
A FUNCTIONAL APPROACH TO
INTEGRATING DATABASE AND EXPERT
SYSTEMS

A new system architecture shares certain characteristics with database
systems, expert systems, functional programming languages, and spreadsheet
systems, but is very different from alzy of these.

TOREI RISCH, RENi REBOH, PETER HART, and RICHARD DUDA

Advances in computing sometimes flow from the recog-
nition of fundamental similarities among disparate the-
ories or system architectures. Once recognized. these
similarities can be exploited to design a new architec-
ture that combines selected aspects of its predecessors.
opens new areas of applications. and may even lead to
new insights into underlying theories.

A new system architecture, called an active fu~~tio~~al
system. shares certain characteristics with database
systems, expert systems, functional programming lan-
guages, and spreadsheet systems. but is very different
from any of these. It is based on a uniform-one might
even say rigid-use of side effect-free functions that
represent facts and knowledge in a nonprocedural pro-
gramrning system. Database objects are represented by
arbitrary extensional functions, i.e., tables, while do-
main knowledge is represented by side effect-free in-
tensional functions composed from a suitable library.
Both default and inexact information are accommo-
dated by treating values of database objects as random
variables with associated probability distributions. The
uniformity that results from functional representations
leads to a corresponding uniformity in database and
knowledge-base operations. We call the system “active”
because it is data driven: more specifically, changes in
the distributions of the factual input data are propa-
gated through the knowledge base to update the distri-
butions of the derived output data. These concepts are
embodied in the SynteP programming system [23],
which. has been fully implemented and in commercial
use since mid-1986.

DATA-INTENSIVE AND KNOWLEDGE-INTENSIVE
PROBLEMS

Database and Expert Systems
In recent years the complementary nature of database
and knowledge-base applications has been recognized.
Database applications typically involve a relatively
small number of relations or files holding a large num-
ber of records: relatively simple representational struc-
tures are used to store voluminous amounts of data. By
contrast, expert systems usually involve a large number
of relations (or rules, frames, etc.). each holding a small
amount of judgmental knowledge: complex representa-
tional structures are used to store moderate amounts of
data.

Inference styles and methods are also complemen-
tary. Database inference is usually restricted to either
precise boolean combinations of modest complexity or
simple numerical comparisons. Expert systems often
employ complicated reasoning procedures, frequently
involving incomplete or uncertain numerical and sym-
bolic data. In addition, the factors that are relevant and
the sequence in which they are considered usually var-
ies greatly from run to run.

The complementarity of database and expert systems
has led to considerable interest in architectures that
combine the two [5, 17, 341. The most straightforward
synthesis is to create a loosely coupled system in which
the database module acts as a server for the expert
system module [l, 201. This architecture allows refer-
ence data to be freely accessed by the expert system
module while the database system acts as a (case server.
However, some important families of applice.tions place
equal demands on expert system and database system

1424 Communications of the ACM December 1988 Volume 31 Number 12

facilities, rendering a loosely coupled design inappro-
priate. Instead, a tightly coupled, unified approach
would be more desirable. The following example illus-
trates this approach.

A Financial Application
Many financial applications call for a combination of
database and expert systems methods. An example
from banking involves evaluating the credit risk of a
firm that wishes to borrow money. A banker engaged in
this task-and therefore a system that provides deci-
sion support to the banker-will need to deal with a
number of issues that are common to most financial
applications.

First, both quantitative and qualitative data must be
analyzed to assess the firm’s ability to repay a loan.
Some of this data. like financial statements, occurs nat-
urallv in tabular form. but other data. like information
relating to quality of management or competitive posi-
tion. is not so regularly structured. The amount of tabu-
lar data typically varies from several hundred case-
specific items to several hundred thousand reference-
data items. Case-specific. non-tabular data is com-
parable in size to case-specific tabular data. Taken to-
gether. the amount of data accessed bv a single user is
likely to be large enough to require a significant data
management facility.

Bankers operate in a lvorld of business and financial
forms. so it seems obvious that the user interface of the
system should emulate this familiar milieu. A banker
using the system will insist on retaining the initiative
in any interactive dialog, as spreadsheet systems allow:
the sequential “question-and-answer” mode character-
istic of goal-directed expert systems is unlikely to be
acceptable. We can also anticipate a need to support
repeated “what-if” explorations, and be able to restore
the system to the state it was in before the what-ifs
were performed. Finally, the banker is a professional
who expects to use the system as a tool: among other
things, this implies that the end user must be able to
override any system-generated output without intro-
ducing logical inconsistencies.

Assuming we have satisfied the requirements for
dealing with considerable amounts of case-specific and
reference data, and have provided the user with a fa-
miliar and usable interface, we still need to support the
style of reasoning appropriate to this application do-
main. It is clear at the outset that quantitative and
qualitative reasoning are tightly integrated; in other
words, there is no obvious, clean partition between “the
numbers side” and “the subjective side” of the task.
Typically, the analysis proceeds in response to the par-
ticular situation and does not follow any fixed se-
quence. Understanding how various elements of an
analysis are related is more important than knowing
optimal analysis sequence.’ Finally, credit assessmer

December 1988 Volume 31 Number 12

n

<et
ar-
”

Articles

is inherently imprecise. Notwithstanding the substan-
tial amount of information that bankers receive about a
borrower, there inevitably are gaps, leading to the need
for inexact reasoning.

A UNIFYING DESIGN
Five design elements that unify the database and ex-
pert systems components need to be considered. First,
we need to design to the data model for both case-
specific and reference data. Second, we need to define a
set of primitive operations over the data objects that are
sufficient to express domain knowledge. Third, we
need a means for expressing and reasoning about inex-
act data and knowledge. Fourth, we need a user inter-
face that replicates the world of business forms, and
that allows the user to retain the initiative. Fifth, we
need an interpreter (or in expert systems terms, an in-
ference engine) that governs the flow of control.

Before proceeding with details, we should at least
mention the general criteria we were seeking to satisfy.
We anticipated that we would be dealing with volumes
of data that are moderate by database standards but
large by expert system standards. Preliminary studies
also suggested that the required inferences would be
moderately complex by expert system standards and
very complex by database standards. We expected. and
later proved. that we would have to define relations
(whether by rules. functions, etc.) among several thou-
sand decision variables or factors. Our design choices
were made with these considerations in mind, keeping
an eye toward elegance. Specifically, we hoped that it
would be possible to design a tightly integrated inter-
face between the expert system and database compo-
nents; indeed, we hoped to eliminate the distinction
between these two components.

Extensional Functions
We use extensional functions or value tables to repre-
sent both changing, case-specific data and persistent
reference data. A value table contains any number of
columns with independent keys, and exactly one non-
key column. Accordingly, a value table can be regarded
as a relation with a single non-key column, From a
functional point of view, a value table holds an exten-
sional definition of a function. The name of that exten-
sional function is the name of the value table. For ex-
ample, Figure 1 gives the value table Revenue for
several different years and states; functionally, it shows
the extensional function Revenue [Year, Sta tel.
Depending on whether we are thinking of a value table
as a relation or as a function, we refer to Year and
State either as keys or as formal parameters. A single
row of the table is an instance, and the part of the row
containing just the parameter values is the parameter
instance. Thus, in Figure 1, the tuple

(1987 ‘AZ’ $10,000)

is an instance of Revenue and the tuple (1987 ’ AZ I)
is the corresponding parameter instance.

Actually, this description of value tables is slightly
oversimplified. The values stored in the non-key col-

Communications of the ACM 1425

Year State - Revenue

1986 u (-.A II $50,000

1987 II AZ I, $10,000

1987 ,I CA" $60,000

FIGURE 1. A Value Table with Keys Year and State,

and Value Revenue

umn need not be exact, but can be probability distribu-
tions, and a value table also includes additional infor-
mation, such as whether or not the value has been
overridden or footnoted; this information can be
thought of as being stored in additional non-key col-
umns. Basically, however, value tables are extensional
functi.ons.

