
~~

IIIII

The Translation of Object-Oriented Queries
to Optimized Datalog Programs

Tore Risch

Technical Report HPL-DTD-91-9

Feb 20 1991

Copyright © 1991 Hewlett-Packard Company

The advent of object-oriented DBMSs has created a demand for object
oriented (00) declarative query languages. Analogous to the relational en
vironments, the query processor has the responsibility of translating queries
into efficient execution plans. In this paper we address the translation of
queries in the OSQL language, which is the lingua franca of HP's IRIS
system. The usefulness of the optimization of query execution cannot be
understated based on the relational experience.
We infer the need for certain optimization methods from the query con
structs and usage patterns that are particular to the 00 paradigm. Fur
ther, we observe the correspondence between the extensive optimization
technology developed in the context of relational/Datalog queries and this
new arena. Accordingly, we translate OSQL queries into optimized Data
log programs, wherein traditional optimization techniques can be utilized
straightforwardly.
This approach is demonstrated in a fully functional prototype implementa
tion of OSQL.

HEWLETT
PACKARD
Database Technology Department
Hewlett-Packard La boratories
1501 Page Mill Road
Palo Alto. CA 94304

The Translation of Object-Oriented Queries to
Optimized Datalog Programs*

Tore Risch
HP Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94303

February 20, 1991

Abstract

The advent of object-oriented DBMSs has created a demand for object-oriented
(00) declarative query languages. Analogous to the relational environments, the query
processor has the responsibility of translating queries into efficient execution plans.
In this paper we address the translation of queries in the OSQL language, which is
the lingua franca of HP's IRIS system. The usefulness of the optimization of query
execution cannot be understated based on the relational experience.

We infer the need for certain optimization methods from the query constructs and
usage patterns that are particular to the 00 paradigm. Further, we observe the cor
respondence between the extensive optimization technology developed in the context
of relational/Datalog queries and this new arena. Accordingly, we translate OSQL
queries into optimized Datalog programs, wherein traditional optimization techniques
can be utilized straightforwardly.

This approach is demonstrated in a fully functional prototype implementation of
OSQL.

"'This is a working paper. The author greatly appreciates comments.

1

1 Introduction

OSQL [1] is a high-level query language for the object-oriented DBMS Iris [6]. Iris has a
functional data model similar to DAPLEX[13], and OSQL can be regarded as an extension
and modification of SQL that works over such an object-oriented data model. In particular,
OSQL supports declarative set-oriented queries similar to SQL, extended with abstract
data types, inheritance, and object identifiers [6]. The basic query primitive of OSQL is a
select statement related to the corresponding SQL statement.

OSQL provides a declarative access language to object databases and thus it must be
optimized before execution. There has been substantial research on optimizing relational
query languages, and the work on optimizing logical query languages, e.g., CDC [3,4] and
NAIL! [14, 15], is closely related. One may actually regard a logical query language SUcll
as Datalog [14, 15] as a canonical relational query language from which relational algebra
can be easily generated for subsequent interpretation [14]. It would be advantageous if
some of the work invested in optimizing and interpreting Datalog could also be applied to
OSQL.

This paper is based on an optimizing translator from OSQL into a Datalog dialect. Byop
timizing the generated Datalog programs, we are able to leverage some of the vast amount
of research invested in optimizing relational and logical data languages. We will show how
OSQL queries can be translated rather easily into Datalog rules. As part of the translation
into Datalog rules, we apply some optimizations on OSQL expressions relying on object
oriented properties of OSQL. In a second optimization step, the generated Datalog rules
are transformed into an equivalent set of more efficient Datalog rules. We will describe
some optimization techniques we have found useful to optimize Datalog expressions that
are generated from object-oriented OSQL query patterns.

We distinguish between two kinds of optimizations:

• Ameliorations [2] are unambiguous transformations that guarantee improved final
execution speed irrespective of any other decisions.

• Optimizations are transformations that aim at improving the execution speed by
cllOosing among several execution plans.

We have a fully implemented system that does the transformations described in this pa-

2

per. The system, called ADB (Active DataBase), includes a main memory interpreter for
Datalog rules. The system allows OSQL-based databases to be completely represented,
updated, and queried. The interpreter supports referential integrity so that a database
update invalidates definitions that depend on deleted objects. The referential integrity
system guarantees that critical assumptions made by the code optimizer are always valid,
or otherwise the code is invalidated.

The system is designed for efficient execution in main memory. To achieve good perfor
mance we have carefully optimized the representation of critical system data structures,
e.g., object representation, type information, and the representation of function defini
tions. For these cases we use tailored main memory data structure representations, rather
than using relations. For example, our object identifiers are represented as variable-length
records, where one field points to the object's type information and another points to
its function definition. It is critical that this information is represented efficiently since
it is extensively looked up both during compilation and during interpretation of OSQL
functions.

We use an extended foreign function mechanism to give transparent access to special
purpose data structures such as the type system. The architecture relies on optimization
of such foreign function calls.

