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Advances in computing sometimes flow from the recog- 
nition of fundamental similarities among disparate the- 
ories or system architectures. Once recognized. these 
similarities can be exploited to design a new architec- 
ture that combines selected aspects of its predecessors. 
opens new areas of applications. and may even lead to 
new insights into underlying theories. 

A new system architecture, called an active fu~~tio~~al 
system. shares certain characteristics with database 
systems, expert systems, functional programming lan- 
guages, and spreadsheet systems. but is very different 
from any of these. It is based on a uniform-one might 
even say rigid-use of side effect-free functions that 
represent facts and knowledge in a nonprocedural pro- 
gramrning system. Database objects are represented by 
arbitrary extensional functions, i.e., tables, while do- 
main knowledge is represented by side effect-free in- 
tensional functions composed from a suitable library. 
Both default and inexact information are accommo- 
dated by treating values of database objects as random 
variables with associated probability distributions. The 
uniformity that results from functional representations 
leads to a corresponding uniformity in database and 
knowledge-base operations. We call the system “active” 
because it is data driven: more specifically, changes in 
the distributions of the factual input data are propa- 
gated through the knowledge base to update the distri- 
butions of the derived output data. These concepts are 
embodied in the SynteP programming system [23], 
which. has been fully implemented and in commercial 
use since mid-1986. 

DATA-INTENSIVE AND KNOWLEDGE-INTENSIVE 
PROBLEMS 

Database and Expert Systems 
In recent years the complementary nature of database 
and knowledge-base applications has been recognized. 
Database applications typically involve a relatively 
small number of relations or files holding a large num- 
ber of records: relatively simple representational struc- 
tures are used to store voluminous amounts of data. By 
contrast, expert systems usually involve a large number 
of relations (or rules, frames, etc.). each holding a small 
amount of judgmental knowledge: complex representa- 
tional structures are used to store moderate amounts of 
data. 

Inference styles and methods are also complemen- 
tary. Database inference is usually restricted to either 
precise boolean combinations of modest complexity or 
simple numerical comparisons. Expert systems often 
employ complicated reasoning procedures, frequently 
involving incomplete or uncertain numerical and sym- 
bolic data. In addition, the factors that are relevant and 
the sequence in which they are considered usually var- 
ies greatly from run to run. 

The complementarity of database and expert systems 
has led to considerable interest in architectures that 
combine the two [5, 17, 341. The most straightforward 
synthesis is to create a loosely coupled system in which 
the database module acts as a server for the expert 
system module [l, 201. This architecture allows refer- 
ence data to be freely accessed by the expert system 
module while the database system acts as a (case server. 
However, some important families of applice.tions place 
equal demands on expert system and database system 
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facilities, rendering a loosely coupled design inappro- 
priate. Instead, a tightly coupled, unified approach 
would be more desirable. The following example illus- 
trates this approach. 

A Financial Application 
Many financial applications call for a combination of 
database and expert systems methods. An example 
from banking involves evaluating the credit risk of a 
firm that wishes to borrow money. A banker engaged in 
this task-and therefore a system that provides deci- 
sion support to the banker-will need to deal with a 
number of issues that are common to most financial 
applications. 

First, both quantitative and qualitative data must be 
analyzed to assess the firm’s ability to repay a loan. 
Some of this data. like financial statements, occurs nat- 
urallv in tabular form. but other data. like information 
relating to quality of management or competitive posi- 
tion. is not so regularly structured. The amount of tabu- 
lar data typically varies from several hundred case- 
specific items to several hundred thousand reference- 
data items. Case-specific. non-tabular data is com- 
parable in size to case-specific tabular data. Taken to- 
gether. the amount of data accessed bv a single user is 
likely to be large enough to require a significant data 
management facility. 

Bankers operate in a lvorld of business and financial 
forms. so it seems obvious that the user interface of the 
system should emulate this familiar milieu. A banker 
using the system will insist on retaining the initiative 
in any interactive dialog, as spreadsheet systems allow: 
the sequential “question-and-answer” mode character- 
istic of goal-directed expert systems is unlikely to be 
acceptable. We can also anticipate a need to support 
repeated “what-if” explorations, and be able to restore 
the system to the state it was in before the what-ifs 
were performed. Finally, the banker is a professional 
who expects to use the system as a tool: among other 
things, this implies that the end user must be able to 
override any system-generated output without intro- 
ducing logical inconsistencies. 

Assuming we have satisfied the requirements for 
dealing with considerable amounts of case-specific and 
reference data, and have provided the user with a fa- 
miliar and usable interface, we still need to support the 
style of reasoning appropriate to this application do- 
main. It is clear at the outset that quantitative and 
qualitative reasoning are tightly integrated; in other 
words, there is no obvious, clean partition between “the 
numbers side” and “the subjective side” of the task. 
Typically, the analysis proceeds in response to the par- 
ticular situation and does not follow any fixed se- 
quence. Understanding how various elements of an 
analysis are related is more important than knowing 
optimal analysis sequence.’ Finally, credit assessmer 
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is inherently imprecise. Notwithstanding the substan- 
tial amount of information that bankers receive about a 
borrower, there inevitably are gaps, leading to the need 
for inexact reasoning. 

A UNIFYING DESIGN 
Five design elements that unify the database and ex- 
pert systems components need to be considered. First, 
we need to design to the data model for both case- 
specific and reference data. Second, we need to define a 
set of primitive operations over the data objects that are 
sufficient to express domain knowledge. Third, we 
need a means for expressing and reasoning about inex- 
act data and knowledge. Fourth, we need a user inter- 
face that replicates the world of business forms, and 
that allows the user to retain the initiative. Fifth, we 
need an interpreter (or in expert systems terms, an in- 
ference engine) that governs the flow of control. 

Before proceeding with details, we should at least 
mention the general criteria we were seeking to satisfy. 
We anticipated that we would be dealing with volumes 
of data that are moderate by database standards but 
large by expert system standards. Preliminary studies 
also suggested that the required inferences would be 
moderately complex by expert system standards and 
very complex by database standards. We expected. and 
later proved. that we would have to define relations 
(whether by rules. functions, etc.) among several thou- 
sand decision variables or factors. Our design choices 
were made with these considerations in mind, keeping 
an eye toward elegance. Specifically, we hoped that it 
would be possible to design a tightly integrated inter- 
face between the expert system and database compo- 
nents; indeed, we hoped to eliminate the distinction 
between these two components. 

