calculus expression can also have a name

Single-site
Cost Based
Optimizer

External
requests

object
calculus

object
calculus

decomposition
trees

object
algebra

Calculus Cost
Estimator

Algebra
Generator
Algebra

Generator
Tree
Decomp.

Generator
Calculus

Optim. Interpret.

resultAMOSQL
query

Query decomp. & algebraic optimization

decomposition
tree

Figure 1. Query processing in AMOS

and input parameters, in which case it represents a derived
function.

AMOS supports overriding and overloading of functions
on the types of the arguments and the results. Each func-
tion name refers to agenericfunction which can have more
than one associatedtype resolvedfunctions. Each generic
function call in a query is substituted by a type resolved
one during the calculus generation process. Late binding
is used for the calls which, due to polymorphism, cannot
be resolved during query compilation. AMOS’ late binding
mechanism is described in [7]; in the examples throughout
the paper we assume that all function calls are resolved dur-
ing the compilation of the queries. Accordingly, the result
of the calculus generation phase for the example query is
given by the calculus expression below:

f p; nm j
p = Personnil!person() ^
d = parentperson!person(p) ^
nm = nameperson!charstring(d) ^
0sailing0 = hobbyperson!charstring(p)g

Notice that type resolved functions are annoted with the
types of their arguments and results. The first predicate in
the expression is inserted by the system to assert the type
of the variablep. It defines the variablep with the extent
functionof typePerson that returns all the instances of this
type.

Next, the calculus optimizer applies rewrite rules to re-
duce the number of predicates. In the example, it produces
the expression below by removing the type check predicate.
The typecheck can be removed becausep is used in a stored
function (e. g.name) with an argument or result of type
person. The referential integrity system of the stored func-
tions constrain the instances stored in the stored function to
be of the correct type [14].

f p; nm j
d = parentperson!person(p) ^
nm = nameperson!charstring(d) ^
0sailing0 = hobbyperson!charstring(p)g

Because the example query is over local types, it passes
unaffected through the query decomposition stage and is
processed only by the cost-based single-site algebra opti-
mizer. If some part of the query should be executed at an-
other AMOS server, the system uses primitives that allow
for sending and evaluating calculus expressions between the
servers. These features of the system are not described in
this paper and will be a topic of a forthcoming paper.

While object calculus query representation is unordered
and contains function references that do not have specified
binding patterns (i. e. which function parameters are in-
put and which are output [14]), the algebra plan is ordered
and contains type and binding pattern resolved function ref-
erences. The calculus optimization process takes advan-
tage of the declarative unordered format and the unspeci-
fied binding patterns of the object calculus for detection of
optimization possibilities with goal to reduce the number of
query predicates. This optimization is rule driven and much
simpler than the transformations done during the cost-based
query decomposition and algebraic optimization.

An interested reader is referred to [10] for more detailed
description of the AMOS system and to [14], [5] and [7] for
more comprehensive descriptions of the query processing in
AMOS.

3. Object-Oriented View System Design

This section presents the design principles behind the
OO view mechanism for data integration in AMOS. Views
as a tool for data abstraction and restructuring, have
been extensively studied in the context of the relational
databases. The design of a view mechanism in an OO en-
vironment has to account for its increased complexity com-
pared to the relational. This particularly refers to the in-
heritance and the object identity concepts. Inheritance and
views have some common aims (e.g. data abstraction and
reuse of code/queries) and therefore, the two mechanisms
must be combined in a semantically clear manner. Two im-
portant issues in the OO view system design, related to the
object identity, are the format of the view objects’ identifiers
and the definition of view objects’ life span.

Additional issues arise when views are defined over data
residing in multiple autonomous repositories. First, as men-
tioned above, because active maintenance of the views is
not always possible, non-active mechanisms for view main-
tenance must be provided. Furthermore, the same real
world concepts can have different representations in differ-
ent repositories. To provide the user with a semantically
consistent view of the data, the system needs to provide
constructs for overcoming such differences in the view def-
inition. Finally, there is also the issue of the representation
of OIDs in the inter-database communication.

SPORT_DB User_Defined

Person

Local

HOBBY
SOCSECN

Junior

User_Defined

Local Derived

Emp

PersonPayRec

Manager Sporty_Emp

NAME
AGE
STATUSSSN

SALARY
POSITION

SPORT_BONUS

BONUS

EMPLOYEE_DB

Figure 2. Integration by subtyping

3.1 Derived Types

In order to provide data integration features in AMOS,
we extended the type system with a construct namedde-
rived type(DT). Data integration by DTs is performed by
building a hierarchy of DTs based on local and imported
data types (i.e. from other AMOS systems). DTs are de-
fined by supertyping and subtyping from other types in
the type hierarchy. The traditional inheritance mechanism,
where the corresponding instances of an object in the su-
per/subtypes are identified by the same OID, is extended
with declarative specification of the correspondence be-
tween the instances of the derived super/subtypes. Integra-
tion by sub/supertyping is related to the mechanisms used
in some other systems as, for example, the integrated views
and column adding in the Pegasus system [3], but is better
suited for use in an OO environment.