In section 2 we give a short introduction to the basic concepts of objects, types, and
functions in OSQL. Section 3 describes the abstract query representations used during
the transformations. Section 4 and 5 describe ameliorations and optimizations that are
used. Section 6 contains some performance measures indicating the importance of our
optimizations, and finally, in section 7, we summarize our experiences and point out some
possible future work.

2 Basic OSQL Concepts

Throughout this paper we will use OSQL [6, 1] as a query language to model object
oriented databases. OSQL models objects based on the three concepts of types, objects,
and functions. In OSQL, objects are atomic object identifiers (OIDs), types classify OIDs
into groups, and functions associate properties and relationships between objects. For a
more complete description of OSQL and Iris, see [6]. Here we will review some of the basic
OSQL constructs for maintaining and searching object-oriented databases.

3

2.1 Types

The statement create type creates a new OSQL type, optionally as a subtype of one or
more other types. For example,

create type Person;
create type Student subtype of Person;

1* Illustrates inheritance *1
create type Teacher subtype of Person;
create type TeachingAssistant subtype of Teacher, Student;

1* Illustrates multiple inheritance *1

With the subtype of construct, types will be partially ordered in an acyclic type graph.

2.2 Objects

A special variant of create is used for creating and initiating objects of prespecified types.
For example,

create Student;

will create a new object of type Student. Objects may have one or several properties (or
attributes) which are actually modeled as typed functions. For example, a person may
have a property, Name, which is actually represented as a function that, given an object of
type Person, returns a string. The properties may be set as part of the create statement,
e.g.:

create Student (Name) instance ("Karl");

will create a new Student and also set the property Name to "Karl".

The system maintains referential integrity of objects so that if an object is deleted all
references to that object are also deleted. If a type is deleted all subtypes are deleted as
well as all functions defined over the deleted types.

4

2.3 Functions

OSQL functions model both object attributes as well as relationships between objects.

OSQL functions are of three kinds:

1. Stored functions are stored as database tables.

2. Foreign functions are programmer-defined operators implemented by escaping to an
underlying procedural language.

3. Derived functions are derived combinations of other functions; derived functions are
related to views in relational databases.

Figure 1 gives some examples of OSQL function definitions that will be used in our exam
ples in the rest of this paper.

Methods of the type found in Small talk and C++ are modeled in OSQL as functions whose
only argument is bound to an object identifier. In the example, objects oftype Person have
the attributes Name, Income, Taxes, Parent, Netlncome, GrandSParentNetlncome,
etc., represented as OSQL functions of a single argument bound to objects of type Person.

The functions Income, Net Income and Bothlncomes are examples of overloaded functions
that have different definitions depending on the type of their first argument. For example,
there are two variants, or resolvents, of the Income function, one for incomes of given
persons and another one for incomes of given names of persons.

Resol vents can be defined as any of the three basic function types. Overloaded functions
handle the cases when different classes have attributes with the sanle name; the overloading
on the first argument (the object instance) does the class dispatch. CLOS[7] represents
methods similarly by using overloaded functions.

The function Minus in the definition of the OSQL function Net Income is an example of a
foreign function call.

An OSQL function may return a set of values; e.g. Parent (Person p) will normally return
two parents.

5

create function
create function
create function
create function
create function

select p

Narne(Person p) -) Charstring nrn;/* stored */
Incorne(Person p) -) Integer i; /* stored */
Taxes(Person p) -) Integer i; /* stored */
Parent(Person c) -) Person p; /* stored */
PersonNamed(Charstring nrn) -) Person p as

/* derived */
for each Person p
where Narne(p) = nrn;

create function Incorne(Charstring nrn) -) Integer i as
select Incorne(PersonNarned(nrn»; /* overloaded */

create function NetIncorne(Person p) -) Integer n as
select Minus(Incorne(p),Taxes(p»; /* derived */

create function BothIncornes(Person p) -) <Integer i, Integer n) as
select Incorne(p), NetIncorne(p); /* two results */

create function BothIncornes(Charstring nrn) -) <Integer i, Integer n) as
select i, n
for each Integer i, Integer n
where <i,n) = BothIncornes(PersonNarned(nrn»; /* overloaded */

create function NetIncorne(Charstring nrn) -) Integer n as
select NetIncorne(PersonNarned(nrn»; /* overloaded */

create function SParent(Person c) -) Student s as
select p
for each Student p
where p=Parent(c); /* Parent if parent is student */

create function GrandSParentNetIncorne(Person c) -) Integer ni as
select ni /* Net income of grandparent

if grandparent is student */
for each Integer ni, Person gp, Person p
where ni = NetIncorne(gp) and

gp = SParent(p) and
p = Parent(c);

Figure 1: Examples of OSQL queries

6

The arguments and results of a function together with their types are called the signature
of the function. We denote signatures by

For example:

Income(Person p) -> Integer i
BothIncomes(Person p) -> Integer i, Integer n
BothIncomes(Charstring nm) -> Integer i, Integer n

The arguments of a function are named by PI , ... ,P n; their actual values are restricted
to types T

"
... ,Tn. A function can have more than one result, named by QI,' .. ,Qm

restricted to types UI , ... ,Um. Syntactically multivalued functions are called by using a
bracket notation, as in BothIncomes.