Value tables are also typed, that is, both the keys and
the value must have a type, which can be a system-
defined type (such as String, PosNumber, or Do1
lar) or a knowledge-engineer-defined type. In addition
to protecting against programming errors, the type
system supports input/output by providing validity
checks, system-generated selection menus, and flexible
formatting.’

A parameter or a value can be the symbol NIL that
means that the instance exists, but that its value is
currently undefined. If a key in the value table is NIL,
the associated value is the default value which is used if
no exactly matching instance exists. When all the keys
are NIL the default value is called the prior value.
Figure 2 shows a value table containing undefined and
default values. The instance with the parameter in-
stance (1987 'AZ ‘) exists, but its value is undefined.
In 1986, for any state other than ‘CA’ the default value
is $1 ,000; for any year except 1986 and 1987, the
default value is $500 in ’ CA' and $0 [the prior value)
in all other states.

Year State Revenue

1986

1986
7987
I 987
NIL
NIL

$50,000

$ 1,000

NIL

$60,000

$ 500

$ 0

FIGURE 2. A Value Table Containing Undefined and
Default Values

Unlike standard database systems, Syntel allows the
programmer to specify default values of extensional
functions to avoid null values in database operations.
Syntel combines null values with complete or partial
default values, and dynamically maintains correct de-
fault values for derived value tables. (See [ll] for a
proposal for the specification of static default values for
each relational column.)

‘The type system also includes an inheritance hierarchy not discussed in this
articlo

Value tables can store symbolic as well as numeric
data. A knowledge base serving an end user like our
banker may well require 1,000 or 2,000 value tables to
represent qualitative and quantitative information
about one case. Although some of the value tables con-
tain entered data describing a case, most hold derived
data that is maintained by the inference engine. These
tables constitute a personal copy of case-specific data
when the case is loaded, and are stored centrally when
the case is saved.

Intensional Functions and Equation Networks
Syntel uses a family of side effect-free prim:itive func-
tions as the single, uniform representation for opera-
tions on value tables. Mathematically, each primitive
function is an intensionally-defined mapping from one
or more value tables into a single value table.3 Pro-
grammatically, the value of a function depends solely
on the values of its arguments; furthermore, no primi-
tive function can directly determine the flow of control.
For these reasons, Syntel is a pure functional or appli-
cative language.

Primitive functions provide the basic means for com-
puting derived value tables-value tables not obtained
from the user or from other external sources. For ex-
ample, we might want to define a derived value table
for Income given value tables for Revenue and Cost:

Income[Year, State1

+ Difference(Revenue[Year, State],

Cost[Year, State]). (1)

This equation is not an assignment statement, but is
strictly definitional. It expresses the extensional func-
tion Income as anintensional function Difference
of the two extensional functions Revenue a-nd Cost.
It also implies a direction of dataflow. In particular,
whenever the value of an instance of either :?evenue
or Cost changes, this equation calls for a change in the
value of the corresponding instance of Income. Were
an instance of Income to be changed in some other
way (through a user override, for example), no changes
would be made to corresponding instances of Revenue
or Cost.4

Since Syntel functions are referentially transparent,
they can be composed to arbitrary depth. We might, for
example, wish to define NetIncome as Income less
Overhead:

3Since Syntel employs both extensionally and lntensionally defined func-
terns. there 1s considerable opportunity for confusion. We use the term ~aluv
fable for the former and shorten the latter to functm We consistentI!, use the
term fonrral paranrrrrr to refer to an argument of an extensional function-i.e..
value table--when we wish to emphasize the functional view: we use the
term key to refer to an argument of a value table to emphasize :he database
view: and we use the term argunr~~~l to refer to the argument of an intensional
function. It 1s important to bear m mmd. however. that the prmclpal objects
mathematically are functions

a In principle. constraint satisfaction techniques could be used to relax this
rather strong restrlctlon on dataflow direction [32/. Sytel employs probabilis-
tic mechanisms to accommodate uncertainty Th? combination of general
constrant analysis with uncertainty would greatly increase overall system
complexity and severely impact run-time efficiency.

1426 Communications of the ACM December 1988 Volume 31 Number 12

Articles

NetIncome[Year, State]

+- Difference(Income [Year, State] ,

Overhead (Year, State]), (2)

where Income is defined by (1). Syntel functions
may be self-referencing (i.e., recursive). For example,
Syntel can estimate the revenues for some year, given
the revenues of a previous year. Aside from this self-
referencing aspect, functional composition in Syntel
can be represented graphically as a directed acyclic
graph called an equation network. A node in an equation
network represents a single value table and the associ-
ated function that computes it. Arcs point to the associ-
ated function from its arguments. From a database
standpoint, an equation network is comparable to a da-
tabase schema. Figure 3 shows the simple net corre-
sponding to Equations (1) and (2) in which nodes corre-
spond to value tables and derived nodes (such as
NetIncome and Income) are intensional functions of
argument nodes. Names of the value tables are shown
above the names of the intensional functions.

a NetIncome

\ Difference J

Difference

FIGURE 3. A Simple Equation Network

Voting functions are widely used in Syntel knowl-
edge bases to compute assessments and dovetail
smoothly with IF-THEN functions which are typically
used to identify and select analytical sub-cases. In that
role they are far more compact than a comparable rule-
based representation would be, facilitating knowledge
base design and maintenance and leading to perspic-
uous machine-generated explanations of reasoning.

Intensional Functions and Judgmental Knowledge While Syntel voting functions are an important ex-
The Syntel system provides the knowledge engineer ample of why functional representations are a natural
with 65 primitive intensional functions. In addition to a choice for solving a broad class of estimation problems,
variety of numerical, logical and string-manipulation they are not the only such example. More generally,
functions, there are special families of functions for functional representations support a rich family of
transforming and aggregating value tables and repre- methods that allow knowledge engineers to combine
senting expert judgement. Here we discuss a central not only predicates-as is often done in rule-based

problem in expert systems, the representation of judg-
mental knowledge.

Representing Judgmental Knowledge
Developers of expert systems draw a distinction be-
tween classification (or diagnosis) problems and assess-
ment (or estimation) problems. “Classification” empha-
sizes selecting an entity from among a finite number of
alternatives. On the other hand, assessment emphasizes
assigning a value on some continuum to a variable. The
IF-THEN production rule, first used in expert systems
in Mycin [27], continues to be the most widely used
means for representing judgmental classification
knowledge, and Syntel provides a primitive intensional
function of equivalent expressiveness.

Unfortunately, IF-THEN rules are poorly suited to
expressing the judgmental assessments that are a criti-
cal part of financial expertise because the IF-clause
cannot combine sub-assessments into an overall assess-
ment. Since each sub-assessment is by definition a
point on a continuum, many rules are required to spec-
ify the conclusions to be drawn under various combina-
tions of their values.

As a simplified example, the overall credit assess-
ment of a firm might depend upon individual assess-
ments of the financial strength of the firm, its market
strength, and its management strength. Financial ex-
perts are skilled at performing “apples-to-oranges” eval-
uations of this type and can describe how the individ-
ual factors are to be weighed. Therefore, a functional
representation that expresses relative weights, rather
than a rule-based one that emphasizes selection, is
clearly more natural and economical. Syntel provides a
primitive function that first maps sub-assessments into
a common continuum called votes and then sums them:

OverallAssessmenttVO +V,(Assessment,)

+ . . . fV,(Assessment.).

The voting functions V, are piecewise linear in form,
and are specified in detail by the knowledge engineer.
Summation presumes independence of individual as-
sessments. The special case in which the voting func-
tions are linear arises frequently in statistical inference
as linear regression.