Figure 2 shows an example of integration by subtyping.
In the example, the data stored in an employee database
is integrated with the data from a database storing sport-
ing information. The solid ovals represent ordinary types
while the dashed ovals are DTs. Stored functions defined
over the types in the figure are shown beside the type ovals.
The typesUser Defined, andDerived are system-defined
and part of AMOS’ meta-model. They are defined in both
databases, but are not shown inSport Database for sim-
plicity. There is a typePersonin both databases, each stor-
ing information about a set of persons. The definition of the
derived portion of the type hierarchy in the example is done
as follows. First, the DTEmp is created to represent the
persons who have a pay record. The DTManageris created
as a subtype of the DTEmpto represent the employees for
which the inherited attribute (stored function)positioncon-
tains the string ’Manager’. The type importation is done by
subtyping from types in other database mediators, as illus-
trated by the DTSportyEmp. This DT is defined as sub-
type of the local DTEmp and the typePerson in the sport
database. Its instances represent persons for which there is
an instance in theEmp type in the employee database, and
in thePerson type in the sport database.

The figure also points at some design choices we com-
mitted to in the development of the system. First, to be able
to do data integration by subtyping, a DT needs to inherit
from more than one type, i.e. multiple inheritance. Sec-
ond, it can be noticed in the example that stored functions
(e.g.sport bonusin SportyEmp) can be defined over DTs,
which makes the DTs acapacity-augmentedview mecha-
nisms [15]. One of our design goals was to allow the DTs
to be used in function definitions in the same manner as the
ordinary types. This means that any function can have DTs
as argument or result domains.

3.2 Derived Types and Object Identi�ers

There are three basic choices when it comes to the format
of the DT instance OIDs. The first is to use the identifiers
from the corresponding objects in the supertypes [16]. This
is not suitable for our DT instances because it is not com-
patible with multiple inheritance. The second alternative is
to use a stored query expression instead of an identifier and
construct the required DT instances by evaluating this ex-
pression [11]. With that approach, it would be difficult to
have functions whose argument domain is a DT since it is
not convenient to manipulate expressions as database ob-
jects. The third alternative is to generate new unique OIDs
for the materialized DT objects [15]. With this method,
the same conceptual object (i.e. representing the same real
world entity) is represented by instances having different
OIDs in different types. Therefore, to be able to evaluate
inherited functions over materialized DT instances, their
OIDs need to be mapped to the OIDs of the correspond-
ing instances of the type over which the function was de-
fined, a process namedOID coercion1. The cost of the
OID coercion is the main weakness of the approach to have
unique OIDs for DT instances. Nevertheless, we chose this
approach for the following two reasons: First, the major
cost of a query is in the predicates that ship data between
database mediators and not in the coercion. In AMOS, the
hash tables used in the coercion are stored in main-memory
which makes the coercion a relatively inexpensive opera-
tion. Second, expressing the coercion by predicates permits
optimization of the calculus representation of the query,
which further reduces the coercion cost, as described in the
next section.

Although materialization of OIDs for the DT instances
allows for using the DTs as domains for function arguments
and results, not all queries require materialization and it will
be a severe performance impairment to materialize the ex-
tents of all the DTs in each query. To minimize the material-
ization cost, the query processor analyses the query to find
out which query variables represent instances that need to

1In the text we use interchangeably the terms “OID coercion” and “in-
stance coercion”

be materialized. Materialization predicates are added only
for query variables that are part of the query result or used
as an argument of a foreign function. In many other cases
query transformations are used to transform the query so
that no materialization is needed, as shown in the next sec-
tion. The performance of these queries is thus not degraded
by the materialization mechanism. In the queries that do
require materialization it is performed selectively only over
the DT instances which also satisfy the rest of the query
predicates, thus materializing only parts of the DT extents,
in order to avoid unnecessary performance and storage over-
head.

Materialized DT instances can also be used in queries is-
sued at a time after their materialization. At this time, the
system has to assert that they still comply with the declar-
ative conditions stated in the DT definition, or, in other
words, that they are stillvalid. Assuming non-active basic
capability of the data sources, we have to provide a mecha-
nism to check the validity of these instances in such queries.

The validity of a materialized DT instance depends on
the existence and validity of the corresponding instances of
the supertypes identified when the instance was material-
ized. When a DT instance is validated, the validation con-
dition is executed only over these instances. This definition
of the validity of a DT instance based on a combination of
the OIDs of the supertype instances and a validation con-
dition, is consistent with the OO structure of the database,
and is efficient to implement.

The instance is present in the database until it is used in
a query where it fails the validation test. A garbage col-
lection of the DT instances can be implemented using the
active capabilities of the AMOS system to periodically run
the validation test.

3.3 Derived Types and Inheritance

An important issue in designing an OO view system is
the placement of the DTs in the type hierarchy. The obvious
approach would be to place the DTs in the same hierarchy
as the ordinary types. However, mixing freely the DTs and
ordinary types in a type hierarchy can lead to semantically
inconsistent hierarchies [12]. In order to provide the user
with powerful modeling capabilities along with a semanti-
cally consistent inheritance hierarchy, the ordinary and de-
rived types in AMOS are placed in a single type hierarchy
where it is not allowed to have an ordinary type as a subtype
of a DT. This rule preserves the extent-subset semantics for
all types in a hierarchy. If DTs were allowed to be super-
types of ordinary types, due to the declarative specification
of the DTs, it is not possible to guarantee that for each in-
stance of the ordinary type there will be a corresponding
instance in its supertypes [12].