Extensional Functions 
We use extensional functions or value tables to repre- 
sent both changing, case-specific data and persistent 
reference data. A value table contains any number of 
columns with independent keys, and exactly one non- 
key column. Accordingly, a value table can be regarded 
as a relation with a single non-key column, From a 
functional point of view, a value table holds an exten- 
sional definition of a function. The name of that exten- 
sional function is the name of the value table. For ex- 
ample, Figure 1 gives the value table Revenue for 
several different years and states; functionally, it shows 
the extensional function Revenue [ Year, Sta tel. 
Depending on whether we are thinking of a value table 
as a relation or as a function, we refer to Year and 
State either as keys or as formal parameters. A single 
row of the table is an instance, and the part of the row 
containing just the parameter values is the parameter 
instance. Thus, in Figure 1, the tuple 

(1987 ‘AZ’ $10,000) 

is an instance of Revenue and the tuple (1987 ’ AZ I) 
is the corresponding parameter instance. 

Actually, this description of value tables is slightly 
oversimplified. The values stored in the non-key col- 
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Year State - Revenue 

1986 u (-.A II $50,000 

1987 II AZ I, $10,000 

1987 ,I CA" $60,000 

FIGURE 1. A Value Table with Keys Year and State, 

and Value Revenue 

umn need not be exact, but can be probability distribu- 
tions, and a value table also includes additional infor- 
mation, such as whether or not the value has been 
overridden or footnoted; this information can be 
thought of as being stored in additional non-key col- 
umns. Basically, however, value tables are extensional 
functi.ons. 

Value tables are also typed, that is, both the keys and 
the value must have a type, which can be a system- 
defined type (such as String, PosNumber, or Do1 
lar) or a knowledge-engineer-defined type. In addition 
to protecting against programming errors, the type 
system supports input/output by providing validity 
checks, system-generated selection menus, and flexible 
formatting.’ 

A parameter or a value can be the symbol NIL that 
means that the instance exists, but that its value is 
currently undefined. If a key in the value table is NIL, 
the associated value is the default value which is used if 
no exactly matching instance exists. When all the keys 
are NIL the default value is called the prior value. 
Figure 2 shows a value table containing undefined and 
default values. The instance with the parameter in- 
stance (1987 'AZ ‘) exists, but its value is undefined. 
In 1986, for any state other than ‘CA’ the default value 
is $1 ,000; for any year except 1986 and 1987, the 
default value is $500 in ’ CA' and $0 [the prior value) 
in all other states. 

Year State Revenue 

1986 

1986 
7987 
I 987 
NIL 
NIL 

$50,000 

$ 1,000 

NIL 

$60,000 

$ 500 

$ 0 

FIGURE 2. A Value Table Containing Undefined and 
Default Values 

Unlike standard database systems, Syntel allows the 
programmer to specify default values of extensional 
functions to avoid null values in database operations. 
Syntel combines null values with complete or partial 
default values, and dynamically maintains correct de- 
fault values for derived value tables. (See [ll] for a 
proposal for the specification of static default values for 
each relational column.) 

‘The type system also includes an inheritance hierarchy not discussed in this 
articlo 

Value tables can store symbolic as well as numeric 
data. A knowledge base serving an end user like our 
banker may well require 1,000 or 2,000 value tables to 
represent qualitative and quantitative information 
about one case. Although some of the value tables con- 
tain entered data describing a case, most hold derived 
data that is maintained by the inference engine. These 
tables constitute a personal copy of case-specific data 
when the case is loaded, and are stored centrally when 
the case is saved. 

Intensional Functions and Equation Networks 
Syntel uses a family of side effect-free prim:itive func- 
tions as the single, uniform representation for opera- 
tions on value tables. Mathematically, each primitive 
function is an intensionally-defined mapping from one 
or more value tables into a single value table.3 Pro- 
grammatically, the value of a function depends solely 
on the values of its arguments; furthermore, no primi- 
tive function can directly determine the flow of control. 
For these reasons, Syntel is a pure functional or appli- 
cative language. 

Primitive functions provide the basic means for com- 
puting derived value tables-value tables not obtained 
from the user or from other external sources. For ex- 
ample, we might want to define a derived value table 
for Income given value tables for Revenue and Cost: 

Income[Year, State1 

+ Difference(Revenue[Year, State], 

Cost[Year, State]). (1) 

This equation is not an assignment statement, but is 
strictly definitional. It expresses the extensional func- 
tion Income as anintensional function Difference 
of the two extensional functions Revenue a-nd Cost. 
It also implies a direction of dataflow. In particular, 
whenever the value of an instance of either :?evenue 
or Cost changes, this equation calls for a change in the 
value of the corresponding instance of Income. Were 
an instance of Income to be changed in some other 
way (through a user override, for example), no changes 
would be made to corresponding instances of Revenue 
or Cost.4 

Since Syntel functions are referentially transparent, 
they can be composed to arbitrary depth. We might, for 
example, wish to define NetIncome as Income less 
Overhead: 

3Since Syntel employs both extensionally and lntensionally defined func- 
terns. there 1s considerable opportunity for confusion. We use the term ~aluv 
fable for the former and shorten the latter to functm We consistentI!, use the 
term fonrral paranrrrrr to refer to an argument of an extensional function-i.e.. 
value table--when we wish to emphasize the functional view: we use the 
term key to refer to an argument of a value table to emphasize :he database 
view: and we use the term argunr~~~l to refer to the argument of an intensional 
function. It 1s important to bear m mmd. however. that the prmclpal objects 
mathematically are functions 

a In principle. constraint satisfaction techniques could be used to relax this 
rather strong restrlctlon on dataflow direction [32/. Sytel employs probabilis- 
tic mechanisms to accommodate uncertainty Th? combination of general 
constrant analysis with uncertainty would greatly increase overall system 
complexity and severely impact run-time efficiency. 
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NetIncome[Year, State] 

+- Difference(Income [Year, State] , 

Overhead (Year, State] ), (2) 

where Income is defined by (1). Syntel functions 
may be self-referencing (i.e., recursive). For example, 
Syntel can estimate the revenues for some year, given 
the revenues of a previous year. Aside from this self- 
referencing aspect, functional composition in Syntel 
can be represented graphically as a directed acyclic 
graph called an equation network. A node in an equation 
network represents a single value table and the associ- 
ated function that computes it. Arcs point to the associ- 
ated function from its arguments. From a database 
standpoint, an equation network is comparable to a da- 
tabase schema. Figure 3 shows the simple net corre- 
sponding to Equations (1) and (2) in which nodes corre- 
spond to value tables and derived nodes (such as 
NetIncome and Income) are intensional functions of 
argument nodes. Names of the value tables are shown 
above the names of the intensional functions. 

a NetIncome 

\ Difference J 

Difference 

FIGURE 3. A Simple Equation Network 

Voting functions are widely used in Syntel knowl- 
edge bases to compute assessments and dovetail 
smoothly with IF-THEN functions which are typically 
used to identify and select analytical sub-cases. In that 
role they are far more compact than a comparable rule- 
based representation would be, facilitating knowledge 
base design and maintenance and leading to perspic- 
uous machine-generated explanations of reasoning. 