OSQL has a set-oriented sel ect statement to declaratively specify queries over the database.
Derived functions are specified using select statements referencing other derived or stored
functions. Select expressions allow functions to be used backwards, for example Name in
the function PersonN amed.

The select statement has the syntax:

select <results>
for each <declarations>
where <predicate>

The <results> is a list of expressions denoting the result(s) of the function. The <results>
can be either a list of result variables or a list of function expressions, as illustrated by the
two overloaded definitions of BothIncomes.

We will here assume that the predicate is always a conjunct of simple predicates. Our
implementation allows arbitrary nesting of conjuncts and disjuncts.

7

,

I

I
I
j

I
!
I
!
I

i
I
I
I
I I:
11 ,
I'
I!
I'

:1

i 1
If

II
i!
it
1
!

! Ii
"

3 Query Abstractions

Our algorithms operate on queries represented in canonical formats. In this section we
briefly describe the formats of these abstracted queries. In the next sections we describe
our optimization algorithms as transformations on the abstracted queries. We present the
query abstractions by means of examples. It is outside the scope of the paper to describe
how the system automatically translates between the abstractions.

3.1 Flattened OSQL Queries

The translation of OSQL queries into Datalog assumes select expressions where there
are no functions references in the result list and where no function nesting occurs in
the predicate. We say that such select expressions are flattened. We flatten select
expressions by introducing new variables to remove unneeded function references. For
example, the two resolvents BothIncomes would be translated into the following flattened
definitions:

create function BothIncomes(Person p) -> <Integer i, Integer n> as
select _vi, _v2
for each Integer _vi, Integer _v2, Person p
where _vi=Income(p) and _v2=Netincome(p);

create function BothIncomes(Charstring nm) -> <Integer i, Integer n> as
select i, n
for each Integer i, Integer n, Person _vi
where vi = PersonNamed(nm) and

<i,n> = BothIncomes(_vi);

3.2 Type-adorned Queries

We need a way to identify each resolvent of an overloaded function with a unique name.
We create a unique naming scheme for resolvent functions by annotating the name of the
overloaded function with the name of its signature types. For example, the definitions of

8

Income will have the type-adorned resolvents

IncomePerson_ >Integer and IncomeCharstring_>Integer'

The system creates type-adorned function definitions by substituting overloaded functions
in a flattened select expression with their type-adorned resolvents. We call such a substi
tution algorithm overload resolution, which is an amelioration we will discuss in more detail
later. For example, after type annotation, the definition of GrandSParentNetlncome will
be transformed into:

create function GrandSParentNetlncomeperson_>Integer (c)
-) Integer ni as

select ni
for each Person c, Integer ni, Student gp, Person P
where ni = Net Incomeperson_>Integer (gp) and

gp = SParentperson_>Student(P) and
p :: ParentPerson->Person (c);

3.3 Datalog Queries

The 08QL compiler transforms the type-adorned resolvents into corresponding type
adorned Datalog rules and facts. In general, using Datalog terminology [14], we translate
stored 08QL functions into extensional (EDB) predicates, derived functions into Data
log rules, and foreign functions into built-in Datalog predicates, which in our case are
user-definable.

In our examples of generated Datalog programs, we use the conventional Datalog naming
scheme where symbols spelled with capital letters denote variables and lowercase symbols
denote constants. We type-adorn the Datalog rules and facts as before, with the difference
that we do not differentiate between arguments and results in the Datalog rules.

For example the two resolvent functions for Income would generate the following two type
adorned EDB predicates:

incomePerson,Integer (P , I)
incomeCharstring,Integer CD J I)

9

The type-adorned definition of the derived function GrandSParentNetlncome would gen
erate the following type-adorned Datalog rule:

grandsparentnetincomePerson,Integer (C, NI) :-
net income Person,Integer (GP ,NI) &

sparentPerson,Student (P ,GP) &
parentPerson,Person (C ,P) .

In general the type-adorned Datalog rules are direct mappings of the type-checked resol
vents where the head of the rule is determined by the signature of the resolvent and the
body of the rule its select expression.

3.4 Binding Pattern Adorned Rules

The optimizer will specialize further type-adorned Datalog rules into binding pattern
adorned [15] Datalog rules. In binding pattern adorned Datalog rules, each literal is
adorned with binding patterns, where superscripts band f indicate whether the corre
sponding argument position is bound or free, respectively. The binding pattern adorn
ments depend on which variables are arguments of the function as well as the order of the
literals of the rule body.

The goal of the translator/optimizer is to translate each OSQL function definition into
an optimized, typed-adorned, and binding pattern adorned Datalog rule. This Datalog
rule constitutes a customized global optimization for the OSQL function. For example,
GrandSParentNetlncomePerson_>Integer could get translated into:

grands parent net income~erson Integer (C ,NI) :-
, bf

parentpersonPerson(C,P) &
bf '

sparent Person Student (P, GP) &
bf '

net income Person,Integer (GP ,NI) .