In the example in Figure 2 the derived part of the type

Student

Person
Student

Person

User_Defined User_Defined

Local

imS

imP

Junior

IPerson

IStud

DB1 DB2

Local Derived

locP

locS

Figure 3. Integration by supertyping

hierarchy is constructed by subtyping. The AMOS medi-
ation framework also allows definition of DTs as explicit
supertypes of other DTs. Although processing of queries
over this kind of DTs in not discussed in this paper, to com-
plete the discussion on the mediation framework, Figure 3
presents an example of integration by supertyping. This ex-
ample shows a definition of an integrated view of two per-
son databasesDB1 andDB2. The data in both databases
is structured in two user-defined types: a type namedPer-
sonwhich contains data about a set of persons, and its sub-
typeStudentrepresenting the persons that are students. The
example establishes thederived supertypes IPersonandIS-
tud in DB1 to provide an integrated view of the data in the
databases. These types are supertypes of the typeslocPand
locS which represent the instances from the typesPerson
andStudentin DB1which participate in the integration. The
typesimP and imSrepresent data imported intoDB1 from
the typesPersonandStudentin DB2. Derived supertypes
can be subtyped as other DTs. In this example the typeJu-
nior is created to represent a specialization of the typeIStud
containing all junior students. The same schema was used
in both databases in order to simplify the example. The pre-
sented mediation framework can handle arbitrary schema
heterogeneity by defining mappings using derived sub- and
supertypes and derived functions.

3.4 Derived Subtyping Language Con-
structs

In order to be able to define derived subtypes with prop-
erties as described above, we have extended the AMOSQL
type declaration construct as:

CREATE TYPE type_name
SUBTYPE OF sut1, sut2, ...

COMPOSE compose_expression
VALIDATE validate_expression
HIDE fn1, fn2, ...

PROPERTIES
function definitions;

END_TYPEDEF;

The subtype ofclause establishes the new created type
as a subtype of other types in the hierarchy. Thecom-
poseexpressionand validateexpressionare boolean ex-
pressions which conjuncted give the condition that a com-
bination of supertype instances need to satisfy to compose
a new DT object. The condition incomposeexpressionis
evaluated only when a new instance of a DT is materialized
and assigned a new OID. By contrast, the condition speci-
fied with thevalidateexpressionis also evaluated each time
a materialized instances is used in a query to the material-
ized object. The separation of the composition and valida-
tion expressions was motivated by the observation that data
integration is often performed based on some functions that
do not change over the lifetime of the instance (i.e. that
are functionally dependent on the OIDs of the integrated
instances). In these cases, it is not necessary to evaluate
the full condition every time a DT instance is validated, but
instead only thevalidateexpressionis evaluated over the
corresponding instances of the supertypes. The following
example illustrates the intended use of these two clauses by
defining three DTs from Figure 2:

create type Emp
subtype of Person P, PayRecord PR

compose ssn(P) = ssn(PR)
validate status(P) = ’working’;

create type Sporty_Emp
subtype of Person@SPORT_DB p, Emp e

compose ssn(e) = adjust_ssn(socsecn(p));

create type Junior
subtype of Sporty_Emp se

validate age(se) > 26;

There is one instance of typeEmp for each person for
whom there is a pay record and the status is ’working’.
Since the social security number does not change during
the existence of aPersoninstance, the conditions involv-
ing the functionsssnandsocsecnare placed in thecompose
clause in the definition ofEmp and SportyEmp. On the
other hand, the status and the age of a person can change
and therefore the conditions over these functions are placed
in thevalidate clauses.

The clauseshideandproperties, which for brevity were
not used in the examples, serve to list the functions of the
supertypes not to be inherited by the newly defined DT, and
to define new stored function, respectively.

4. Querying the Derived Types

The previous section presented the architecture of the
view system for database mediation in AMOS. This section
describes how the system evaluates queries over a type hier-
archy extended with DTs. The presentation will concentrate

on translation of queries to a correct and optimized object-
calculus representation. The query decomposition and alge-
bra optimization phases are not topics of this paper. Also,
we will focus on processing of the queries over DTs defined
by subtyping. In our current work, we are developing simi-
lar techniques for queries over the derived supertypes.

In the implementation presented in this section, as much
as possible of the system support tasks are expressed by
predicates incorporated in the calculus representation of the
query. Many of these task traverse the type hierarchy and
have common subtasks. The predicate representation allows
this common subtasks to be identified and eliminated from
the query. Beside this, overlaps between the user-defined
and system-inserted predicates can be exploited to further
reduce the number of predicates. Of particular interest in a
view mechanism for mediation is to reduce the operations
which cross the database boundary in communication with
other databases.