Intensional Functions and Judgmental Knowledge While Syntel voting functions are an important ex- 
The Syntel system provides the knowledge engineer ample of why functional representations are a natural 
with 65 primitive intensional functions. In addition to a choice for solving a broad class of estimation problems, 
variety of numerical, logical and string-manipulation they are not the only such example. More generally, 
functions, there are special families of functions for functional representations support a rich family of 
transforming and aggregating value tables and repre- methods that allow knowledge engineers to combine 
senting expert judgement. Here we discuss a central not only predicates-as is often done in rule-based 

problem in expert systems, the representation of judg- 
mental knowledge. 

Representing Judgmental Knowledge 
Developers of expert systems draw a distinction be- 
tween classification (or diagnosis) problems and assess- 
ment (or estimation) problems. “Classification” empha- 
sizes selecting an entity from among a finite number of 
alternatives. On the other hand, assessment emphasizes 
assigning a value on some continuum to a variable. The 
IF-THEN production rule, first used in expert systems 
in Mycin [27], continues to be the most widely used 
means for representing judgmental classification 
knowledge, and Syntel provides a primitive intensional 
function of equivalent expressiveness. 

Unfortunately, IF-THEN rules are poorly suited to 
expressing the judgmental assessments that are a criti- 
cal part of financial expertise because the IF-clause 
cannot combine sub-assessments into an overall assess- 
ment. Since each sub-assessment is by definition a 
point on a continuum, many rules are required to spec- 
ify the conclusions to be drawn under various combina- 
tions of their values. 

As a simplified example, the overall credit assess- 
ment of a firm might depend upon individual assess- 
ments of the financial strength of the firm, its market 
strength, and its management strength. Financial ex- 
perts are skilled at performing “apples-to-oranges” eval- 
uations of this type and can describe how the individ- 
ual factors are to be weighed. Therefore, a functional 
representation that expresses relative weights, rather 
than a rule-based one that emphasizes selection, is 
clearly more natural and economical. Syntel provides a 
primitive function that first maps sub-assessments into 
a common continuum called votes and then sums them: 

OverallAssessmenttVO +V,(Assessment,) 

+ . . . fV,(Assessment.). 

The voting functions V, are piecewise linear in form, 
and are specified in detail by the knowledge engineer. 
Summation presumes independence of individual as- 
sessments. The special case in which the voting func- 
tions are linear arises frequently in statistical inference 
as linear regression. 
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representations-but also to combine arbitrary, non- 
boolean variables. Rule-based systems, in contrast, lack 
this intrinsic richness and typically rely on “procedural 
escapes” to perform comparable operations. Such es- 
capes complicate the introduction of uniform mecha- 
nisms for dealing with inexact reasoning about non- 
boolean quantities. As we show next, functional repre- 
sentations are readily extended to provide this critical 
capacity. 

Inexact Reasoning 
As already noted, applications like credit evaluation 
introduce inexactness in two principal ways: missing 
data and imperfect knowledge. To deal with the inex- 
actness that results from missing data, we generalize 
the value from the exact and default values already 
mentioned to include probability distributions as well. 
In addition, Syntel provides limited support for repre- 
senting imperfect knowledge through special inten- 
sional functions for manipulating probability distribu- 
tions. 

Year State 4 Revenue 

1986 II CA 1, 

1987 "AZ 11 

1987 11 CA It 

1983 "AZ 0 

1988 “CA” 

1988 “NY” 

198i3 NIL 

$50,000 
$10,000 

$60,000 
$11,000 

($55,000, $r,ooo) 

NIL 

($25,000, $3,000) 

FIGURE 4. A Value Table that includes Inexact Data 

For a simple illustration of how probability distribu- 
tions can account for missing data, let us expand the 
value table in Figure 1 to hold projected 1988 revenues 
in addition to the recorded historical revenues. Suppose 
that the system was used in 1987 to estimate projected 
1988 revenues. Since projections are by nature uncer- 
tain, we may wish to represent the projected revenues 
by a mean and a standard deviation, as shown in Fig- 
ure 4. The first number in a list is the mean and the 
second the standard deviation of a probability distribu- 
tion. This figure indicates that the projected 1988 reve- 
nue for Arizona is exactly $11,000. For California, the 
distribution of projected 1988 revenue has a mean of 
$55,000 and a standard deviation of $1,000. For New 
York, the value (or distribution) of 1988 revenue is un- 
defined. Finally, for all states other than Arizona, Cali- 
fornia, and New York, the default distribution of pro- 
jected 1988 revenue has a mean of $25,000 and a 
standard deviation of $3,000. This represents the prior 
distribution of revenue for the year 1988. 

The introduction of probability distributions consid- 
erably complicates the notion of function evaluation. 
Now the value of each instance of a derived value table 
is a probability distribution that depends on the distri- 
butions of the corresponding instances of its arguments. 
In general, the computation of derived distributions 
(often referred to as the propagation of probability dis- 

tributions) cannot be computed from the separate dis- 
tributions for the arguments without rarely-available 
information about joint distributions. Even when this 
information is available, the required computations are 
often very costly. However, we can make the situation 
tractable by making several simplifying assumptions. 

Typically the arguments of the function are assumed 
to be statistically independent. Thus, the joint probability 
distribution is merely the product of the distributions 
for the arguments. The situation can be further simpli- 
fied if we agree that it is unnecessary to describe proba- 
bility distributions completely. In Figure 4, the distribu- 
tions over Revenue are specified only by their means 
and standard deviations; in general, we represent distri- 
butions over continuous values by these second-order 
statistics. Distributions over discrete values are repre- 
sented by the complete probability mass function.5 

A fuller treatment of these issues is given in [13], 
which includes a discussion of the statistical indepen- 
dence assumption from a knowledge engineering view- 
point. From the system viewpoint, these assumptions 
and simplifications allow the system to compute the 
distributions of the values in the derived value tables 
from the distributions of the arguments. A different 
method must be used for each of the 65 primitive func- 
tions. For a primitive function like Plus, the method 
for computing derived distributions is elementary. For 
most other primitive functioni the methods are more 
complex. The Equal predicate, for example, requires a 
comparison of the “closeness” of two probability distri- 
butions. In general, we have used the formal theory of 
functions of random variables as a guide [24], imple- 
menting exact solutions where feasible and approxi- 
mate solutions otherwise. The level of difficulty often 
encountered in these computations is the ch.ief obstacle 
to allowing knowledge engineers to enlarge the set of 
primitive functions. 

The most important use of probability distributions is 
to represent default knowledge. To return tcl Figure 4, 
suppose we needed to know the 1988 revenue for 
Texas. Given no further information, the bottom row 
shows (by default) that the prior distribution has a 
mean of $25,000 and a standard deviation of $3,000. 
This distribution would be used until new information 
becomes available, perhaps from an informed user or 
possibly computed elsewhere in the equation network. 