Notice that when the optimizer reorders literals in the body of a rule, different binding pat
tern adornments will be referenced by the literals. For example, an alternative suboptimal
definition of the above rule would be:

10

grandsparentnetincome~erson Intever (C, NI) :-
, J f

sparent Person,Student (P, GP) &

parent3l'erson,Person (C, p) &

netincome~erson,Integer (GP, NI) .

4 Ameliorations

Ameliorative techniques are ones that improve the execution in most (if not all) cases. For
example, consider a query that has the following two conditions:

income> 50 and income> 80

Obviously, it is unnecessary to apply both conditions and the first condition can be elimi
nated, resulting in improved performance. Therefore, as in this example to apply amelio
rative techniques is generally useful. In this section we present a few of the ameliorative
techniques that are particularly useful in the context of object-oriented queries.

4.1 Overload Resolution

Methods of objects are modeled in OSQL as functions, as was described in the introduction.
The use of the same function (method) name for two object types introduces the need
for overloaded functions. Overloaded functions carry the overhead of looking up which
resolvent to use in each given situation. The system has an algorithm, called overload
resolution, that for each function call finds out which resolvent to use in order to substitute
the function call for a type-adorned function call.

An important amelioration is to analyze select expressions and perform overload resolu
tion at compile time (early binding) rather than at run time (late binding). At compile
time, the resolvents are completely determined by the types of the for each declared
variables.1 Compile time overload resolution has the following advantages:

lThe early binding of overloaded functions can sometimes cause semantic problems, which are outside
the scope of this paper.

11

1. Run time overload resolution (late binding) would require that the generated Datalog
program contain variables bound to predicate names. Such higher-order predicates
are inherently more difficult to optimize and interpret than ordinary Datalog rules.

2. With early binding we know at compile time exactly which resolvents are called
from a given OSQL definition. This allows us to make global optimizations for each
resolvent, by translating each resolvent to type-adorned and binding pattern adorned
and optimized Datalog rules.

3. There is higher a cost to doing dynamic function resolvent lookup at run time. The
overload resolution is a potentially expensive operation since the type hierarchy needs
to be traversed to find matching resolvents.

4. By doing overload resolution at compile time we detect typing errors early.

In Iris the overload resolution algorithm is a function of the first argument only; thus given
a function call,2

we get the resolvent by looking only at the name of the called function, f, and the type,
Ti , of its first argument, Ai.3 The overload resolution algorithm can therefore be expressed
as a function with the signature

Resolve(Function F,Type T) -> Function R

returning a resolvent function, R, for a given function, F, and the type of its first argument,
T. The current overload resolution algorithm traverses the type hierarchy bottom up from
Ti looking for resolvents, similar to method lookup in Smalltalk and other object-oriented
programming languages. Overload resolution is undefined if the overload resolution algo
rithm is unable to find a resolvent. Since OSQL allows multiple inheritance, it is possible
to get more than one resolvent for a given signature, in which case the overload resolution
algorithm signals ambiguous resolvents, which is regarded as an error. We will not further

2In order to avoid backtracking during type checking the first type functionally determines the other
types of the resolvents.

3It is conceivable to generalize the overload resolution algorithm to operate on other function arguments
and results as well.

12

elaborate on the overload resolution algorithm here; we just assume that there is a func
tion, Resolve, that either computes a unique resolvent, given that the first argument of a
function call is known, or fails.

Given a flattened predicate, we can assume that every argument of a function referenced
in the predicate is an unambiguously typed variable.

The general rule 'for overload resolution of select predicates is that if we have a function
reference

and the type of the first argument Ai is known to be Ti , and Resolve(f, Ti)=fT" ... ,-> ... ,
then we can transform the function reference into the type-adorned function reference

fT
"

... ,-> ... (Ai, ...)

For example, in GrandSParentNetIncome we use the following overload resolution trans
formations:

Resolve(NetIncome,Person)
Resolve(Parent,Student)
Resolve(SParent,Person)

-> Net IncomePerson_ >Integer

-) Parentperson->Person

-> SParentPerson->Student

In summary, OSQL modeling of methods as functions introduces the need for overloaded
functions. The method lookup is optimized by overload resolution at compile time. Global
optimization needs early binding to be able to optimize the entire search expression called
from an OSQL function.

4.2 Type Check Removal

The for each type declarations in select expressions restrict value types of each declared
variable. In OSQL we can regard every object to have an associated set of types to which
it belongs. The set of types is normally obtained by traversing the type graph upward
from the declared type of the object.4 For example, an object of type TeachingAssistant
would have the associated type set

40SQL also has a feature to allow dynamic modification of the list of types associated with an object[GJ.