Each DT in AMOS is implemented by an ordinary type
namedimplementation type. The system automatically gen-
eratescoercion functionsover the implementation types to
store the mappings between the materialized instances of
each DT and its supertypes. All coercion functions are rep-
resented by the generic functioncoerce, overloaded on its
argument and result. Coercion between instances of a DT
and its indirect supertypes is done by composition of coer-
cion functions. The coercion functions are not accessible
by the user. They are manipulated by the system and used
in other system-defined functions that are generated from
the derived type definition. For each DT the system also
generates three other system support functions: anextent
function, a validation function, and amaterialization func-
tion. The calculus generator analyses the query and, if the
query is specified over DTs, inserts the functions and pred-
icates needed to provide the required semantics. Later in
this section, we will present how these transformations are
performed for different classes of queries over DTs whose
definitions contain asubtype ofclause. First, an overview
of the implementation of the subtyping from types in other
AMOS mediators is presented.

4.1 Subtyping from Other Mediators

The subtypes that inherit from other AMOS systems
make the basis for the mediation process. In Figure 2, an
example was presented in which the typeSportyEmp in
theEmployeedatabase inherits from the typePersonin the
Sportdatabase. The type hierarchy shown in Figure 2 is
the user’s view of the definition of the DTs in the exam-
ple. In the implementation, for each distinct imported type
(distinguished by the type name and the database name) a
proxy type is created. All proxy types are subtypes of the
typeProxyin the type hierarchy. Figure 4 illustrates this for

the definition of the DTSportyEmptype in the example in
Figure 2. The typeP Personis a proxy for the typePerson
from the sport database.

EMPLOYEE_DB

inherit from person@sport_db
other derived types which

other proxies

SPORT_BONUSSporty_Emp

Proxy

P_Person

Figure 4. Placing the proxy types in the type

hierarchy

After defining the proxy type, the system retrieves the
functions over the imported type from the exporting media-
tor. For each function whose argument and result domains
are system-defined types or types already represented by
proxy types, the system defines aproxy function. The pur-
pose of the proxy function is to provide information for lo-
cal type checking of the queries calling functions defined in
the other mediators.

Although the proxy functions and the proxy type ex-
tent functions are treated the same as the ordinary functions
throughout the calculus oriented query processing steps de-
scribed in this paper, they are not actually executed as the
ordinary functions. The decomposition algorithm assem-
bles them in groups and schedules them to be executed in
other AMOS mediators.2

Over each proxy type, a system-defined stored function
is generated that maps instances of the proxy type (i. e.
proxy objects) to instances of typeforeign oid. This system
type is used to represent the OIDs received from the other
AMOS mediators when portions of query plans are evalu-
ated there. Among the mediators, OIDs are transmitted and
stored in their native format. The OIDs generated by an
AMOS mediator are unique within the mediator itself. The
system makes no effort to generate “universal OIDs” unique
in all mediators present in the integration environment, like,
for example, in the CORBA architecture [9]. In a CORBA
environment, OIDs represent services and are designed to

2In one pilot implementation, these functions were implemented to per-
form RPC-like shipping of the operands and function execution in other
databases; in this case the calculus representation was directly translated
to correct, but very inefficient execution plan.

be transmitted alone. Therefore each OID contains all the
information needed to identify its origin. In a bulk data pro-
cessing environment, as the one described in this work, the
OIDs are passed in larger collections having few different
types and a common origin. Consequently, it is advanta-
geous to condense the meta-information about the structure
(types) and the origin of the transmitted OIDs with a trans-
mission protocol. When a mediator receives OIDs from an-
other mediator it stores them in their native format, while
the meta-information is captured in the mediator’s schema
and the functions generated from the DT definitions. As the
result of this kind of architecture, imported OIDs are stored
in a mediator, but they cannot be interpreted there. The user
does not have access to the imported OIDs, but only to the
proxy (type) instances. The system uses the imported OIDs
only in operations executed in the mediator where they orig-
inate from. The major benefits from this approach are a sim-
ple OID generation method, lower communication cost and
lower storage overhead due to a smaller literal representa-
tion of the OIDs.

4.2 DT Extent Function and Template

The extent function of each DT is a system-generated
derived function. The general form of the extent function
is:

CREATE FUNCTION dt_name() -> dt_name AS
SELECT MAT(s1, s2, ... sn)
FROM sut1 s1 , sut2 s2, ... ,sutn sn
WHERE compose_expression AND

validate_expression

where dt name is the name of the DT,sut1 : : : sutn
are the supertypes from thesupertype ofclause, and
MAT<sut1;sut2;:::sutn>!dt name is the materialization
function for the DTdt name. Composeexpressionandval-
idate expressionare copied from the DT definition. The
function returns materialized instances of the newly created
DT. As noted earlier the system tries to reduce the mate-
rialization of the DT instances whenever possible. There-
fore, when processing the queries where no materialization
is needed, instead of a complete extent function, anextent
template(ET) is used. For each DT, the system generates
an ET from the calculus representation of the extent func-
tion. It has a signature and a body. The signature contains
a name, a list ofsubstitute variables(SVs) and list of types
associated with the SVs. The SVs are the variables used
as arguments of the materialization predicate in the extent
function (s1 : : : sn in the general form of the extent func-
tion above). There is one SV for each supertype of the DT.
The body is a predicate template consisting of the extent
function body with the materialization predicate removed.