December 1988 Volume 31 Number 12 Communications of the ACM 1427

Articles

representations-but also to combine arbitrary, non-
boolean variables. Rule-based systems, in contrast, lack
this intrinsic richness and typically rely on “procedural
escapes” to perform comparable operations. Such es-
capes complicate the introduction of uniform mecha-
nisms for dealing with inexact reasoning about non-
boolean quantities. As we show next, functional repre-
sentations are readily extended to provide this critical
capacity.

Inexact Reasoning
As already noted, applications like credit evaluation
introduce inexactness in two principal ways: missing
data and imperfect knowledge. To deal with the inex-
actness that results from missing data, we generalize
the value from the exact and default values already
mentioned to include probability distributions as well.
In addition, Syntel provides limited support for repre-
senting imperfect knowledge through special inten-
sional functions for manipulating probability distribu-
tions.

Year State 4 Revenue

1986 II CA 1,

1987 "AZ 11

1987 11 CA It

1983 "AZ 0

1988 “CA”

1988 “NY”

198i3 NIL

$50,000
$10,000

$60,000
$11,000

($55,000, $r,ooo)

NIL

($25,000, $3,000)

FIGURE 4. A Value Table that includes Inexact Data

For a simple illustration of how probability distribu-
tions can account for missing data, let us expand the
value table in Figure 1 to hold projected 1988 revenues
in addition to the recorded historical revenues. Suppose
that the system was used in 1987 to estimate projected
1988 revenues. Since projections are by nature uncer-
tain, we may wish to represent the projected revenues
by a mean and a standard deviation, as shown in Fig-
ure 4. The first number in a list is the mean and the
second the standard deviation of a probability distribu-
tion. This figure indicates that the projected 1988 reve-
nue for Arizona is exactly $11,000. For California, the
distribution of projected 1988 revenue has a mean of
$55,000 and a standard deviation of $1,000. For New
York, the value (or distribution) of 1988 revenue is un-
defined. Finally, for all states other than Arizona, Cali-
fornia, and New York, the default distribution of pro-
jected 1988 revenue has a mean of $25,000 and a
standard deviation of $3,000. This represents the prior
distribution of revenue for the year 1988.

The introduction of probability distributions consid-
erably complicates the notion of function evaluation.
Now the value of each instance of a derived value table
is a probability distribution that depends on the distri-
butions of the corresponding instances of its arguments.
In general, the computation of derived distributions
(often referred to as the propagation of probability dis-

tributions) cannot be computed from the separate dis-
tributions for the arguments without rarely-available
information about joint distributions. Even when this
information is available, the required computations are
often very costly. However, we can make the situation
tractable by making several simplifying assumptions.

Typically the arguments of the function are assumed
to be statistically independent. Thus, the joint probability
distribution is merely the product of the distributions
for the arguments. The situation can be further simpli-
fied if we agree that it is unnecessary to describe proba-
bility distributions completely. In Figure 4, the distribu-
tions over Revenue are specified only by their means
and standard deviations; in general, we represent distri-
butions over continuous values by these second-order
statistics. Distributions over discrete values are repre-
sented by the complete probability mass function.5

A fuller treatment of these issues is given in [13],
which includes a discussion of the statistical indepen-
dence assumption from a knowledge engineering view-
point. From the system viewpoint, these assumptions
and simplifications allow the system to compute the
distributions of the values in the derived value tables
from the distributions of the arguments. A different
method must be used for each of the 65 primitive func-
tions. For a primitive function like Plus, the method
for computing derived distributions is elementary. For
most other primitive functioni the methods are more
complex. The Equal predicate, for example, requires a
comparison of the “closeness” of two probability distri-
butions. In general, we have used the formal theory of
functions of random variables as a guide [24], imple-
menting exact solutions where feasible and approxi-
mate solutions otherwise. The level of difficulty often
encountered in these computations is the ch.ief obstacle
to allowing knowledge engineers to enlarge the set of
primitive functions.

The most important use of probability distributions is
to represent default knowledge. To return tcl Figure 4,
suppose we needed to know the 1988 revenue for
Texas. Given no further information, the bottom row
shows (by default) that the prior distribution has a
mean of $25,000 and a standard deviation of $3,000.
This distribution would be used until new information
becomes available, perhaps from an informed user or
possibly computed elsewhere in the equation network.

Semantics of Equations
Syntel equations always have the form LHS + RHS.
From the knowledge engineer’s viewpoint, these equa-
tions define how instances of a single value table on the
left-hand side are derived from instances of one or
more value tables on the right-hand side. However, the
system must also account for the possibility of values
being entered (or overridden) by the end-user, being

‘Discrete values frequently are used to represent assessments ,whose values
mightbe,e.g..anyof (Poor. Fair, Average. Good. ExcellentJ.The
small number of possible values makes using the complete distribution feasi-
ble.

1428 Commu.aications of the ACM December 1988 Volume 31 Number 12

Articles

defaulted to prior distributions, or being left undefined. x and Y. For example, suppose that we want to form
The system always computes the actual value of an thesumZ[I, J] + X[I] + Y[I, J],andthatthe
instance of an LHS value table as follows: following instances of x and Y are defined:

If user-entered-value # NIL
then user-entered-value

elseif RHS # NIL
then RHS

2-E .,:.
else prior-distribution

This defines the precedence of user-entered values, de-
rived values, and default values. In the remainder of
this section we focus on the derived values, without
forgetting that there are two other ways that a value
table can obtain its values.

Two things have to be considered when computing
the contents of a value table on the left-hand side of an
equation given a set of value tables on the right-hand
side:

Two instances of z are obvious: Z [7, a I = 14 +
3 = 17andZ[NIL, NIL] = -1 + 11 = lO.But
sometimes we know that I is 7 (and hence that
x = 14) when we don’t know J; since we have a de-
fault value for Y, we can also include the instance
ZL7, NIL] = 14 + 11 = 25.

Another way to consider this situation is to imagine

1. How is the value of each instance computed? As
discussed earlier, each primitive function has its own
method; e.g., PIUS adds the values of each instance.

2. What are the relevant instances of the LHS value
table? For most primitive functions (except a few
structure-transforming ones) it is determined by a new
kind of join, called the default join, of the value tables
on the RHS.

that x is actually parameterized by both I and J, but it
just happens that we never know a value for J. Then
both x and Y can be thought of as being identically
parameterized, with value tables as shown below:

The Default Join
Roughly speaking, the keys of an LHS value table are
the natural join of the keys of the RHS value tables,
while the values are determined by the particular
primitive function. However, as others have noted [ll],
the conventional natural join can lose data in certain
circumstances. Specifically, if the RHS value table con-
tains a key that is matched by no other RHS value-table
key, that instance will be lost. To overcome this prob-
lem, various kinds of “outer joins” that put null values
in non-matching columns of joined relations have been
proposed [lo, 111.

The default join performs a loss-free join over the
RHS value tables while, in contrast with outer joins,
maintaining the correct default values of the LHS table
given the default values of the RHS value tables. Its
semantics resembles a natural join with the equality
operator replaced by a match operator. To describe the
semantics we use functional language rather than rela-
tional database terminology, primarily because the
need for the default join arises from the requirements
of computing-derived value tables.

Suppose that x and Y are two value tables (exten-
sional functions), and let FPx and FP, be the sets of
formal parameters for x and Y, respectively. For exam-
ple,forx[I] andY[I, J] wehaveFP, = [I) and
FP, = (I, J 1. We always assume that these parame-
ters are free, i.e., that they can be assigned any value
that is present in their columns in the value tables.
Given a set of parameter instances of X and a set of
parameter instances of Y, we want to define a meaning-
ful set of parameter instances of an arbitrary function of

Instead of talking about knowing or not knowing
parameter values and using defaults, we can say that
the parameter-instance pattern (7 NIL) in X matches the
parameter instance (7 a) in Y to yield the parameter
instance (7 a) in Z; similarly, (7 NIL) matches
(NIL NIL) to yield (7 NIL); (NIL NIL) matches
(7 a) to again yield (7 a); and (NIL NIL) matches
(NIL NIL) to yield (NIL NIL). The set of parameter
instances of z is formed from these results.