13

{TeachingAssistant, Teacher, Student, Person, UserTypeDbject}

For testing type membership of objects there is a built-in function, TypesDf, with signature

TypesDf(Dbject 0) -> Type t

TypesOf returns the set of types to which a given object belongs,

-The general rule for adding type checks is to add a call to TypesDf for each variable
declared in a select statement in order to test that the objects bound to the variables are
of the declared types,S For example:

create function GrandSParentNetIncomeperson_>Integer (c)
-> Integer ni as

select ni
for each Person c, Integer ni, Student gp, Person p
where TypesDfObject->Type (c) =typePerson and

TypesDfObject->Type (ni) =typeInteger and
TypesDfObject_>Type (gp) =typeStudent and
TypesDfObject->Type (p) =typePerson and
ni = NetIncomeperson_>Integer (gp) and
gp = SParentperson->Student(P) and
p = ParentPerson->Person (c);

The variables typeInteger, typeStudent, and typePerson refer to constants denoting
type objects for types Integer and Person,

Notice here, that equality (=) for a multivalued function like TypesDf means that there
exists a result value among the set of values returned by TypesDf which is equal to the
type objects typeInteger, typeStudent, typeStudent, and typePerson, respectively,

We allow built-in functions to be used bi-directionally as a relationship between arguments
and results, For example, TypesDf can be used either for testing if an object is of a given
type or to get all objects of a given type, For example, the function AllStudents returns
the set of all students:

5We will soon describe an amelioration to remove most of these type checks.

14

create function AllStudents() -> Student s as
select s
for each Student S;

After adding TypesDf tests to the definition of AllStudents we get:

create function AllStudents() -> Student s as
select s
for each Student s
where TypesDf(s)=typeStudent);

In this case TypesDf will be run backward to get all the possible objects, s, that have type
Student.

In summary, by adding calls to TypesDf we get dynamic type checks as well as typed
object generators. We will now describe an amelioration to remove unnecessary calls to
TypesDf.

None of the TypesDf tests in the definition of GrandSParentNetlncome are actually needed.
The reason for this is that the system guarantees the integrity of OSQL Junctions so
that whenever an argument or result of a function is of a certain type the system will
make sure that actual arguments match this type. In GrandSParentNetlncome we know
that the argument and result of ParentpersOn_>Per80n nlust be of type Person, which
obsoletes the type test TypesDfObjeet->Type (p) =typePerson. Similarly, since we know that
Incomeperson->Integer returns integers we may remove the test
TypesDfObject_>Type(ni)=typelnteger. Equivalent arguments can be made to remove all
other type checks in GrandSParentN etlncome.

In general, consider a type-adorned function call,

where some variable, Aj is declared to be of type Dj. Then we may remove the type check
for Aj if the type Tj is equal to Dj or a subtype of Dj, denoted as

T· C D· J - J

15

We say that f is a type container for the variable Aj. When a stored function is updated, the
integrity maintenance system makes sure that the update does not violate the type restric
tions of the signature of the function. Similarly, our type checking mechanism guarantees
that derived functions can never return objects that violate its type restrictions.

The function SParent is an example of a function where dynamic type checking is needed
for testing if the variable p is of type Student. The type test for p cannot be removed
since Parentperson->Person is not a type container for Student.

create function SParentperson->Student (c)
-) Person p as

select p
for each Person c, Student p
where TypesDfObject_>Type(p)=typeStudent and

Parentperson_>Person (c) =p

4.3 Equality Rewrite

The function ParentS returns the parents of children who are students:

create function ParentS(Person c) -) Person s as
select p
for each Person p, Student s
where p = Parent(s) and

s = c; /* Parent if child is student */

As can be seen by the function ParentS, equality checks are convenient for testing if an
object is of a given type. However, if no further optimizations are made, the calls to = will
result in inefficient calls to a foreign predicate, =. We will the get the following type- and
binding pattern adorned Datalog rule: 6

parents~erson,Studen/C'P) :- parent~erson Person (C, P) &
fb '

typesOfObjeot,Type (S, typeStudent) &

=i:ibject,object (C, S) .

6The type annotation: =-Object,Object denotes a boolean function whose both arguments are of type Obj ect.

16

It can easily be seen from the definition that the introduction of the variable s in the
definition of ParentS is present only to generate a test that c is of type Student.

The general rule is that the system will eliminate calls to = by substituting the variables
in the calls. The system handles equality transitivity so that if A = B and B = C then A
may be substituted for C.

In the example we get the following definition after an equality substitution:

parent st;feT'on,Person (C, p) ;- bi
parentpersonPerson(C,P) &

bb '
typesOfObjeot,Type (c, typeStudent) .

This is a considerable optimization in this case, since the original definition of ParentS
would first get all objects, S, of type Student and then test if C is equal to S.7

In summary, in object-oriented queries, equality tests are often used for testing type mem
berships. Optimization of equality tests are therefore important.

5 Optimizations

Query optimization techniques need to be applied judiciously, because the resulting execu
tion can be worse than before the application of the technique. Most (if not all) commercial
optimizers use a cost-based optimizer that applies optimization techniques depending on
the cost improvements estimated by a cost model. In this section, we describe some of the
techniques that fall into this category. We describe each of these techniques by inferring
the increased need in the context of 00 queries and relate the applicability of the known
relational/Datalog techniques.

7 A cost-based model for reordering foreign predicates, such as the one proposed by [3], would in this case
have avoided the pitfall as well by reordering typesof and =, but it would still not entirely have removed
the = call.