The following example shows the ETs for the DTs
SportyEmpandJuniorandEmpin Figure 2:

signature:
Textent sporty emp<P Person;emp> : px; e

body:
px = Textent p person<foreign OID> ^
e = Textent emp<person;payrec> ^
sssn = socsecp person!charstring(px) ^
essn = ssnperson!integer(e) ^
essn = adjust ssncharstring!integer(sssn)

signature:
Textent juniorsporty emp : se

body:
se = Textent sporty emp<p person;emp> ^
a1 = ageperson!integer(se) ^
26 > a1

signature:
Textent emp<person;payrec> : p; pr

body:
assn = ssnpayrec!integer(pr) ^
assn = ssnperson!integer(p) ^
0working0 = statusperson!charstring(p)

By convention, ET names begin with theTextent prefix.
The SV types are in the subscript of the template name,
while the SVs are listed after the colon. An expression with
a variable as a left-hand side and an ET as a right-hand side
is namedET declaration. An ET declaration is inserted in
the query for each variable declared with a DT. It asserts
a type of a DT variable, analogous to the extent function
of an ordinary type. When a DT is defined by subtyping
from other DTs, its ET body can contain nested ET declara-
tions, as is the case with the ETsTextent sporty emp and
Textent junior in the example above.

An ET body contains predicates to assert that a combi-
nation of instances of the supertypes compose an instance
of the DT. However, an ET cannot be evaluated as an extent
function, and is used only during the calculus generation
phase. In this phase, the incomplete calculus expression
containing ET declarations is transformed to a complete cal-
culus expression by a series of transformations performed
until there are no more ET declarations. In a such trans-
formation, an ET declaration is removed from the query if
the declared variable can be typechecked by being used as a
function argument of the same DT as the declared DT of the
variable. Otherwise, anET expansionis performed. During
an ET expansion, first the ET declaration is substituted by
the ET body. Then, each occurrence of the variable declared
by this ET declaration as a function argument is substituted
in the rest of the query by a SV in the ET signature having
the same type or a supertype of the argument’s type. This
rule also applies when a variable is used to represent a result
of a function. An ET expansion transforms a query over a

DT into a query over its supertypes, avoiding materializa-
tion and run-time coercion.

The ET expansion process will be illustrated using an
example query over the schema in Figure 2. The correct-
ness and the termination of the the procedure can be proved
based on the directed and acyclic properties of the inheri-
tance hierarchy. Due to space limitations, this proof is not
presented in this paper. In the following example, the query
is first translated to an initial incomplete calculus expression
given following the query:

select age(j), salary(j)
from Junior j
where hobby(j)=’golf’;

f sal; a j
j = Textent juniorSporty Emp ^
sal = salarypayrec!integer(j) ^
a = ageperson!integer(j) ^
0golf 0 = hobbyP Person!charstring(j)g

The ET declaration of the variablej is not removed because
j is not used as argument or result of typeJunior in any
of the query functions. Next, the ET is expanded and all
occurrences ofj in the query body are substituted by the
template variablese3. The expression produced by this
expansion (the first below) contains an ET declaration with
the ETTextent sporty emp. Analogous to the case with
thej variable, this ET is also expanded yielding the second
expression below:

f sal; a j
se = Textent sporty emp<P Person;emp> ^
a1 = ageperson!integer(se) ^
26 > a1 ^
sal = salarypayrec!integer(se) ^
a = ageperson!integer(se) ^
0golf 0 = hobbyP Person!charstring(se)g

f sal; a j
px = P Personnil!P Person() ^
e = Textent emp<person;payrec> ^
essn = ssnperson!integer(e) ^
sssn = socsecP Person!charstring(px) ^
essn = adjust ssncharstring!integer(sssn) ^
a1 = ageperson!integer(e) ^
26 > a1 ^
sal = salarypayrec!integer(e) ^
a = ageperson!integer(e) ^
0golf 0 = hobbyP Person!charstring(px)g

3The expansion mechanism actually generates unique names for the
template and the local variables each time a function or an ET is expanded.

In the salary and age functions, the variablese is
substituted by the SVe that corresponds to the type
Emp through which these functions are inherited in
Sporty Emp (the type of se). On the other hand, in the
hobby function, se is substituted by the variablepx since
this function is inherited through theP Person type.

Finally, the ET declaration of the the variablee is ex-
panded. After this expansion the query expression does not
contain ET declarations:

f sal; a j
px = P Personnil!P Person() ^ (*)
sssn = socsecP Person!charstring(px) ^ (*)
essn = adjust ssncharstring!integer(sssn) ^
essn = ssnperson!integer(p) ^ (2)
a1 = ageperson!integer(p) ^ (1)
26 > a1 ^
assn = ssnperson!integer(p) ^ (2)
assn = ssnpayrec!integer(pr) ^
0working0 = statusperson!charstring(p) ^
sal = salarypayrec!integer(pr) ^
a = ageperson!integer(p) ^ (1)
0golf 0 = hobbyP Person!charstring(px)g (*)

The first nine predicates are result of the ET declaration ex-
pansions described above. The last three predicates origi-
nate in the original query.