This line of thought can be generalized and formal-
ized as follows. Let z be a combination of two exten-
sional functions x and Y, so that the set FPZ of the n
formal parameters for Z is the union of FPx and FP,.
Define the extension of x (denoted by !?) as the value
table formed from x by appending the parameters
unique to Y and using NIL for their parameter values.
Let the extension of Y be similarly defined, so that both
x and i! have n identical formal parameters. With no
loss in generality, assume that the corresponding pa-
rameters in x and y appear in the same column posi-
tions. Let PX be a parameter instance of !? and PU be a
parameter instance of ?, with

P, = (PC, . . . P?“)

and

p,= (PV, . . . PY”).

We treat NIL as a wild card in matching P, and PT. To
be specific, we say that P, matches PU if for every i
either (a) p?, = PY~, (b) PX, = NIL, or(c) pyl = NIL.

December 1988 Volume 31 Number 12 Communications of the ACM 1429

Articles

If’P, matches ~7, the resulting parameter instance
P, = (pzl . . . pz,) has

if ~2~ = pyl or PY, =NIL
if pX, =NIL.

The set of parameter instances for z is found by remov-
ing duplicates from the results of matching all of the
pairs (P, , ~7) of parameter instances from ? and y.

The duplicates that result from different ways to
match parameter instances of x and !? do not affect the
default join, but when we want to compute a value
for z we must select specific values from x and Y to
combine. In our example where both (7 NIL) and
(NIL NIL) in x match (7 a) in ? to yield (7 a], it is
clear that we want to use the value of x associated with
the more specific parameter instance (7 NIL) rather
than the complete default value associated with
(NIL NIL). In general, when more than one pair of
instances match, we want to combine the values associ-
ated with the most specific pair. If (PX, , ~7~) and
(P;, , P,J both match to yield the same P,, we say that
(PiI , ~7,) is more specific than (~2~ , Pr,) if there are
fewer NILS in the first match.”

The following examples illustrate the properties of
the default join. Consider first the equation

TotalIncome [Year]

+Difference(TotalRevenue[Yedrl ,

TotalCost[Year]). X Year - Y State - Z

Since we always include the prior instances, at any
given time, there will be one or more instances of
Total-Revenue and one or more instances of Total
Cost. The parameter instances of TotalIncome are
the default join of TotalRevenue and TotalCost.
The corresponding values come, of course, from differ-
encing the most specific instances of TotalRevenue
and TotalCost:

Year + TotalRevenue

Year - TotalCost

zi

Year + TotalIncome

Note that there are instances of TotalIncome for
1984, 1985 and 1986, although there is no 1984 instance
of TotalRevenue and no 1986 instance of Total -
Cost. Had there been no default value for Total -
Revenue,thevalue ofTotalIncome would have
been undefined (NIL) for 1984, but the instance would
still exist. Also, the combination of missing 2.986 data
and a prior distribution for TotalCost results in a
distribution for the 1986 instance of Total income;
this is typical of the way that prior distributions substi-
tute for missing data and introduce inexactness into
derived results.

In general, propagation occurs whenever a.n instance
is created, a value is modified, or an instance is deleted.
Thus, if the user were to create a 1987 instance of
TotalRevenue, the system would also create a 1987
instance of TotalIncome. Deleting the 1985 instance
of TotalRevenuewouldchangethevalue ofthe
instance of TotalIncome from $48,000 to --$12,000; if
the 1985 instance of TotalCost were also deleted, the
system would delete the 1985 instance of Total
Income. Accordingly, the number of rows of a value
table changes dynamically at run time. Note that all
value tables have at least one row, which holds the
prior value.

The second example illustrates the combination of
value tables that are differently parameterized:

W [Year, State]- Plus(X [I ,

Difference(Y[Year], Z/State])).

Year State - W
1984 'AZ' 2

1984 'CA' -3

1984 NIL 4

NIL 'AZ' 7

NIL 'CA' 2

NIL NIL 9

In general, the presence of multiple disjoint parame-
ters leads to the Cartesian product of the component
instances. While this example shows that the dimen-
sionality of the results can be increased, the (dimen-
sionality of a value table can also be reduced. For ex-
ample, if Revenue is parameterized by Year and
State, then Revenue [Year, ’ CA’] is parameter-
ized by Year only. Also, several intensional functions
such as Sum and Max aggregate over value tables to
produce results of lower dimensionality.

The User Interface
In the Syntel system, the user interface not only plays
the conventional role of handling communication with
the end user, but controls the process of computing
derived value tables as well. Syntel uses the business
form as its basic display metaphor. All user interface
actions involve display objects, which includfz primi-

1430 CommuGcations of the ACM December 1988 Volume 31 Number 12

Articles

tives values, text strings, forms, and groups of display
objects. The display objects and the links that connect
them to objects in the equation network are specified
by the knowledge engineer using a nonprocedural
forms language.’

Since the system is data driven, the end user is free
to go to any form, and to view, enter, modify or delete
any data items in it. However, this can be bewildering
when there are hundreds of possible forms, most of
which might be relevant only in particular situations.
To solve this problem, Syntel allows display objects to
be conditionally visible. The knowledge engineer can use
predicate nodes in the equation network to control the
visibility of a part of a form, an entire form, or an
arbitrary set of forms. By restricting the user to the set
of forms and display objects that are relevant, the sys-
tem provides much of the guidance and focus of a goal-
driven system while still providing data-driven opera-
tion.

The example business form shown in Figure 5 deals
with the business environment of a prospective bor-
rower. The end user can enter one or a sequence of

‘The details of this language. which roughly resembles document formatting
languages such as SCRIBE orT&Y. are beyond the scope of this article.

SCREEN FILE

values either through the keyboard or through choice
menus that appear when an active region is cursor-
selected. Outputs computed by the system can be dis-
played symbolically or graphically as shaded bars
called meters. Output meters for two inexact assess-
ments are shown in Figure 5. The position of the dark
bar indicates on the minus-to-plus scale the degree to
which the assessment is favorable. The width of the bar
indicates the uncertainty in the assessment and pro-
vides a graphical expression of the underlying probabil-
ity distribution.

The items shown in Figure 5 are particularly

straightforward because none of them is parameterized;

the corresponding value tables have only a single in-

stance, and it is not necessary to specify the instance to

be displayed. Figure 6 shows a form dealing with the

cash available to cover debt payments. The boxes on

this form are more typical, because most of them are

drawn from instances of parameterized value tables.