Semantics of Equations 
Syntel equations always have the form LHS + RHS. 
From the knowledge engineer’s viewpoint, these equa- 
tions define how instances of a single value table on the 
left-hand side are derived from instances of one or 
more value tables on the right-hand side. However, the 
system must also account for the possibility of values 
being entered (or overridden) by the end-user, being 

‘Discrete values frequently are used to represent assessments ,whose values 
mightbe,e.g..anyof (Poor. Fair, Average. Good. ExcellentJ.The 
small number of possible values makes using the complete distribution feasi- 
ble. 
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defaulted to prior distributions, or being left undefined. x and Y. For example, suppose that we want to form 
The system always computes the actual value of an thesumZ[I, J] + X[I] + Y[I, J],andthatthe 
instance of an LHS value table as follows: following instances of x and Y are defined: 

If user-entered-value # NIL 
then user-entered-value 

elseif RHS # NIL 
then RHS 

2-E .,:. 
else prior-distribution 

This defines the precedence of user-entered values, de- 
rived values, and default values. In the remainder of 
this section we focus on the derived values, without 
forgetting that there are two other ways that a value 
table can obtain its values. 

Two things have to be considered when computing 
the contents of a value table on the left-hand side of an 
equation given a set of value tables on the right-hand 
side: 

Two instances of z are obvious: Z [ 7, a I = 14 + 
3 = 17andZ[NIL, NIL] = -1 + 11 = lO.But 
sometimes we know that I is 7 (and hence that 
x = 14) when we don’t know J; since we have a de- 
fault value for Y, we can also include the instance 
ZL7, NIL] = 14 + 11 = 25. 

Another way to consider this situation is to imagine 

1. How is the value of each instance computed? As 
discussed earlier, each primitive function has its own 
method; e.g., PIUS adds the values of each instance. 

2. What are the relevant instances of the LHS value 
table? For most primitive functions (except a few 
structure-transforming ones) it is determined by a new 
kind of join, called the default join, of the value tables 
on the RHS. 

that x is actually parameterized by both I and J, but it 
just happens that we never know a value for J. Then 
both x and Y can be thought of as being identically 
parameterized, with value tables as shown below: 

The Default Join 
Roughly speaking, the keys of an LHS value table are 
the natural join of the keys of the RHS value tables, 
while the values are determined by the particular 
primitive function. However, as others have noted [ll], 
the conventional natural join can lose data in certain 
circumstances. Specifically, if the RHS value table con- 
tains a key that is matched by no other RHS value-table 
key, that instance will be lost. To overcome this prob- 
lem, various kinds of “outer joins” that put null values 
in non-matching columns of joined relations have been 
proposed [lo, 111. 

The default join performs a loss-free join over the 
RHS value tables while, in contrast with outer joins, 
maintaining the correct default values of the LHS table 
given the default values of the RHS value tables. Its 
semantics resembles a natural join with the equality 
operator replaced by a match operator. To describe the 
semantics we use functional language rather than rela- 
tional database terminology, primarily because the 
need for the default join arises from the requirements 
of computing-derived value tables. 

Suppose that x and Y are two value tables (exten- 
sional functions), and let FPx and FP, be the sets of 
formal parameters for x and Y, respectively. For exam- 
ple,forx[I] andY[I, J] wehaveFP, = [I) and 
FP, = ( I, J 1. We always assume that these parame- 
ters are free, i.e., that they can be assigned any value 
that is present in their columns in the value tables. 
Given a set of parameter instances of X and a set of 
parameter instances of Y, we want to define a meaning- 
ful set of parameter instances of an arbitrary function of 

Instead of talking about knowing or not knowing 
parameter values and using defaults, we can say that 
the parameter-instance pattern (7 NIL) in X matches the 
parameter instance (7 a) in Y to yield the parameter 
instance (7 a) in Z; similarly, (7 NIL) matches 
(NIL NIL) to yield (7 NIL); (NIL NIL) matches 
(7 a) to again yield (7 a); and (NIL NIL) matches 
(NIL NIL) to yield (NIL NIL). The set of parameter 
instances of z is formed from these results. 

This line of thought can be generalized and formal- 
ized as follows. Let z be a combination of two exten- 
sional functions x and Y, so that the set FPZ of the n 
formal parameters for Z is the union of FPx and FP,. 
Define the extension of x (denoted by !?) as the value 
table formed from x by appending the parameters 
unique to Y and using NIL for their parameter values. 
Let the extension of Y be similarly defined, so that both 
x and i! have n identical formal parameters. With no 
loss in generality, assume that the corresponding pa- 
rameters in x and y appear in the same column posi- 
tions. Let PX be a parameter instance of !? and PU be a 
parameter instance of ?, with 

P, = (PC, . . . P?“) 

and 

p,= (PV, . . . PY”). 

We treat NIL as a wild card in matching P, and PT. To 
be specific, we say that P, matches PU if for every i 
either (a) p?, = PY~, (b) PX, = NIL, or(c) pyl = NIL. 
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If’P, matches ~7, the resulting parameter instance 
P, = (pzl . . . pz,) has 

if ~2~ = pyl or PY, =NIL 
if pX, =NIL. 

The set of parameter instances for z is found by remov- 
ing duplicates from the results of matching all of the 
pairs (P, , ~7) of parameter instances from ? and y. 

The duplicates that result from different ways to 
match parameter instances of x and !? do not affect the 
default join, but when we want to compute a value 
for z we must select specific values from x and Y to 
combine. In our example where both (7 NIL) and 
(NIL NIL) in x match (7 a) in ? to yield (7 a], it is 
clear that we want to use the value of x associated with 
the more specific parameter instance (7 NIL) rather 
than the complete default value associated with 
(NIL NIL). In general, when more than one pair of 
instances match, we want to combine the values associ- 
ated with the most specific pair. If (PX, , ~7~) and 
(P;, , P,J both match to yield the same P,, we say that 
(PiI , ~7,) is more specific than (~2~ , Pr,) if there are 
fewer NILS in the first match.” 