The calculus optimizer further reduces the example ex-
pression by unifying pair-wise the predicates indicated by
the same number on the far right (the re-write rule is de-
scribed in [5]). In case (1) there is an overlap between the
user-specified query predicates and the DTJunior valida-
tion expression. In case (2) the overlap is between the defi-
nitions of the DTsSportyEmpandEmp. The query calcu-
lus expression after the calculus optimization contains six
system-inserted predicates. The result of the query opti-
mization is then processed by the query decomposition al-
gorithm which, in this example, combines the three pred-
icates marked by (*) for execution in the sport database.
There, the local optimizer will furthermore remove the type-
check predicate (the first query predicate). The only data
transferred between the AMOS mediators will be the hob-
bies and the social security numbers of the relevant persons.
This is clearly advantageous over a naive instance level pro-
cessing in which for each instance a request is issued to get
the values of requested data over the network

The transformations of the extent templates shown above
reduce the need for run-time coercing. In the cases as in the
example above where no function was evaluated over mate-
rialized DT instances, no coercion predicates are needed in
the query.

4.3 Validation and Coercion of Material-
ized DT Instances

The previous example illustrated a query transformation
where no function application needed materialized DT in-
stances as arguments. The following example extends the
query from the previous example with such a function ap-
plication, by adding a query condition over thesport bonus
function defined in the DTSportyEmp (the underlined
predicate):

select age(j), salary(j)
from Junior j
where hobby(j)=’golf’ and

sportbonus(j)> 100;

f sal; a j
j = Textent juniorSporty Emp ^
b = sport bonussporty emp!integer(j) ^ b > 100^

a = ageperson!integer(j) ^
sal = salarypayrec!integer(j) ^
0golf 0 = hobbyP Person!charstring(j)g

As in the previous example, first a reference toTex-
tent junior is inserted and expanded. The resulting query
contains an ET declaration of the variablese with the
ET Textentsporty emp. Also, the variablej is substi-
tuted by the variablese throughout the query. At this
point, since the variablese is used as an argument of
the functionsport bonussporty emp!integer , the ETTex-
tent sporty empis not expanded, but instead removed. The
variable se in this case iterates only over the already mate-
rialized portion of the extent ofSporty Emp.

To produce a correct expression, the query expression
resulting from the previous transformation needs to be ex-
tended with predicates to perform the coercion and valida-
tion of the materializedSporty Emp instances. The re-
quired result can be described as:
f sal; a j
b = sport bonussporty emp!integer(se) ^
b > 100 ^
validate se ^ (1)
coerce se to p of person^ (2)
a = ageperson!integer(p) ^
a1 = ageperson!integer(p) ^ 25 < a1
coerce se to pr of payrec^ (3)
sal = salarypayrec!integer(pr) ^
coerce se to px of PPerson^ (4)
0golf 0 = hobbyP Person!charstring(px)g

The lines in bold font give abstract descriptions of the oper-
ations that the system needs to add to the query. The num-
bers on the far right are added for reference purposes. The

predicates containing thea1 variable are inserted when the
ET of the typeJunior is expanded.

The validation function assures that the corresponding
instances of the supertypes are still present and valid in
the data sources, and that the validation condition evalu-
ated over this instances still holds. The general form of the
validation function is:

CREATE FUNCTION validate_DT(DT obj)
-> boolean AS

SELECT TRUE
FROM st1 st1_obj, st2 st2_obj, ...
WHERE st1_obj = coerce(obj) AND

validate_st1(st1_obj) AND
st2_obj = coerce(obj) AND
validate_st2(st2_obj) AND ...
validate_predicate;

The function coerces the argument to each of the corre-
sponding supertype instances, validates these instances, and
then evaluates the validation condition. For example, the
validation function for the DTEmp in Figure 2 is as fol-
lows:

CREATE FUNCTION validate_emp(emp obj)
-> boolean

SELECT TRUE
FROM Person person_obj
WHERE person_obj = coerce(obj) AND

status(person_obj) = ’working’;

The validation function of the proxy type instances per-
forms a typecheck of the associatedforeign OID in-
stances in the database they originate from. Therefore, the
validate function contains a single proxy type typecheck
predicate.

At this point we turn the attention back to the example
from the beginning of this subsection. The system-inserted
tasks described in the example require the following 10
predicates:
e = coercesporty emp!emp(se) ^ (1)
p = coerceemp!person(e) ^
0working0 = statusperson!charstring(p) ^
pi0 = coercesporty emp!P Person(se) ^
pi0 = P Personnil!P Person() ^
e1 = coercesporty emp!emp(se) ^ (2)
p = coerceemp!person(e1) ^
e2 = coercesporty emp!emp(se) ^ (3)
pr = coerceemp!payrec(e2) ^
px = coercesporty emp!P Person(se) (4)

The numbers on the left match the predicate groups with the
corresponding task in the previous description of the query.
After inserting these predicates in the query the optimizer,
by variable unification and typecheck removal, reduces the
number of system inserted predicates from ten to six. In ad-
dition to this, the query optimizer removes one of the predi-
cates referencing theage function. The resulting query after

the query optimization is:
f sal; a; b j
b = sport bonussporty emp!integer(se) ^
b > 100 ^
e = coercesporty emp!emp(se)^
p = coerceemp!person(e) ^ ^
0working0 = statusperson!charstring(p) ^
a = ageperson!integer(p) ^ 25 < a ^
pr = coerceemp!payrec(e) ^
sal = salarypayrec!integer(pr) ^
px = coercesporty emp!P Person(se) ^
0golf 0 = hobbyP Person!charstring(px)g

The only predicate not executed locally is the typecheck
of the proxy objects of typeP Person. This predicate makes
sure that objects for which proxy objects are created locally
are still present in the sport database.