The parameters for the dollar amounts shown are

StatementType (ANNUAL),andDate (December-

1984). The values entered for these parameters deter-
mine which of the many existing instances will be dis-

INDEX COMMANDS FILE : ; ‘,,
“. _. . . EVALUATE

Screen overview: OF Business Environment

:
,’

Page 4

Industry: MANUFACTURING Asset size: lo-50MM

Industry group: FABRICATED METAL PRODUCTS

SIC category: HAND AND EDGE TOOLS, NOT OTHERWISE CLASSIFIED

SIC code 3423

Business type: NATIONAL

Industry stage:
Competitive structure:
Competitors trend:

Competitive environment

Industry cyclicality:
Product positioning:
Threat of substitutes:
Regulatory risk:

Industry risk

Industry net sales trend:

r MATURE I

I MONOPOLISTIC I

I STABLE 1

-I+

AVERAGE F

8.0%

03/26/1987 02:33 PM

FIGURE 5. An Example Form

December 1988 Volume 31 Number 12 Communications of the ACM 1431

Arficles

SCREEN
1:NDEX

)

Screen overview:

Statement type:
FY:

Memo/Stmt Date:

Cash a/op

Other income:

Net taxes paid

Net cash a/op

Interest:

Tot dividends

Net cash inc

Cur port LTD

Cash. a/amort

pTE--~
DECEMBER

Cash Coverage

FY end: DECEMBER

Page 17

1983

DECEMBER

1982

DECEMBER

1981

DECEMBER

1980

DECEMBER

1 $2.818 1

Funding debt service from internal operations

DS fund9 aaqcyl -mIun+w -uTIuIl+ 1

E3
II

DS funding adqcy

FIGURE 6. Display of Parameterized Value Tables

In general, the visual appearance of the form is speci-
fied by a layout description containing information
about the size and place of boxes and text. The behav-
ior of each box, and of the form itself, is determined by
bidirectional links to nodes in the equation network.
Each link connects a specific box on a form to a dy-
namic subset of instances of some value table deter-
mined by selectors; the connection is represented by
an extensional function expression. For example, in
Figure 6 the input box labelled “interest:” is linked
to the expression

Interest [SelectedStatementType,

SelectedFiscalYear].

The nodes used as arguments in a link, Selected
StatementType and SelectedFiscalYear, are
used to select the correct instance from the extensional
function Interest [Type, Year], and are therefore

called selectors. The boxes labelled “Statement -
type : ” and “FY : ” are linked to these selectors so
whenever the user enters a value for Interest:. the
system will assert the instance of the value table in -
terest currently selected by the two selectors; con-
versely, the value to be displayed in a box is equal to
the value of the linked functional expression.

Additional display information can be obtained by
linking to other nonprimary values of value tables. For
example, the user can request a clarification of box
contents. The clarification string, which can be static or
can be dynamically computed when requested, is an-
other non-key column in the value table, and is ac-
cessed using its associated link. The small “F” in Fig-
ure 5 alongside AVERAGE denotes a footnote, and is an
example of another class of displayable inform.ation
called annotations. Other possible annotations include
overrides (the user has directly entered a replacement
for a computed value) and alerts (the system has de-

1432 Communications of the ACM December 1988 Volume 31 Number 12

Articles

tected a condition specified by the knowledge engineer
to be anomalous). Annotation information is also held
in other non-key columns in the value table, and is
again accessed through links.

The design of the forms system leads to a clean sepa-
ration of a knowledge engineer’s two principal tasks:
representing and structuring domain knowledge, and
designing and encoding an appropriate user interface.
The technical apparatus of extensional and intensional
functions (i.e., the equation network) supports the first
task, while the forms system supports the second. The
flexible and uniform mechanism for linking these com-
ponents considerably simplifies the design and imple-
mentation of large knowledge bases.

INTEGRATION AND CONTROL

Control Issues
The principal objects in Syntel are functions and dis-
play objects. Accordingly, the principal control issues
are when to compute a function and when to refresh a
display object.

As we mentioned earlier, the Syntel run-time system
is basically data driven. It maintains consistency be-
tween variable values by recomputing derived values
in response to user-initiated changes in input values.
Most display objects are refreshed immediately after
the user has entered one or several input values and
relinquished control. As with all data-driven systems,
this can lead to serious efficiency problems. For large
equation networks containing thousands of value tables
with tens of thousands of instances, response times can
be unacceptably long.

Typically, only a few of the output display objects
will have new values when the user enters new data.
Therefore, we cache all computed values, whether dis-
play or not, and reevaluate only the ones that have
changed and thus need recaching. This reevaluation is
done incrementally and bottom-up. The result is a form
of program differentiation [Zl] that we call propagation.

It is interesting to compare propagation to the method
known as lazy evaluation [g], a demand driven, top-
down approach in which a minimal set of expressions
are evaluated each time an output value is requested.
By contrast, propagation is a data-driven, bottom-up ap-
proach in which computed values are saved between
evaluations and the system reevaluates and recaches
the differences that result from limited user updates of
input values.

Syntel, however, does not use propagation exclu-
sively. In particular, some display objects (such as dy-
namic explanation texts) are computed only when the
user explicitly requests them, in which case, the sys-
tem uses demand-driven, top-down evaluation. Each
function is analyzed at compile time to determine
whether or not it participates in demand-driven evalua-
tions only, and should not be evaluated bottom-up.

As important as they are, consistency and efficiency
are not the only considerations that shape the design of
the inference engine. The system has to be able to con-

trol the forms or parts of forms visible to the end user.
It should allow the user to override system-derived val-
ues, and later to remove any overrides as desired. It
should also be able to alert the user when important
situations are detected. Finally, it should support expla-
nations of how derived values are obtained.

The three principal techniques used to achieve effi-
cient operation-breadth-first propagation, incremental
calculation of the default join, and screen-limited prop-
agation-are used to minimize the recomputation done
in response to changes.

Breadth-first, Bottom-up Propagation
As we mentioned earlier, an equation network is a di-
rected, acyclic graph. From any input node, there are
usually many paths through the network that eventu-
ally terminate in one or more output nodes. For this
reason, direct breadth-first propagation will incur seri-
ous recomputation penalties. To avoid this recomputa-
tion, Syntel does a compile-time analysis of the equa-
tion network to create a partial ordering of nodes
according to their level number. At run time, this order-
ing is used to maintain a pending array P [L] whose Lth
element is the set of node instances at level number L
whose values have changed, but for which the effects
of those changes have yet to be propagated. Initially,
this array contains only the nodes changed by end-user
input. Each time a node is propagated, it is deleted from
P [L] and its successor nodes are added to P [L] if a
change in their values occurred; the propagation stops
if no change occurred. Starting with the largest level
number and working in descending order, the infer-
ence engine propagates nodes in P [L] until it is empty.
This results in propagation that proceeds upward level-
by-level in a breadth-first fashion. Incidentally, our de-
sign heavily favors efficient run-time performance at
the expense of compile-time analysis, just the reverse
of the design of typical interpreted spreadsheets. The
same compile-time analysis also supports the screen-
limited propagation technique described later.

Instance Propagation and the Incremental Default Join
Changing a single instance of one argument can pro-
duce multiple changes in the values of other instances.
For example, suppose

ZlI, Jl - PlUS(X[Il, Y[Jl)

and suppose the following instances exist:

I J-Z

December 1988 Volume 31 Number 12 Communications of the ACM 1433

Articles

COMPARING SYNTEL WITH OTHER SYSTEMS
The development of Syntel drew upon work in expert sys-
tems, database systems, spreadsheet programs and nonpro-
cedural programming languages. Perhaps the best way to
place it in perspective is to compare it with well-known sys-
tems in each of these areas.

Expert Systems
Among the better known data-driven expert system shells or
languages, Syntel is most closely related to Prospector/KAS
[12], OP.% [6] and Oncocin [28]. None of these systems has
integrated database primitives, and none employs pure func-
tional representation methods. Prospector’s inference net-
work resembles Syntel’s equation network. In particular, it
propagates distributions for propositional variables through
its inference networks (its relative, Hydro, propagates more
gener,al probability distributions [12]). The propagation algo-
rithms,, based on Bayes’ Rule and histogram techniques, are
substantially different, however.

OPS5 resembles Syntel primarily through being a general
data-driven language for expert systems, but it is based on
production rules, not functions. It differs in its recognize/act
architecture, high-level primitives, lack of support for inexact
reasoning, different run-time features, and lack of a user
interface definition facility.

Oncocin is really a medical expert system, rather than an
expert system shell or language, but many of its external
charac:teristics are similar to those of Syntel. In particular,
unlike its famous ancestor Mycin [27], Oncocin is data-driven
and uses a forms-oriented interface that allows end users to
enter information and to override results. However, it is im-
plemented as a rule-based rather than a functional system,
has diiferent ways of expressing inexactness by certainty
factors, and entirely different control mechanisms.