The following examples illustrate the properties of 
the default join. Consider first the equation 

TotalIncome [Year] 

+Difference(TotalRevenue[Yedrl , 

TotalCost[ Year] ). X Year - Y State - Z 

Since we always include the prior instances, at any 
given time, there will be one or more instances of 
Total-Revenue and one or more instances of Total 
Cost. The parameter instances of TotalIncome are 
the default join of TotalRevenue and TotalCost. 
The corresponding values come, of course, from differ- 
encing the most specific instances of TotalRevenue 
and TotalCost: 

Year + TotalRevenue 

Year - TotalCost 

zi 

Year + TotalIncome 

Note that there are instances of TotalIncome for 
1984, 1985 and 1986, although there is no 1984 instance 
of TotalRevenue and no 1986 instance of Total - 
Cost. Had there been no default value for Total - 
Revenue,thevalue ofTotalIncome would have 
been undefined (NIL) for 1984, but the instance would 
still exist. Also, the combination of missing 2.986 data 
and a prior distribution for TotalCost results in a 
distribution for the 1986 instance of Total income; 
this is typical of the way that prior distributions substi- 
tute for missing data and introduce inexactness into 
derived results. 

In general, propagation occurs whenever a.n instance 
is created, a value is modified, or an instance is deleted. 
Thus, if the user were to create a 1987 instance of 
TotalRevenue, the system would also create a 1987 
instance of TotalIncome. Deleting the 1985 instance 
of TotalRevenuewouldchangethevalue ofthe 
instance of TotalIncome from $48,000 to --$12,000; if 
the 1985 instance of TotalCost were also deleted, the 
system would delete the 1985 instance of Total 
Income. Accordingly, the number of rows of a value 
table changes dynamically at run time. Note that all 
value tables have at least one row, which holds the 
prior value. 

The second example illustrates the combination of 
value tables that are differently parameterized: 

W [ Year, State]- Plus(X [ I , 

Difference(Y[Year], Z/State])). 

Year State - W 
1984 'AZ' 2 

1984 'CA' -3 

1984 NIL 4 

NIL 'AZ' 7 

NIL 'CA' 2 

NIL NIL 9 

In general, the presence of multiple disjoint parame- 
ters leads to the Cartesian product of the component 
instances. While this example shows that the dimen- 
sionality of the results can be increased, the (dimen- 
sionality of a value table can also be reduced. For ex- 
ample, if Revenue is parameterized by Year and 
State, then Revenue [ Year, ’ CA’ ] is parameter- 
ized by Year only. Also, several intensional functions 
such as Sum and Max aggregate over value tables to 
produce results of lower dimensionality. 

The User Interface 
In the Syntel system, the user interface not only plays 
the conventional role of handling communication with 
the end user, but controls the process of computing 
derived value tables as well. Syntel uses the business 
form as its basic display metaphor. All user interface 
actions involve display objects, which includfz primi- 
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tives values, text strings, forms, and groups of display 
objects. The display objects and the links that connect 
them to objects in the equation network are specified 
by the knowledge engineer using a nonprocedural 
forms language.’ 

Since the system is data driven, the end user is free 
to go to any form, and to view, enter, modify or delete 
any data items in it. However, this can be bewildering 
when there are hundreds of possible forms, most of 
which might be relevant only in particular situations. 
To solve this problem, Syntel allows display objects to 
be conditionally visible. The knowledge engineer can use 
predicate nodes in the equation network to control the 
visibility of a part of a form, an entire form, or an 
arbitrary set of forms. By restricting the user to the set 
of forms and display objects that are relevant, the sys- 
tem provides much of the guidance and focus of a goal- 
driven system while still providing data-driven opera- 
tion. 

The example business form shown in Figure 5 deals 
with the business environment of a prospective bor- 
rower. The end user can enter one or a sequence of 

‘The details of this language. which roughly resembles document formatting 
languages such as SCRIBE orT&Y. are beyond the scope of this article. 

SCREEN FILE 

values either through the keyboard or through choice 
menus that appear when an active region is cursor- 
selected. Outputs computed by the system can be dis- 
played symbolically or graphically as shaded bars 
called meters. Output meters for two inexact assess- 
ments are shown in Figure 5. The position of the dark 
bar indicates on the minus-to-plus scale the degree to 
which the assessment is favorable. The width of the bar 
indicates the uncertainty in the assessment and pro- 
vides a graphical expression of the underlying probabil- 
ity distribution. 

The items shown in Figure 5 are particularly 

straightforward because none of them is parameterized; 

the corresponding value tables have only a single in- 

stance, and it is not necessary to specify the instance to 

be displayed. Figure 6 shows a form dealing with the 

cash available to cover debt payments. The boxes on 

this form are more typical, because most of them are 

drawn from instances of parameterized value tables. 

The parameters for the dollar amounts shown are 

StatementType (ANNUAL),andDate (December- 

1984). The values entered for these parameters deter- 
mine which of the many existing instances will be dis- 

INDEX COMMANDS FILE : ; ‘,, 
“. _. . . EVALUATE 

Screen overview: OF Business Environment 

: 
,’ 

Page 4 

Industry: MANUFACTURING Asset size: lo-50MM 

Industry group: FABRICATED METAL PRODUCTS 

SIC category: HAND AND EDGE TOOLS, NOT OTHERWISE CLASSIFIED 

SIC code 3423 

Business type: NATIONAL 

Industry stage: 
Competitive structure: 
Competitors trend: 

Competitive environment 

Industry cyclicality: 
Product positioning: 
Threat of substitutes: 
Regulatory risk: 

Industry risk 

Industry net sales trend: 

r MATURE I 

I MONOPOLISTIC I 

I STABLE 1 

-I+ 

AVERAGE F 

8.0% 

03/26/1987 02:33 PM 

FIGURE 5. An Example Form 

December 1988 Volume 31 Number 12 Communications of the ACM 1431 



Arficles 

SCREEN 
1:NDEX 

) 

Screen overview: 

Statement type: 
FY: 

Memo/Stmt Date: 

Cash a/op 

Other income: 

Net taxes paid 

Net cash a/op 

Interest: 

Tot dividends 

Net cash inc 

Cur port LTD 

Cash. a/amort 

pTE--~ 
DECEMBER 

Cash Coverage 

FY end: DECEMBER 

Page 17 

1983 

DECEMBER 

1982 

DECEMBER 

1981 

DECEMBER 

1980 

DECEMBER 

1 $2.818 1 

Funding debt service from internal operations 

DS fund9 aaqcyl -mIun+w -uTIuIl+ 1 

E3 
II 

DS funding adqcy 

FIGURE 6. Display of Parameterized Value Tables 

In general, the visual appearance of the form is speci- 
fied by a layout description containing information 
about the size and place of boxes and text. The behav- 
ior of each box, and of the form itself, is determined by 
bidirectional links to nodes in the equation network. 
Each link connects a specific box on a form to a dy- 
namic subset of instances of some value table deter- 
mined by selectors; the connection is represented by 
an extensional function expression. For example, in 
Figure 6 the input box labelled “interest:” is linked 
to the expression 

Interest [SelectedStatementType, 

SelectedFiscalYear]. 