17

5.1 Datalog Optimization

Choice of bindings (i.e., join ordering, selection pushing) and access methods (e.g., join
method, index creation/use) are two of the useful techniques that were considered very
important in relational/Datalog query optimization. In fact, these techniques can result in
many orders of magnitude improvement to the query. We term this improvement Datalog
optimization because the techniques can be viewed as optimizing the Datalog program
by ordering the body of each rule (i.e., determine the binding pattern adornment) and
choosing the appropriate access methods. Viewed in this manner, it is obvious that the
Datalog program corresponding to the query can be optimized using traditional technology
and can accrue the phenomenal improvement.

Intuitively, the binding pattern adornment chooses the necessary nesting and inverting of
functions that are deemed useful by whatever criteria dictated by the cost model. The use
of different access methods allows the efficient implementation of computation of the func
tions, thereby accruing the advantages of restricting the computation to a smaller relevant
set of facts. The important observation here is that the correspondence between OSQL
queries and Datalog programs allowsthe straightforward use of traditional optimization
technology in the context of 00 queries.

With the object-oriented programming style of modeling object attributes as functions,
the most common usage of OSQL functions from application programs is to call OSQL
functions in the forward direction, where the arguments are known but the results are
unknown.s Therefore, when an OSQL function is defined, the system will always optimize
its body for use in the forward direction, i.e., where the arguments of the resolvent are
known but its results computed. In order to use Datalog optimization techniques, we need
to know for each Datalog predicate which arguments are bound or free. For example, the
typed-adorned OSQL function GrandSParentNetlncomeperson_>Integer will be translated
into a type- and binding pattern adorned Data.log rule,
GrandSParentNetlncome~erson_>Integer> and optimized according to that binding pattern.
The unoptimized rule would look like

80SQL also has primitives to modify values of stored functions, which are used when updating object
properties. We do not further elaborate on OSQL function updates here, but the reader is advised to read
about updates in Iris in [6].

18

grandsparentnetincome~erson Integer (C, NI) :
, ff

netincomeperson Integer (GP, NI) &
ff '

sparent Person Student (p, GP) &
bb ' () parent Person Person C, P . ,

The rule above is clearly extremely inefficient and needs to be optimized. In this section
we describe some useful optimization techniques.

5.2 Rule Expansion

The object-oriented nature of OSQL encourages the usage of many small functions where
each function corresponds to attributes of objects, and where attributes are very often
defined in terms of other attributes. For example, the function GrandSParentNetlncome
is defined in terms of the functions Sparent, Parent, and Netincomej Sparent is defined
in terms of Parentj and Netincome is defined in terms of Minus, Income, and Taxes. To
avoid the interpretation of many small Datalog rules and to be able to globally optimize ex
pressions as large as possible, we first perform rule expansion[15] on the generated Datalog
program, which substitutes Datalog literals with nonrecursive rule bodies.

For example, after rule expansion, the Datalog rule for GrandSparentNetlncome will have
this (still very inefficient) definition:

grandsparentnetincome~erson IntefJer (C, NI) :
'f!

income Person Integer (GP, _V2) &
bf '

taxesPersonInteger(GP,31) &
bfb '

pI us Integer Integer Integer eV2 , NI ,31) &
bb I I

typeso;fb;ect,Type (GP, typeStudent) &

parent Person Per.on (p , GP) &
bb ' parent Person Person (C, p) . ,

First, it easy to argue that rule expansion is not always a useful transformation. This is
because, in the presence of disjuncts,it would result in a large number of rules and effectively
eliminate the common subexpressions. On the other hand, in the presence of foreign and
derived functions with restricted allowable bindings, such transformations would make a

19

I
i
!
I'

I
I
I'

I
!
I'

I
I
~
I
j'

il

II

difference between safe and unsafe executions. This is because one ordering of the derived
functions may be unsafe if imposed on the original rules whereas the different rules in
the expanded program can be ordered differently. Needless to say, that lack of safety is
an extreme case of unoptimized execution and examples can be constructed wherein the
advantage of expanded rules ordered independently can easily outweigh the disadvantage
of the lack of common subexpressions.

5.3 Binding Pattern Optimization

The rule-expanded definition of grandsparentnetincome}ferson,Integer is clearly very sub
optimal. We need to reorder its literals in order to get an optimal execution plan. At this
point we postpone the problem of optimizing the order in which the two foreign functions,
TypesOf and Plus, are called by simply placing them at the end of the rule to guarantee
safe execution. The important optimization here is to reorder the other literals.