Progrsmming Languages
Viewed as a programming language, Syntel is a nonproce-
dural functional data-flow language [2, 251 that shares char-
acteristics of Lucid [33] and Lucas and Risch’s equation-
based system [19]. Those systems, however, are both
demand-driven (evaluated topdown), and thus cannot ac-
tively monitor computed values. Access-oriented program-
ming languages like Loops [30] support monitoring through
“active values.” In Syntel, however, function activation is in-
voked uniformly by the system, rather than by programmer-
provided explicit triggers.

Spreadsheets
The heavy emphasis on data-driven control makes it tempt-
ing to compare Syntel to spreadsheets, possibly the only
systems in widespread use that share this control paradigm.
This superficial resemblance is heightened because Syntel
applicalions often contain arrays of numbers like the one
shown in Figure 6, but concluding that Syntel and spread-
sheet programs are alike would be as misleading as conclud-
ing that all demand-driven programs are alike.

The differences between Syntel and spreadsheets are
many and deep. First, in contrast to spreadsheet programs,
Syntel separates the user interface definition from the knowl-
edge balse defined by the equation network, allowing us to
define a data model for the knowledge base unconstrained
by the requirements for display. An immediate consequence
is the association of a value table and its related machinery
with what in a spreadsheet would be a single cell. More
significantly, instances of a value table can be created or
deleted at run time, a capability that in spreadsheets would
be roughly comparable to creating or deleting a cell, row, or

column at run time. Spreadsheets lack this ability for funda-
mental architectural reasons.

There are other significant differences between Syntel and
spreadsheet architectures. Even advanced spreadsheets
[16] cannot reason probabilistically except through Monte
Carlo simulation-an extremely expensive computational ap-
proach. More importantly, spreadsheets lack a systematic,
well-founded method for dealing with default data, a capabil-
ity often essential for major classes of expert system applica-
tions. Also, spreadsheets lack Syntel’s structured methods
for drawing inferences from symbolic data.

A further critical distinction between Syntel and spread-
sheets centers on the question of efficiency. Syntel knowl-
edge bases are typically too extensive and complex to run
effectively even on large mainframes unless a grea.t deal
of attention is paid to efficient execution. The extensive
compile-time analysis of the knowledge base and the variety
of interacting mechanisms described earlier overcome prob-
lems of scale that would overwhelm conventional ilnterpreted
spreadsheets even when supported by powerful hardware.

Databases
From a database point of view, Syntel generally fits the func-
tional data model [14, 26, 291. These systems also treat
binary relations as functions and use the naturalness of
function composition in their data manipulation languages
[26, 291, but they differ from Syntel in many ways (e.g., by
lack of inexact values, default values, alerts, and overrides).
Where other functional models use multi-valued functions,
the functions in Syntel are always single valued. Hammer and
McLeod point out the importance of derived data in semantic
data bases [15], and Shipman stresses the use of derived
functions for this purpose [26]. However, the mechanisms in
data manipulation languages like DAPLEX [26] are designed
more for data extraction and manipulation than for express-
ing derived, inexact, nonprocedural computations.

The important problem of representing “inexact informa-
tion” (i.e., unknown, uncertain, and default values) in data-
bases has been addressed by a number of mechanisms,
including static default values [ll], null values [lo, 111, and
the use of fuzzy sets (see, for example, 1221 for an entry
point into that literature). Using probabilities for any of these
purposes has been much less investigated. To the best of
our knowledge, Syntel is the first system that combines un-
known, uncertain, and default values within a uniform repre-
sentation founded on formal probability theory.

Several techniques have been proposed for continuously
monitoring derived data. One approach combines a global
recomputation strategy with static pruning mechanisms to
recalculate derived data when needed [S], but it is inefficient
when the amount of monitored data is large. Another ap-
proach is to continuously maintain derived data in a func-
tional data model by using “program differentiation,” where
for each data operator there are predefined differentiation
operators describing what to compute when data changes
[18]. A third method uses an incremental view-maintenance
algorithm to maintain derived relations containing Select,
Project, and Join operators 141. Our propagation approach is
a variant of these techniques, where we employ the user
interface to prune the data to monitor, and where we also
support default values. Finally, we should also mention the
trigger mechanisms of System R [3] in which relational data-
base manipulation code is executed when data is updated,
and the POSTGRES extension of INGRES [31] that includes
the RETRIEVE-ALWAYS primitive for continuously refetching
derived data.

1434 Communications of the ACM December 1988 Volume 31 Number 12

Articles

If the user changes just the one instance x [7 1, three
instances of Z must be changed: Z [7 , a 1, Z [7, b] ,
andZ[7, NIL]. Furthermore, if the user creates one
new instance of X or Y, several new instances of Z may
result, with corresponding removals occurring upon
deletion of instances.

The simplest safe way to implement the inference
engine would be to completely recompute the default
join and the values of all instances every time an argu-
ment instance of a function changed. While logically
correct, such a solution would be extremely inefficient.
Instead, an incremental form of view materialization
[4, 181, limits the recomputation to only those instances
that must be recomputed.

If the value of an existing instance of an argument is
changed, it is straightforward to identify all of the in-
stances of the result that must be updated: they are the
instances for which the extended parameter instance of
the argument matches the existing parameter instances
of the result, and for which the common parameters
match exactly. The problem is a bit more complicated
when an instance of an argument is created or deleted,
since that changes the default join. Our solution is to
compute the default join incrementally. Returning to
the above example, suppose that a new instance of Y is
created: Y [cl = 2. The corresponding extended pa-
rameter instance (NIL c) matches two extended pa-
rameter instances in X: (7 NIL) and (NIL NIL]. Thus,
creating a new instance of Y leads to two new instances
of Z, but none of the other instances has to be updated.

J - Y
a 3

b 7

-T-
C 2

NIL 11

I J
7 a
7 b
7 C

7 NIL
NIL a
NIL b
NIL C

NIL NIL

+ z
5
9
4

13

2

6

10

Screen-Limited Propagation
Another way to apply the principle of minimal updat-
ing is to exploit the fact that, at any given time, the
user can see only what is visible on one screen. After
the user has made changes and relinquished control,
the only nodes that must be updated are the ones that
influence the values visible on the current screen. This
observation leads to a method for minimizing computa-
tion that we call screen-limited propagation.

A node is said to support a screen if it is either
(1) linked directly to the screen or (2) located on a path
through the equation network between two nodes that
are directly linked to a screen. Let Support (s) de-
note the set of nodes that support a screen S. When the
user changes the values of nodes that appear on screen

s and relinquishes control, the inference engine follows
a modified form of the breadth-first, bottom-up propa-
gation algorithm. The basic idea is to propagate a node
in the pending array if and only if it is in sup -
port(S).

Because most of the nodes in the pending array are
not in Support (s), we actually maintain two pending
arrays, a local array for nodes in Support (s) and a
global array for all other nodes.’ Thus, when propaga-
tion of nodes in the local array stops, all of the nodes
that appear on s will have been updated, but the global
array will usually contain unpropagated nodes that
support other screens. When the user decides to view
another screen s I, the inference engine moves the
nodes in the global array that support s I into the local
array and propagates them. Although this may result in
some delay before the next screen can be viewed, it
cannot increase [and it usually dramatically decreases)
the total time required for propagation.

Overrides
Because Syntel functions are side effect-free it is easy
for the user to override any derived values without
introducing logical problems. Recall that user-entered
values, if present, always take precedence over derived
values. Thus, a user-supplied value can be entered the
same way it would be for an input node, and will be
used in place of the derived value for all subsequent
computations.