4.4 Materialization

The preceding examples demonstrated calculus genera-
tion and optimization for cases when no materialization was
needed. This section briefly describes how the instances of
the DTs are materialized.

DT instances are materialized if they are part of the query
result or are used as an argument to a foreign function. Ma-
terialization of DT instances is performed by a materializa-
tion function, implemented as a foreign function. It takes as
arguments instances of the DT supertypes and returns a new
materialized DT instance. In the case when for the given
arguments there is already a materialized DT instance, it
is returned without creating a new one. The materializa-
tion functions are defined by the system as resolvents of the
generic functionMAT.

When instances represented by a DT variable are to be
materialized, instead of extent templates for that variable,
the whole extent function is inserted and expanded. The
following example illustrates this process. The query in
the example below materializes an instance of the DTMan-
ager. The expanded object calculus generated for this query
(shown following the query) contains two materialization
predicates.

select m
from manager m
where name(m) = ’John’

f m j
s = ssnperson!integer(p) ^
s = ssnpayrec!integer(pr) ^
0John0 = nameperson!charstring(p) ^
0mng0 = positionpayrc!charstring(pr) ^
e = MAT<person;payrec>!emp(p; pr) ^
m = MATemp!manager(e) g

5. Related Work

The work presented in this paper is related to research
in the areas of OO views and database integration. This
section references and briefly compares some representa-
tive examples in these areas with the work described in this
paper.

The Multiview [15] OO view system provides multiple
inheritance and a capacity-augmented view mechanism im-
plemented with a technique called Object Slicing [13] that
uses OID coercing in an inheritance hierarchy. However, it
assumes active view maintenance and does not elaborate on
the consequences of using this technique for integration of
data in dislocated repositories. Furthermore, it does not use
predicate-based implementation as described in this work.
Other related OO view systems are described in [16] and
[1].

The Remote-Exchange project at University of Southern
California [6] uses a CDM similar to the one used in our
work to establish a framework for instance and behavior
sharing. However, it always uses late binding to choose
between local and remote implementations of a function
which is then called by an RPC for every single instance.

There are few research reports describing use of views
mechanisms for data integration. The Multibase system [2]
is also based on a derivative of the DAPLEX data model and
uses function transformations for queries in a scenario sim-
ilar to the supertyping scenario in this paper. Although this
scenario was not the focus of the paper, some differences in
the approaches can be identified. The data model used in
Multibase does not contain the concept of OIDs. Further-
more, no materialization is used, which makes the coercion
and validation techniques presented here not applicable.

The UNISQL [12, 11] system also provides views for
database integration. The virtual classes (corresponding to
the DTs) are organized in a separate class hierarchy. The
virtual class instances inherit the OIDs from the correspond-
ing instances in the ordinary classes, which does not allow
definition of stored functions over virtual classes defined by
multiple inheritance. There is no corresponding supertype
integration mechanism, but rather a set of queries can be
used to specify a virtual class as an union of other classes.
This imposes relationships among the classes not included
in the class hierarchy, resulting into two types of dependen-
cies among the virtual classes.

6. Summary and Future Work

In this paper, we presented an overview of the design and
the implementation of a passive mediation framework based

on OO views in the AMOS system. The passive approach
preserves the autonomy of the data sources and is suitable
for mediation in environments with non-active, large vol-
ume data sources or data sources with high update frequen-
cies.

The OO views mechanism is integrated in the AMOS
inheritance mechanism by introducing derived types (DTs).
The DTs are placed in the same type hierarchy along with
the ordinary types. The instances of the DTs are derived
from the instances of their super- or subtypes by declarative
conditions specified in the DT definition. DT instances can
be materialized (assigned OIDs), which allows the user to
have locally stored data associated with them.

Queries over DTs are expanded by system-inserted pred-
icates that perform the DT system support tasks needed
to provide correct query results. The DTs system support
is divided in three mechanisms: (i) providing consistency
of queries over DTs; (ii) materialization of DT instances;
and (iii) validation of the materialized DT instances. The
system generates templates and functions which perform
these tasks. During the calculus generation phase, the
query is analyzed, and where needed, the appropriate func-
tions/templates are inserted. The final calculus represen-
tation is generated by a series of transformations aimed to
produce a correct and efficient query calculus expression. In
these transformations, query consistency is achieved by ex-
tent template expansions and removals, and by coercion for
the materialized DT instances; materialization is performed
by including materialization predicates for selected query
variables; DT instance validation is performed by insert-
ing and expanding the validation function. The separation
of the validation from extent generation (instance composi-
tion) gives smaller validation functions. The separation of
the materialization from the extent generation allows selec-
tive materialization where only portions of the DTs extents
are materialized.

The predicate expressions specifying the view support
tasks describe relationships of the DTs in the type hierar-
chy and often have overlapping parts. The paper demon-
strates how calculus-based query optimization can be used
to remove redundant predicates introduced from the over-
lap among the system-inserted predicate expressions, and
between the system-inserted and user-specified parts of the
query. The calculus-based transformations and optimiza-
tions do not require cost function calculation and search
space transitions which makes them simple to implement
and inexpensive to perform.