The system uses a method that combines the bound-is-easier heuristic of NAIL! [15J with
knowledge of index availability and cardinality of the EDB relations involved. By simply
applying bound-is-easier in this case we get the following optimal order:

grandsparentnetincome}ferson Integer (C, NI) :
, bf

parent Person Person (C, P) &
bf '

parent Person Pecson (P, GP) &
bf '

income Person Integer (GP, _V2) &
bf '

taxeSPerson Integer (GP, 31) &
bfb' ()

plus Integer,Integer Integer _V2, NI, _Vi &
bb '

typesofObject,Type (GP, typeStudent) &

5.4 Foreign Predicate Optimization

The optimization of foreign predicates can be succintly stated as the optimal adornment
of the binding pattern for each foreign and derived function. Whereas a relation in a
Datalog rule can be adorned with any binding, foreign and derived functions are restricted
by the fact that only certain bindings are allowable by its definition. This means that the

20

suboptimal binding pattern adornment can result in unsafe execution, i.e., in invoking a
function with bindings that cannot be supported by its definition. For example, finding
all values of x that satisfy the inequality x > 5 is an unsafe execution that is an extreme
case of suboptimal execution. Consider, for example, a foreign or derived function that
is defined for two out of four bindings but both the allowable bindings are not equally
efficient. For example, the function typesDf (X, T) computes the type of the object X.
Naturally, computing the type of a given object is very efficient but finding all the objects
of a given type is not.

The necessity of choosing the adornment is also evident in the ability to pose constraints in
formulation of the query. Our optimization method is similar to the constraint compilation
technique [10J used for efficient constraint propagation.

Consider the OSQL function ftoc to convert Farenheit degrees into Celsius:

create function ftoc(Real f) -> Real c as
select Div(Times(Minus(f,32.),5.),9.);

Assume we have stored the Celsius temperature of a person and want to use the function
above as a constraint to calculate the Farenheit temperature: 9

create function ctemp(Person p)-> Real c' ,
create function ftemp(Person p)-> Real f

as select f
for each Real f
where ftoc(f) = ctemp(p) ;

Our foreign predicate mechanism also allows Minus, and Di v to be defined as constraints
in terms of the two foreign functions, Plus and Times:

create function Minus(Real x, Real y) -> Real r as
select r
for each Real r
where Plus(y,r) = x;

9This case is more general than Iris' foreign function implementation[5J.

21

create function Div(Real x, Real y) -> Real r as
select r
for each Real r
where Times(y,r) = x;

With the above definitions we get the following unoptimized definition of ftemp:

ftemp~ersonReal(P,F) :-,
bff () plUSReal,Real Real 32,33 ,F &

bbf '
timesReal Real,Real CV3, 5, _V2) &

bfb '
times Real,Real,Real (9, _V1, _V2) &

ctemp~e"on Real (p, 31) . ,

The problem here is that the foreign predicates plus and times can only be called if two
of their arguments are known, so their calls have to be reordered by the Datalog optimizer
to generate a safe evaluation. In the example above, plusU!aI,Real,Real is undefined and the
rule is unsafe.

The final, optimized and binding pattern adorned definition of ftempPerson will look like:

ftemp~e"on,Real (p ,F) :- ctemp~er$on Real (p, _V1) &

times~tal R:al,Real (9,31,32) &
fbb '

timesReal Real Real (33,5, _V2) &
bbj , !

pluS Real,Real,Real(32,33,F) .

Our optimization here uses the bound-is-easier heuristic combined with trying at each step
to choose only legal binding patterns for foreign predicates.

The following steps generate the above literal order:

First we place ctemp~erson,Real (P, _Vi)

Now we have P and _V1 bound, and we must place times~!al,Real,Real (9, _V1, _V2) next.

Then we know P, _V1, and _V2 which forces us to place times';::al Real ReaICV3, 5,32) next.

Finally we place plus~!al,Real,Real (32,33 ,F) last. ' ,

In summary, the need to optimize the foreign and derived functions is deemed very impor
tant in the context of 00 queries. The crux of the problem is to integrate the optimization

22

of these functions in a seamless fashion to the optimization of the rest of the functions.
One such proposal was used in the context of £1)£ [3], wherein the optimization of these
computed functions was achieved by modeling them as 'infinite' relations, with certain
finiteness constraints and the cost modeled using schematic information.

Here we use a simplified mechanism by which the user can specify different definitions of the
foreign functions depending on their binding patterns. The system also allows a simple
cost-based heuristic by allowing the user to specify different priorities on the different
binding pattern adorned foreign predicate definitions. We have found our simplified foreign
predicate scheme to be very effective.

6 Performance Measurements

To give an indication of the effects of the various optimizations, we have measured the
execution times of some of our OSQL functions with and without optimizations. Our
database contains 1000 Person objects and we have measured the CPU time to execute
each derived OSQL function in the forward direction.lO The measurements have been
made for a main memory implementation of OSQL written in HP CommonLisp IV and
run on an HP9000/370. Compile time overloading and foreign function reordering must
be always active in order to produce executable Datalog expressions.

Function Optimization levels

GrandSParentIncome
ParentS

F = Full optimization
TC = No type checking

F TC

3.2ms 25ms
1.8ms 2.4ms

JO = No join order optimization
EQ = No equality optimization

JO EQ

514s 3.2ms
1.8ms 12s

As expected, our measurements show that join order optimization is potentially the most

lOWe also made the test for 10000 objects, but the worst case execution speed then got prohibitive, while
the best case remained approxilnately the same.

23

important one when object-oriented queries are specified declaratively. Even though we
optimized our query system for very fast dynamic type checking, the effect of removing
dynamic type checks gave one order of magnitude performance improvement for the rela
tively complicated function GrandSParentlncome. Finally, the use of equality substitution
to simplify ParentS also made a one order of magnitude performance improvement.