Basically, an override is removed by deleting the
user-entered value and recomputing the derived value.
While it might seem that recomputation could entail a
recursive chain of recomputations, the referential
transparency of the intensional functions means that
we only have to look up the current values of the argu-
ments. Once recomputed, the node is entered into the
pending array, and the effects of its restored value are
propagated through the rest of the equation network.

Alerts
It is often important that the system be able to bring
something to the user’s attention when certain condi-
tions exist. We call such a triggered message an alert.
The normal computational mechanisms can be used to
test for the alert condition and to concatenate strings to
compose the alert message. The only real questions are
practical ones of how to present that message to the
user.

In some cases, the knowledge engineer can reserve
an area of the screen for short messages and make them
become visible when the alert condition is satisfied, but
alert messages can be long, and screen area is usually
in short supply. Our solution is to associate the alert
message with some visible node on the screen. When
the alert condition first becomes satisfied, in addition to
popping-up the message in a scrollable and closeable
window, the system displays the ‘I!” annotation charac-
ter next to the associated node’s box. Special interface

‘This solution was recognized and proposed by one of our colleagues.
jonathan Seder.

December 1988 Volume 31 Number 12 Communicationsof the ACM 1435

Articles

code iallows the user to go back to any node flagged
with the “!” and reread the alert message. Thus, the
mechanisms for issuing and handling alerts are incor-
porated in the interface code, and although they seem
to involve control, they place no additional require-
ments: on the inference engine.

STATUS
Active functional systems provide a data-driven, func-
tional approach to integrating database and expert sys-
tems. The Syntel embodiment of this approach has
been fully implemented since mid-1986, and has been
used to develop two families of commercial products,
the Underwriting Advisor’” and the Leading Advisor’”
systems which were initially developed on Xerox llOO-
series workstations. Both the inference engine and the
user interface were written in InterLisp; they have
been delivered using an inference engine written in
PL/I that runs on IBM System/370 mainframes under
MVS/XA using CICS, with the interface system written
in C that runs on PC/AT and PS/2 workstations. The
equation networks for these applications contain sev-
eral thousand nodes each with inference chains more
than ZOO functions deep and reference data relational
tables that contain over 100,000 values. While there is
no direct relation between functions and rules or
frames, these are large expert systems by any measure.

Notwithstanding the large knowledge base size and
the very considerable depth of (probabilistic) computa-
tion, performance in typical end user environments has
been acceptable. Actual response times in time-shared
environments depend, of course, on many factors out-
side Syntel. As a rough indication, however, most user
transactions are executed in a few seconds or less.

From a more theoretical viewpoint, the uniform view
of representing data as extensional functions and repre-
senting knowledge as a network of intensional func-
tions leads to great conceptual simplicity. The view that
prior distributions are generalized default values and
the incorporation of prior instances into the basic de-
sign provides a clear, uniform method for handling un-
known and inexact values. Such uniformity greatly
simplifies the design of other subsystems, such as the
explanation system and the knowledge engineering
programming environment, that operate on the knowl-
edge ba.se, providing capabilities that are very difficult
to create for multi-paradigm systems.

That the system is completely nonprocedural and
free from side effects yields several advantages. End
users can enter, change, or override data in any se-
quence. “What-if” experimentation is easily supported.
Explanations and alerts are facilitated because outputs
depend only on the values of user inputs, rather than
sequence or side effects. Cases can be saved by saving
user inputs, and restored by repropagating inputs.
Knowledge engineers specify the relations between
variables without concern for control issues and thus

Q Underwriting Advisor is a registered trademark of Svntelligence. Inc
Q Leading .9dvisor is a registered trademark of Syntell&ence. Inc.

the knowledge base can be specified and designed from
a dataflow standpoint [7]. We believe that this will
also greatly simplify the maintenance phase of the
knowledge-base life cycle as well, although this re-
mains to be demonstrated.

Two issues that confront active functional systems
are generality and efficiency. Generality realy con-
cerns the breadth of the class of problems fo.r which the
data-driven, functional approach is natural. For exam-
ple, while one can solve problems that require graph
searching in Syntel, such problems are much more nat-
urally solved with a procedural approach. However, we
believe that the active functional systems are applica-
ble to a much broader class of problems than just the
financial risk-assessment applications that have been
addressed to date. It certainly includes estimation
and assessment problems in general, as well as many
moderate-size database problems. In particular, we
have used Syntel internally to build a powerful data-
base editor to help knowledge engineers develop and
maintain reference databases.

We have described several techniques that were
used to improve efficiency. In particular, program dif-
ferentiation ideas proved highly effective in hmiting
recomputation to items that must be recomputed. The
methods of breadth-first, bottom-up propagation, incre-
mental computation of the default join, and screen-
limited propagation all exploit this principle. Condi-
tional visibility also proved to be very valuable in
guiding the user and improving the efficiency of opera-
tional use without sacrificing the freedom of data-
driven control, but since what should be visible de-
pends on the semantics of the application, its effective-
ness and logical correctness depend on the skill of the
knowledge engineer. The development of additional
ways to allow the knowledge engineer to use meta-
knowledge to influence control without sacrificing the
advantages of the functional approach is an important
area for future research.

Acknowledgments. We are indebted to many col-
leagues at Syntelligence whose efforts converted the
concepts described in this article into a full-scale opera-
tional system. Although we cannot identify them all by
name, we want to express our appreciation for their
contributions. We also want to thank the referees for
the effort they devoted to reviewing and commenting
on the original manuscript. Their numerous suggestions
helped us to clarify both our thoughts and our presen-
tation of them.

REFERENCES
1. Abarbanel. R.. Tou. F.. and Gilbert. V. KEE Connection: A bridge

between databases and knowledge bases. In AI Tools arid Techr~iques.
M. Yazdani. and M. Richer. Eds. Ablex. Norwood. N.J. (1988. to be
published).

2. Ackerman. \f.B. Data flow languages. ZEEE Computer 15. 2 (Feb.
1982). 15-25.

3. Astrahan. MM. et al. System R: A relational approach to database
management. ACM Trar~s. Database Syst. 1. 2 (June 1976). 97-137.

4. Blakeley. A.I.A.. Larson. P.A.. and Tompa. W. Efficiency updating
materialized views. In Proceediqs of the 1986 ACM-SIGMOD Confer-

1436 Communications of the ACM December 1988 Volume 31 Number 12

Articles

5.

6.

7.

8.

9.

10.

Il.

12.

13.

14.

15.

16.

17.

16.

19.

20.

21.

22.

23.

24.

25.

26.

27.

ewe on the Mawgenwnf of Dafa (Washington. D.C., May Z-30).
ACM. New York. 1986. pp. 61-71.
Brodie. M.L.. and Mylopoulos. 1.. Eds. On Knowlecfge Base Manage-
ment Systenls. Springer-Verlag. New York. 1986.
Brownston. L.. Fareli. R.. Kant. E.. and Martin, N. Programn~ing
Expert Systems I?I OPS5. Addison-Wesley. Reading. Mass., 1985.
Bull, M.. Duda. R. Port, D.. and Reiter. J. Applying software engi-
neering principles to knowledge-base development. In Proceedings of
Expert Sysfems in Business 87 (New York. Nov.). Learned Information,
Medford. N.J.. 1987. pp. 27-37.
Buneman. O.P.. and Clemens. E.K. Efficiently monitoring relational
databases. ACM Trans. Dafabase Sysf. 4. 3 (Sept. 1979). 368-382.
Buneman. O.P.. Frankel. R.E.. and Nilchil. R. An implementation
technique for database query languages. ACM Tram. Dafabase Sysf.
7, 2 (June 1982). 164-166.
Codd. E.F. Extending the database relational model to capture more
meaning, ACM Trans. Database Sysf. 4. 4 (Dec. 1979). 397-434.
Date, C.j. Relafmral Dafabase: Selerfed Wrifings. Addison-Wesley,
Reading. Mass.. 1966.
Duda. R.O.. and Reboh. R. AI and decision making: The Prospector
experience. In Arfificml lrtfelligence Appficafiom for Business. M’.
Reitman. Ed. Ablex. Norwood. N.J.. 1984. 111-147.