The nodes used as arguments in a link, Selected 
StatementType and SelectedFiscalYear, are 
used to select the correct instance from the extensional 
function Interest [Type, Year], and are therefore 

called selectors. The boxes labelled “Statement - 
type : ” and “FY : ” are linked to these selectors so 
whenever the user enters a value for Interest:. the 
system will assert the instance of the value table in - 
terest currently selected by the two selectors; con- 
versely, the value to be displayed in a box is equal to 
the value of the linked functional expression. 

Additional display information can be obtained by 
linking to other nonprimary values of value tables. For 
example, the user can request a clarification of box 
contents. The clarification string, which can be static or 
can be dynamically computed when requested, is an- 
other non-key column in the value table, and is ac- 
cessed using its associated link. The small “F” in Fig- 
ure 5 alongside AVERAGE denotes a footnote, and is an 
example of another class of displayable inform.ation 
called annotations. Other possible annotations include 
overrides (the user has directly entered a replacement 
for a computed value) and alerts (the system has de- 
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tected a condition specified by the knowledge engineer 
to be anomalous). Annotation information is also held 
in other non-key columns in the value table, and is 
again accessed through links. 

The design of the forms system leads to a clean sepa- 
ration of a knowledge engineer’s two principal tasks: 
representing and structuring domain knowledge, and 
designing and encoding an appropriate user interface. 
The technical apparatus of extensional and intensional 
functions (i.e., the equation network) supports the first 
task, while the forms system supports the second. The 
flexible and uniform mechanism for linking these com- 
ponents considerably simplifies the design and imple- 
mentation of large knowledge bases. 

INTEGRATION AND CONTROL 

Control Issues 
The principal objects in Syntel are functions and dis- 
play objects. Accordingly, the principal control issues 
are when to compute a function and when to refresh a 
display object. 

As we mentioned earlier, the Syntel run-time system 
is basically data driven. It maintains consistency be- 
tween variable values by recomputing derived values 
in response to user-initiated changes in input values. 
Most display objects are refreshed immediately after 
the user has entered one or several input values and 
relinquished control. As with all data-driven systems, 
this can lead to serious efficiency problems. For large 
equation networks containing thousands of value tables 
with tens of thousands of instances, response times can 
be unacceptably long. 

Typically, only a few of the output display objects 
will have new values when the user enters new data. 
Therefore, we cache all computed values, whether dis- 
play or not, and reevaluate only the ones that have 
changed and thus need recaching. This reevaluation is 
done incrementally and bottom-up. The result is a form 
of program differentiation [Zl] that we call propagation. 

It is interesting to compare propagation to the method 
known as lazy evaluation [g], a demand driven, top- 
down approach in which a minimal set of expressions 
are evaluated each time an output value is requested. 
By contrast, propagation is a data-driven, bottom-up ap- 
proach in which computed values are saved between 
evaluations and the system reevaluates and recaches 
the differences that result from limited user updates of 
input values. 

Syntel, however, does not use propagation exclu- 
sively. In particular, some display objects (such as dy- 
namic explanation texts) are computed only when the 
user explicitly requests them, in which case, the sys- 
tem uses demand-driven, top-down evaluation. Each 
function is analyzed at compile time to determine 
whether or not it participates in demand-driven evalua- 
tions only, and should not be evaluated bottom-up. 

As important as they are, consistency and efficiency 
are not the only considerations that shape the design of 
the inference engine. The system has to be able to con- 

trol the forms or parts of forms visible to the end user. 
It should allow the user to override system-derived val- 
ues, and later to remove any overrides as desired. It 
should also be able to alert the user when important 
situations are detected. Finally, it should support expla- 
nations of how derived values are obtained. 

The three principal techniques used to achieve effi- 
cient operation-breadth-first propagation, incremental 
calculation of the default join, and screen-limited prop- 
agation-are used to minimize the recomputation done 
in response to changes. 

Breadth-first, Bottom-up Propagation 
As we mentioned earlier, an equation network is a di- 
rected, acyclic graph. From any input node, there are 
usually many paths through the network that eventu- 
ally terminate in one or more output nodes. For this 
reason, direct breadth-first propagation will incur seri- 
ous recomputation penalties. To avoid this recomputa- 
tion, Syntel does a compile-time analysis of the equa- 
tion network to create a partial ordering of nodes 
according to their level number. At run time, this order- 
ing is used to maintain a pending array P [L] whose Lth 
element is the set of node instances at level number L 
whose values have changed, but for which the effects 
of those changes have yet to be propagated. Initially, 
this array contains only the nodes changed by end-user 
input. Each time a node is propagated, it is deleted from 
P [L] and its successor nodes are added to P [L] if a 
change in their values occurred; the propagation stops 
if no change occurred. Starting with the largest level 
number and working in descending order, the infer- 
ence engine propagates nodes in P [L] until it is empty. 
This results in propagation that proceeds upward level- 
by-level in a breadth-first fashion. Incidentally, our de- 
sign heavily favors efficient run-time performance at 
the expense of compile-time analysis, just the reverse 
of the design of typical interpreted spreadsheets. The 
same compile-time analysis also supports the screen- 
limited propagation technique described later. 

Instance Propagation and the Incremental Default Join 
Changing a single instance of one argument can pro- 
duce multiple changes in the values of other instances. 
For example, suppose 

ZlI, Jl - PlUS(X[Il, Y[Jl) 

and suppose the following instances exist: 

I J-Z 
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COMPARING SYNTEL WITH OTHER SYSTEMS 
The development of Syntel drew upon work in expert sys- 
tems, database systems, spreadsheet programs and nonpro- 
cedural programming languages. Perhaps the best way to 
place it in perspective is to compare it with well-known sys- 
tems in each of these areas. 

Expert Systems 
Among the better known data-driven expert system shells or 
languages, Syntel is most closely related to Prospector/KAS 
[12], OP.% [6] and Oncocin [28]. None of these systems has 
integrated database primitives, and none employs pure func- 
tional representation methods. Prospector’s inference net- 
work resembles Syntel’s equation network. In particular, it 
propagates distributions for propositional variables through 
its inference networks (its relative, Hydro, propagates more 
gener,al probability distributions [12]). The propagation algo- 
rithms,, based on Bayes’ Rule and histogram techniques, are 
substantially different, however. 

OPS5 resembles Syntel primarily through being a general 
data-driven language for expert systems, but it is based on 
production rules, not functions. It differs in its recognize/act 
architecture, high-level primitives, lack of support for inexact 
reasoning, different run-time features, and lack of a user 
interface definition facility. 

Oncocin is really a medical expert system, rather than an 
expert system shell or language, but many of its external 
charac:teristics are similar to those of Syntel. In particular, 
unlike its famous ancestor Mycin [27], Oncocin is data-driven 
and uses a forms-oriented interface that allows end users to 
enter information and to override results. However, it is im- 
plemented as a rule-based rather than a functional system, 
has diiferent ways of expressing inexactness by certainty 
factors, and entirely different control mechanisms. 