7 Summary and Conclusions

We have described how to translate an object-oriented query language, OSQL, into corre
sponding optimized Datalog rules and facts. We described some important optimizations
and ameliorations that are applied during the translation process.

Some optimizations that make use of OSQL constructs, such as function definitions and
type checking, are applied as part of the translation into Datalog. Other optimizations
transform the generated Datalog programs to make them executable and efficient.

V>/e described some of the optimizations that are particularly important because of the
object-oriented nature and usage of OSQL. Optimizations of importance from this point
of view are static overload resolution, type check removal, foreign function removal, equality
substitutions, and function optimization in the forward direction. Conventional relational
and Datalog optimizations are also extremely important. We illustrated each type of
amelioration and optimization with examples of how object-oriented OSQL queries are
translated.

All algorithms are completely implemented in a main memory OSQL implementation,
ADB. By including a simple top-down (SLR) interpreter for Datalog programs we are able
to represent and manipulate full OSQL databases in ADB. The system uses maximally
efficient representations of system data, and leverages its foreign predicate optimization
technique to make system information transparently available at run time. The implemen
tation techniques have allowed us to make a very compact system implementation (less
than 2000 lines of CommonLisp code).

Future work would include extending the system to handle a larger class of recursive
queries efficiently, for example by using techniques devised by NAIL! [14, 15J and £1)£
[11, 3, 4J. Special care will have to be taken to handle the duplicate semantics of OSQL
([12J describes some methods).

24

Other research directions would include the handling of late binding of overloaded func
tions, leading to the use of uninterpreted function symbols in generated Datalog programs
[8J. Such techniques can also be used when constructing heterogeneous query languages
where all database relations are not known at compile time [9J.

Another interesting research area is to combine our main memory OSQL implementation
with a disk-based one with primitives, to check out parts of the database to work ar
eas represented In ADB. During long sessions the user would work against efficient ADB
databases and only occasionally check data back into the central database.

It should be investigated if a formal description of the translation process from OSQL to
logic combined with a formal semantics for the generated class of logic programs could
serve as a method to formally define the semantics of OSQL.

VVe are working on extending the current implementation to handle aggregation and nega
tion.

ACKNOWLEDGEMENTS:

Ravi Erishnamurthy helped me considerably improve earlier versions of this paper.

References

[lJ D.Beech: A Foundation for Evolution from Relational to Object Databases, Advances
in Database Technology - EDBT '88, Lecture Notes in Computer Science, Springer
Verlag, 1988, pp 251-270.

[2J S.Ceri, G.Pelagatti: Distrib1dcd Databases Principles (Ij Systems, McGraw-Hill com
puter science series, 1984.

[3J D.Chimenti, RGamboa, RKrishnamurthy: Towards an Open Architecture for eve,
Proc. 15th Inti. Coni. on Very Large Databases, Amsterdanl, the Netherlands, 1989,
pp 195-204.

[4J D.Chimenti, RGamboa, RKrishnamurthy, S.Naqvi, S.Tsur, C.Zaniolo: The eve
System Prototype, IEEE Transactions on Knowledge and Data Engineering, Vol. 2,
No.1, March 1990.

25

[5J T.Connors, P.Lyngbaek: Providing Uniform Access to Heterogeneous Information
Bases. In Lecture Notes in Computer Science 334, Advances in Object-Oriented
Database Systems, KR.Dittrich, Ed., Springer-Verlag, Sept. 1988.

[6J D.Fishman et al.: Overview of the Iris DBMS, in W.Kim, F.H.Lochovsky (eds.):
Object- Oriented Concepts) Databases, and Applications, ACM Press, Addison-Wesley,
1989.

[7J S.E. Keene: Object-Oriented Programming in Common Lisp, Addison-Wesley, 1989.

[8J RKrishnamurthy, S.Naqvi: Towards a Real Horn Clause Language, Proc. 14th Inti.
Conf. on Very Large Databases, Los Angeles, CA, 1988, pp 252-263.

[9J RKrishnamurthy, W.Litwin, B.Kent: Language Features for Interoperability of
Databases with Semantic Discrepancies, Technical memo HPL-DTD-90-14, DTD, HP
Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94304, 1991.

[10J ·W.Leler: Constraint Programming Languages: Their Specification and Generation,
Addison-Wesley, 1988

[I1J S.Naqvi, S.Tsur: A Logical Language for Data and Knowledge Bases, Computer Sci
ence Press, 1989.

[12J LMumik, S.Finkelstein, H.Pirallesh, RRarnakrishnan: Magic is relevant, Proc. SIG
MOD 1990, Atlantic City, NJ, 1990, pp 247-258.

[13J D.Shipman: The Functional Data Model and the Data Language DAPLEX, ACM
TODS, 6(1), lOP 140-173, March 1981.

[14J J.D.Ullman: Principles of Database and Knowledge-Base Systems, Volume I, Com
puter Science Press, 1988.

[15J J.D.Ullman: Principles of Database and Knowledge-Base Systems, Volume II, Com
puter Science Press, 1989.

26