Duda. R.O.. Hart. P.E.. Reboh. R.. Reiter. J., and Risch, T. Syntel:
Using a functional language for financial risk assessment. IEEE
Experf 2. 3 (Fall 1967). 16-31.
Gray. P. Logic, Algebra and Dafabases. Ellis Horwood/John Wiley and
Sons. New York. 1984.
Hammer. M.. and McLeod. D. The semantic data model: a modeling
mechanism for database applications. In Proceedings of the 1978
ACM-SIGMOD Co+wwce (Austin. Tex.. May 31-June 2). ACM, New
York. 1976. pp. 26-35.
Holsapple. CM’.. and Whinston. A.B. Mam~ger’s Guide fo Exprrf Sys-
fems Usiltg Guru. Dow-Jones-Irwin. Homewood. 111. (to be published).
Kerschberg. L.. Ed. Experf Dafabase Systems. Benjamin Cummings.
Menlo Park. Calif.. 1986.
Koenig, S.. and Paige. R. A transformational framework for the auto-
matic control of derived data. In Proceedmgs of the 7fh Iufermfional
Cor+wrrce or, Very Large Data Basrs (Cannes. France, Sept. 9-11,
1981). pp. 306-316.
Lucas. P.. and Risch. T. Representation of factual information by
equations and their evaluation. In Procerdiqs of the 6fh lr~fcmafioml
Cofrferwcc 01, Software Eqimwmg (Tokyo, Japan. Sept. 13-16). IEEE.
New York. 1982. pp. 153-167.
Missikoff. M.. and Wiederhold. G. Towards a unified approach for
expert and database systems. In Experf Dafabase System. L. Kersch-
berg. Ed. Benjamin Cummings. Menlo Park. Calif.. 1986. 383-399.
Pa&e. R.. and Koenig, S. Finite differencing of computable expres-
sions. ACM Tmns. Prog. Laq. Sysf. 4. 3 (July 1982). 402-454.
Raju. K.V.S.V.N.. and Arun. K.M. Fuzzy functional dependencies
and lossless join decomposition of fuzzy relational database systems.
ACM Trims. Dafabase Syst. 13. 2 (June 1988). pp. 129-166.
Reboh. R.. and Risch. T. Syntel: Knowledge programming using
functional representations. In Proceediqs ojAAAI-86 (Philadelphia,
Pa.. Aug. 11-16). Morgan Kaufman. Los Altos. Calif.. 1966. pp.
1003-1007.
Ross. S. A Fief Course in Probability (3d ed). McMillan. New York,
1988.
Sharp. J.A. Dafa Flow Contpufiq. Ellis Horwood/John Wiley and
Sons. New York. 1985.
Shipman. D.W. The functional data model and the data language
DAPLEX. ACM Trans. Dafabase Syst. 6. 1 [Mar. 1961), 140-173.
Shortliffe. E.H. Compufer-Based Medical Co~rsulfafims: MYClN.
Elsevier. New York, 1976.

28. Shortliffe. E.H. Medical expert systems-knowledge tools for phy‘si-
cians. J/w Wcsfem Jourrral of Medrcine 145. 6 (Dec. 1986). 630-639.

29. Sibley. E.H.. and Kershberg, L. Data architecture and data model
considerations. In Proceedrugs of f/x AFIPS Nafrmal Computer Confer-
mcr (Dallas. Tex.. June 13-16. 1977). pp. 85-96.

30. Stefik. M.J.. Bobrow. D.G.. and Kahn, K.M. Integrating accessI
oriented programming into a multiparadigm environment. IEEE Soff-
ware 3. 10 [Jan. 1966) 10-18.

31. Stonebraker. M. Triggers and inference in database systems. In On
Kmruledge Base Managewent Systems. M. L. Brodie. and J. Mylopou-
10s. Eds. Springer-Verlag. New York, 1986. 297-314.

32. Sussman. G.J.. and Steele. G.L.. Jr. Constraints-a language for ex-
pressing almost hierarchical descriptions. Art. Intell. 74. 1 (Aug.
1980). l-39.

33. Wadge. W.W.. and Ashcroft. E.A. Lucid. the Dafaflow Progranrnring
Lmguage. Academic Press. New York. 1965.

34. Wiederhold. G. Knowledge and database management. IEEE Software
I. 1 (1984). 63-73.

CR Categories and Subject Descriptors: D.1.1 [Applicative (Func-
tional) Programming]: H.2 [Database Management]; H.2.3 (Languages];
1.2 [Artificial Intelligence]: 12.4 [Knowledge Representation Formal-
isms and Methods]: 1.2.5 [Programming Languages and Software]

General Terms: Design, Languages
Additional Key Words and Phrases: Active databases, active func-

tional systems. data-flow languages. default logic. decision support.
equation networks. expert system tools and techniques. functional lan-
guages. fuzzy and probabilistic reasoning, inference networks, nonproce-
dural languages, program differentiation

ABOUT THE AUTHORS:

TORE RISCH is a member of the technical staff at Hewlett-
Packard Laboratories. At Syntelligence, he was a principal ar-
chitect and developer of the Syntel system. Prior to joining
Syntelligence. he contributed to both the Prospector and the
Hydro projects at SRI International, and, while he was at the
IBM Research Center in San Jose, developed a functionally-
based knowledge representation language intended for finan-
cial and business applications. His research interests include
functional languages, database technology, and expert systems.
Author’s present address: Tore Risch, Hewlett-Packard Labora-
tories, 1501 Page Mill Road. Palo Alto, CA 94303.

RENI? REBOH is the Director of Systems Development at
Syntelligence. where he is a principal architect and developer
of the Syntel system. He came to Syntelligence from SRI Inter-
national. where he was the Project Director for SRI’s expert
system group, the principal architect and developer of the Pro-
spector and Hydro systems, and the creator of the KAS system
for knowledge acquisition. He has also done research in AI
languages, intelligent database systems, and automatic theo-
rem proving.

PETER E. HART is Vice President for Research and Develop-
ment at Syntelligence. Prior to that, he founded and was the
first director of the Schlumberger/FairchiId AI Laboratory in
Palo Alto, before which he was the director of the Artificial
Intelligence Center at SRI International. Among his many ac-
tivities at SRI, he started and directed the development of the
Prospector expert system for mineral exploration. A fellow of
the IEEE, he has published numerous papers in artificial intel-
ligence, and is a coauthor of the book Pattern Classification and
Scene Analysis. Authors’ present addresses: Rend: Reboh and
Peter Hart, Syntelligence. 1000 Hamlin Court, P.O. Box 3620,
Sunnyvale, CA 94088.

RICHARD 0. DUDA is a Professor of Electrical Engineering at
San Jose State University. During the four years he was at
Syntelligence, he was concerned with knowledge representa-
tion and inference under conditions of uncertainty. Prior to
that, he was active in research in pattern recognition, machine
vision, and expert systems at Fairchild and SRI International.
and was a principal contributor to the Prospector system. A
Fellow of the IEEE, he is a coauthor of the book Pattern Classifi-
cation and Scene Analysis, and a member of the editorial boards
of ZEEE Expert, the IEEE Transactions on Pattern Analysis and
Machine Intelligence, and Artificial Intelligence. Author’s present
address: Richard 0. Duda, Dept. of Electrical Engineering. San
Jose University, One Washington Square, San Jose, CA 95192.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish. requires a fee and/or specific permission.

December 1988 Voolume 31 Number 12 Communications of the ACM 1437