Progrsmming Languages 
Viewed as a programming language, Syntel is a nonproce- 
dural functional data-flow language [2, 251 that shares char- 
acteristics of Lucid [33] and Lucas and Risch’s equation- 
based system [19]. Those systems, however, are both 
demand-driven (evaluated topdown), and thus cannot ac- 
tively monitor computed values. Access-oriented program- 
ming languages like Loops [30] support monitoring through 
“active values.” In Syntel, however, function activation is in- 
voked uniformly by the system, rather than by programmer- 
provided explicit triggers. 

Spreadsheets 
The heavy emphasis on data-driven control makes it tempt- 
ing to compare Syntel to spreadsheets, possibly the only 
systems in widespread use that share this control paradigm. 
This superficial resemblance is heightened because Syntel 
applicalions often contain arrays of numbers like the one 
shown in Figure 6, but concluding that Syntel and spread- 
sheet programs are alike would be as misleading as conclud- 
ing that all demand-driven programs are alike. 

The differences between Syntel and spreadsheets are 
many and deep. First, in contrast to spreadsheet programs, 
Syntel separates the user interface definition from the knowl- 
edge balse defined by the equation network, allowing us to 
define a data model for the knowledge base unconstrained 
by the requirements for display. An immediate consequence 
is the association of a value table and its related machinery 
with what in a spreadsheet would be a single cell. More 
significantly, instances of a value table can be created or 
deleted at run time, a capability that in spreadsheets would 
be roughly comparable to creating or deleting a cell, row, or 

column at run time. Spreadsheets lack this ability for funda- 
mental architectural reasons. 

There are other significant differences between Syntel and 
spreadsheet architectures. Even advanced spreadsheets 
[16] cannot reason probabilistically except through Monte 
Carlo simulation-an extremely expensive computational ap- 
proach. More importantly, spreadsheets lack a systematic, 
well-founded method for dealing with default data, a capabil- 
ity often essential for major classes of expert system applica- 
tions. Also, spreadsheets lack Syntel’s structured methods 
for drawing inferences from symbolic data. 

A further critical distinction between Syntel and spread- 
sheets centers on the question of efficiency. Syntel knowl- 
edge bases are typically too extensive and complex to run 
effectively even on large mainframes unless a grea.t deal 
of attention is paid to efficient execution. The extensive 
compile-time analysis of the knowledge base and the variety 
of interacting mechanisms described earlier overcome prob- 
lems of scale that would overwhelm conventional ilnterpreted 
spreadsheets even when supported by powerful hardware. 

Databases 
From a database point of view, Syntel generally fits the func- 
tional data model [14, 26, 291. These systems also treat 
binary relations as functions and use the naturalness of 
function composition in their data manipulation languages 
[26, 291, but they differ from Syntel in many ways (e.g., by 
lack of inexact values, default values, alerts, and overrides). 
Where other functional models use multi-valued functions, 
the functions in Syntel are always single valued. Hammer and 
McLeod point out the importance of derived data in semantic 
data bases [15], and Shipman stresses the use of derived 
functions for this purpose [26]. However, the mechanisms in 
data manipulation languages like DAPLEX [26] are designed 
more for data extraction and manipulation than for express- 
ing derived, inexact, nonprocedural computations. 

The important problem of representing “inexact informa- 
tion” (i.e., unknown, uncertain, and default values) in data- 
bases has been addressed by a number of mechanisms, 
including static default values [ll], null values [lo, 111, and 
the use of fuzzy sets (see, for example, 1221 for an entry 
point into that literature). Using probabilities for any of these 
purposes has been much less investigated. To the best of 
our knowledge, Syntel is the first system that combines un- 
known, uncertain, and default values within a uniform repre- 
sentation founded on formal probability theory. 

Several techniques have been proposed for continuously 
monitoring derived data. One approach combines a global 
recomputation strategy with static pruning mechanisms to 
recalculate derived data when needed [S], but it is inefficient 
when the amount of monitored data is large. Another ap- 
proach is to continuously maintain derived data in a func- 
tional data model by using “program differentiation,” where 
for each data operator there are predefined differentiation 
operators describing what to compute when data changes 
[18]. A third method uses an incremental view-maintenance 
algorithm to maintain derived relations containing Select, 
Project, and Join operators 141. Our propagation approach is 
a variant of these techniques, where we employ the user 
interface to prune the data to monitor, and where we also 
support default values. Finally, we should also mention the 
trigger mechanisms of System R [3] in which relational data- 
base manipulation code is executed when data is updated, 
and the POSTGRES extension of INGRES [31] that includes 
the RETRIEVE-ALWAYS primitive for continuously refetching 
derived data. 
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If the user changes just the one instance x [ 7 1, three 
instances of Z must be changed: Z [ 7 , a 1, Z [ 7, b] , 
andZ[7, NIL]. Furthermore, if the user creates one 
new instance of X or Y, several new instances of Z may 
result, with corresponding removals occurring upon 
deletion of instances. 

The simplest safe way to implement the inference 
engine would be to completely recompute the default 
join and the values of all instances every time an argu- 
ment instance of a function changed. While logically 
correct, such a solution would be extremely inefficient. 
Instead, an incremental form of view materialization 
[4, 181, limits the recomputation to only those instances 
that must be recomputed. 

If the value of an existing instance of an argument is 
changed, it is straightforward to identify all of the in- 
stances of the result that must be updated: they are the 
instances for which the extended parameter instance of 
the argument matches the existing parameter instances 
of the result, and for which the common parameters 
match exactly. The problem is a bit more complicated 
when an instance of an argument is created or deleted, 
since that changes the default join. Our solution is to 
compute the default join incrementally. Returning to 
the above example, suppose that a new instance of Y is 
created: Y [cl = 2. The corresponding extended pa- 
rameter instance (NIL c) matches two extended pa- 
rameter instances in X: (7 NIL) and (NIL NIL]. Thus, 
creating a new instance of Y leads to two new instances 
of Z, but none of the other instances has to be updated. 

J - Y 
a 3 

b 7 

-T- 
C 2 

NIL 11 

I J 
7 a 
7 b 
7 C 

7 NIL 
NIL a 
NIL b 
NIL C 

NIL NIL 

+ z 
5 
9 
4 

13 

2 

6 

10 

Screen-Limited Propagation 
Another way to apply the principle of minimal updat- 
ing is to exploit the fact that, at any given time, the 
user can see only what is visible on one screen. After 
the user has made changes and relinquished control, 
the only nodes that must be updated are the ones that 
influence the values visible on the current screen. This 
observation leads to a method for minimizing computa- 
tion that we call screen-limited propagation. 