The conclusion from this research is twofold. First, al-
though the object orientation allows for mediation in which
the functions are evaluated by some remote method invo-
cation protocol, this is, from performance reason, unac-
ceptable. There is an apparent need for a bulk-processing
based query processor as the ones used in the relational

databases. Second, the multidatabase environment requires
even greater optimization effort to achieve predictive per-
formance for a wide range of queries. This reflects on the
system architecture which has to be suitable for application
of extensive optimization techniques.

Our current research shows that the concepts presented
in this paper for the derived subtypes can be extended to
DTs defined as explicit supertypes. The derived supertypes
have the same basic functions, but they are implemented in
a different way. For example, for the explicit supertypes,
the coercion functions do key mappings and possible mate-
rialization, while the extent function are implemented over
functions of the subtypes.

References

[1] E. Bertino: A View Mechanism for Object-Oriented
Databases. InProc. 3rd Intl. Conference on Extend-
ing Database Technology (EDBT’92), Vienna, Aus-
tria, 1992.

[2] U. Dayal, H. Hwang: View Definition and Generaliza-
tion for Database Integration in a Multidatabase Sys-
tem, In IEEE Trans. on Software Eng.Vol SE-10, No
6., (IEEE), November 1984.

[3] W. Du and M. Shan: Query Processing in Pega-
sus, In Object-Oriented Multidatabase Systems, O.
Bukhres, A. Elmagarmid (eds.), Pretince Hall, Engle-
wood Cliffs, NJ, 1996.

[4] G. Fahl, T. Risch, M. Sk¨old: AMOS - An Archi-
tecture for Active Mediators. InProc. Workshop on
Next Generation Information Technologies and Sys-
tems (NGITS’93), Haifa, Israel, June 1993.

[5] G. Fahl, T. Risch: Query Processing over Object
Views of Relational Data. To be published inVLDB
Journal, November 1997.

[6] D. Fang, S. Ghandeharizadeh, D. McLeod and A.
Si: The Design, Implementation, and Evaluation of
an Object-Based Sharing Mechanism for Federated
Database System. InThe 9th International Conference
on Data Engineering (ICDE’93), (IEEE), Viena, Aus-
tria, April 1993.

[7] S. Flodin, T. Risch: Processing Object-Oriented
Queries with Invertible Late Bound Functions, In
Proc. of the 1995 Conf. on Very Large Databases
(VLDB’95), Zurich, Switzerland, 1995

[8] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio
and Y. Zhuge: The Stanford Data Warehousing
Project, IEEE Data Engineering, 18(2), pp. 40-48,
June 1995.

[9] Object Management Group: The Common Object Re-
quest Broker: Architecture and Specification, Object
Request Broker Task Force, 1993.

[10] J. Karlsson, S. Flodin, K. Orsborn, T. Risch, M. Sk¨old
and M. Werner: AMOS User’s Guide, available at
http://www.ida.liu.se/�edslab.

[11] W. Kelley, S. Gala, W. Kim, T. Reyes, B. Gra-
ham: Schema Architecture of the UNISQL/M Multi-
database System, InModern Database Systems - The
Object Model, Interoperability, and Beyond, W. Kim
(ed.), ACM Press/ Addison-Wesley Publishing Com-
pany, New York, NY, 1995.

[12] W. Kim and W. Kelley: On View Support in Object-
Oriented Database Systems, InModern Database Sys-
tems - The Object Model, Interoperability, and Be-
yond, W. Kim (ed.), ACM Press/ Addison-Wesley
Publishing Company, New York, NY, 1995.

[13] H. Kuno, Y. Ra and E. Rundensteiner: The Object-
Slicing Technique: A Flexible Object Representation
and Its Evaluation, University of Michigan Technical
Report CSE-TR-241-95, 1995.

[14] W. Litwin, T. Risch: Main Memory Oriented Opti-
mization of OO Queries using Typed Datalog with
Foreign Predicates. InIEEE Transactions on Knowl-
edge and Data Engineering4(6), pp. 517-528, 1992

[15] E. Rundensteiner, H. Kuno, Y. Ra, V. Crestana-Taube,
M. Jones and P. Marron The MultiView project:
object-oriented view technology and applications, In
Proc. of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’96), ACM SIG-
MOD Record, Vol. 25, 2, pp. 555-563, ACM Press,
June 1996.

[16] C. Santos: Design and Implementation of an Object-
Oriented View Mechanism, GOODSTEP ESPRIT-III
Tecnical Report, ESPRIT-III Project No. 6115

[17] D. Shipman: The Functional Data Model and the Data
Language DAPLEX. ACM Transactions on Database
Systems Vol 6 No. 1, (ACM), 1981.

[18] D. Straube, M.Özsu: Query Optimization and Exe-
cution Plan Generation in Object-Oriented Database
Systems.IEEE Transactions on Knowledge and Data
EngineeringVol 7, No. 2, pp 210-227 (IEEE), 1995.

[19] G Wiederhold: Mediators in the Architecture of Fu-
ture Information Systems,IEEE Computer, (IEEE),
March 1992.