A node is said to support a screen if it is either 
(1) linked directly to the screen or (2) located on a path 
through the equation network between two nodes that 
are directly linked to a screen. Let Support ( s ) de- 
note the set of nodes that support a screen S. When the 
user changes the values of nodes that appear on screen 

s and relinquishes control, the inference engine follows 
a modified form of the breadth-first, bottom-up propa- 
gation algorithm. The basic idea is to propagate a node 
in the pending array if and only if it is in sup - 
port(S). 

Because most of the nodes in the pending array are 
not in Support ( s ), we actually maintain two pending 
arrays, a local array for nodes in Support ( s ) and a 
global array for all other nodes.’ Thus, when propaga- 
tion of nodes in the local array stops, all of the nodes 
that appear on s will have been updated, but the global 
array will usually contain unpropagated nodes that 
support other screens. When the user decides to view 
another screen s I, the inference engine moves the 
nodes in the global array that support s I into the local 
array and propagates them. Although this may result in 
some delay before the next screen can be viewed, it 
cannot increase [and it usually dramatically decreases) 
the total time required for propagation. 

Overrides 
Because Syntel functions are side effect-free it is easy 
for the user to override any derived values without 
introducing logical problems. Recall that user-entered 
values, if present, always take precedence over derived 
values. Thus, a user-supplied value can be entered the 
same way it would be for an input node, and will be 
used in place of the derived value for all subsequent 
computations. 

Basically, an override is removed by deleting the 
user-entered value and recomputing the derived value. 
While it might seem that recomputation could entail a 
recursive chain of recomputations, the referential 
transparency of the intensional functions means that 
we only have to look up the current values of the argu- 
ments. Once recomputed, the node is entered into the 
pending array, and the effects of its restored value are 
propagated through the rest of the equation network. 

Alerts 
It is often important that the system be able to bring 
something to the user’s attention when certain condi- 
tions exist. We call such a triggered message an alert. 
The normal computational mechanisms can be used to 
test for the alert condition and to concatenate strings to 
compose the alert message. The only real questions are 
practical ones of how to present that message to the 
user. 

In some cases, the knowledge engineer can reserve 
an area of the screen for short messages and make them 
become visible when the alert condition is satisfied, but 
alert messages can be long, and screen area is usually 
in short supply. Our solution is to associate the alert 
message with some visible node on the screen. When 
the alert condition first becomes satisfied, in addition to 
popping-up the message in a scrollable and closeable 
window, the system displays the ‘I!” annotation charac- 
ter next to the associated node’s box. Special interface 

‘This solution was recognized and proposed by one of our colleagues. 
jonathan Seder. 
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code iallows the user to go back to any node flagged 
with the “!” and reread the alert message. Thus, the 
mechanisms for issuing and handling alerts are incor- 
porated in the interface code, and although they seem 
to involve control, they place no additional require- 
ments: on the inference engine. 

STATUS 
Active functional systems provide a data-driven, func- 
tional approach to integrating database and expert sys- 
tems. The Syntel embodiment of this approach has 
been fully implemented since mid-1986, and has been 
used to develop two families of commercial products, 
the Underwriting Advisor’” and the Leading Advisor’” 
systems which were initially developed on Xerox llOO- 
series workstations. Both the inference engine and the 
user interface were written in InterLisp; they have 
been delivered using an inference engine written in 
PL/I that runs on IBM System/370 mainframes under 
MVS/XA using CICS, with the interface system written 
in C that runs on PC/AT and PS/2 workstations. The 
equation networks for these applications contain sev- 
eral thousand nodes each with inference chains more 
than ZOO functions deep and reference data relational 
tables that contain over 100,000 values. While there is 
no direct relation between functions and rules or 
frames, these are large expert systems by any measure. 

Notwithstanding the large knowledge base size and 
the very considerable depth of (probabilistic) computa- 
tion, performance in typical end user environments has 
been acceptable. Actual response times in time-shared 
environments depend, of course, on many factors out- 
side Syntel. As a rough indication, however, most user 
transactions are executed in a few seconds or less. 

From a more theoretical viewpoint, the uniform view 
of representing data as extensional functions and repre- 
senting knowledge as a network of intensional func- 
tions leads to great conceptual simplicity. The view that 
prior distributions are generalized default values and 
the incorporation of prior instances into the basic de- 
sign provides a clear, uniform method for handling un- 
known and inexact values. Such uniformity greatly 
simplifies the design of other subsystems, such as the 
explanation system and the knowledge engineering 
programming environment, that operate on the knowl- 
edge ba.se, providing capabilities that are very difficult 
to create for multi-paradigm systems. 

That the system is completely nonprocedural and 
free from side effects yields several advantages. End 
users can enter, change, or override data in any se- 
quence. “What-if” experimentation is easily supported. 
Explanations and alerts are facilitated because outputs 
depend only on the values of user inputs, rather than 
sequence or side effects. Cases can be saved by saving 
user inputs, and restored by repropagating inputs. 
Knowledge engineers specify the relations between 
variables without concern for control issues and thus 

Q Underwriting Advisor is a registered trademark of Svntelligence. Inc 
Q Leading .9dvisor is a registered trademark of Syntell&ence. Inc. 

the knowledge base can be specified and designed from 
a dataflow standpoint [7]. We believe that this will 
also greatly simplify the maintenance phase of the 
knowledge-base life cycle as well, although this re- 
mains to be demonstrated. 

Two issues that confront active functional systems 
are generality and efficiency. Generality realy con- 
cerns the breadth of the class of problems fo.r which the 
data-driven, functional approach is natural. For exam- 
ple, while one can solve problems that require graph 
searching in Syntel, such problems are much more nat- 
urally solved with a procedural approach. However, we 
believe that the active functional systems are applica- 
ble to a much broader class of problems than just the 
financial risk-assessment applications that have been 
addressed to date. It certainly includes estimation 
and assessment problems in general, as well as many 
moderate-size database problems. In particular, we 
have used Syntel internally to build a powerful data- 
base editor to help knowledge engineers develop and 
maintain reference databases. 

We have described several techniques that were 
used to improve efficiency. In particular, program dif- 
ferentiation ideas proved highly effective in hmiting 
recomputation to items that must be recomputed. The 
methods of breadth-first, bottom-up propagation, incre- 
mental computation of the default join, and screen- 
limited propagation all exploit this principle. Condi- 
tional visibility also proved to be very valuable in 
guiding the user and improving the efficiency of opera- 
tional use without sacrificing the freedom of data- 
driven control, but since what should be visible de- 
pends on the semantics of the application, its effective- 
ness and logical correctness depend on the skill of the 
knowledge engineer. The development of additional 
ways to allow the knowledge engineer to use meta- 
knowledge to influence control without sacrificing the 
advantages of the functional approach is an important 
area for future research. 
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