
~~ 

IIIII 

The Translation of Object-Oriented Queries 
to Optimized Datalog Programs 

Tore Risch 

Technical Report HPL-DTD-91-9 

Feb 20 1991 

Copyright © 1991 Hewlett-Packard Company 

The advent of object-oriented DBMSs has created a demand for object­
oriented (00) declarative query languages. Analogous to the relational en­
vironments, the query processor has the responsibility of translating queries 
into efficient execution plans. In this paper we address the translation of 
queries in the OSQL language, which is the lingua franca of HP's IRIS 
system. The usefulness of the optimization of query execution cannot be 
understated based on the relational experience. 
We infer the need for certain optimization methods from the query con­
structs and usage patterns that are particular to the 00 paradigm. Fur­
ther, we observe the correspondence between the extensive optimization 
technology developed in the context of relational/Datalog queries and this 
new arena. Accordingly, we translate OSQL queries into optimized Data­
log programs, wherein traditional optimization techniques can be utilized 
straightforwardly. 
This approach is demonstrated in a fully functional prototype implementa­
tion of OSQL. 

HEWLETT 
PACKARD 
Database Technology Department 
Hewlett-Packard La boratories 
1501 Page Mill Road 
Palo Alto. CA 94304 



The Translation of Object-Oriented Queries to 
Optimized Datalog Programs* 

Tore Risch 
HP Laboratories, 1501 Page Mill Rd., Palo Alto, CA 94303 

February 20, 1991 

Abstract 

The advent of object-oriented DBMSs has created a demand for object-oriented 
(00) declarative query languages. Analogous to the relational environments, the query 
processor has the responsibility of translating queries into efficient execution plans. 
In this paper we address the translation of queries in the OSQL language, which is 
the lingua franca of HP's IRIS system. The usefulness of the optimization of query 
execution cannot be understated based on the relational experience. 

We infer the need for certain optimization methods from the query constructs and 
usage patterns that are particular to the 00 paradigm. Further, we observe the cor­
respondence between the extensive optimization technology developed in the context 
of relational/Datalog queries and this new arena. Accordingly, we translate OSQL 
queries into optimized Datalog programs, wherein traditional optimization techniques 
can be utilized straightforwardly. 

This approach is demonstrated in a fully functional prototype implementation of 
OSQL. 

"'This is a working paper. The author greatly appreciates comments. 
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1 Introduction 

OSQL [1] is a high-level query language for the object-oriented DBMS Iris [6]. Iris has a 
functional data model similar to DAPLEX[13], and OSQL can be regarded as an extension 
and modification of SQL that works over such an object-oriented data model. In particular, 
OSQL supports declarative set-oriented queries similar to SQL, extended with abstract 
data types, inheritance, and object identifiers [6]. The basic query primitive of OSQL is a 
select statement related to the corresponding SQL statement. 

OSQL provides a declarative access language to object databases and thus it must be 
optimized before execution. There has been substantial research on optimizing relational 
query languages, and the work on optimizing logical query languages, e.g., CDC [3,4] and 
NAIL! [14, 15], is closely related. One may actually regard a logical query language SUcll 
as Datalog [14, 15] as a canonical relational query language from which relational algebra 
can be easily generated for subsequent interpretation [14]. It would be advantageous if 
some of the work invested in optimizing and interpreting Datalog could also be applied to 
OSQL. 

This paper is based on an optimizing translator from OSQL into a Datalog dialect. Byop­
timizing the generated Datalog programs, we are able to leverage some of the vast amount 
of research invested in optimizing relational and logical data languages. We will show how 
OSQL queries can be translated rather easily into Datalog rules. As part of the translation 
into Datalog rules, we apply some optimizations on OSQL expressions relying on object­
oriented properties of OSQL. In a second optimization step, the generated Datalog rules 
are transformed into an equivalent set of more efficient Datalog rules. We will describe 
some optimization techniques we have found useful to optimize Datalog expressions that 
are generated from object-oriented OSQL query patterns. 

We distinguish between two kinds of optimizations: 

• Ameliorations [2] are unambiguous transformations that guarantee improved final 
execution speed irrespective of any other decisions. 

• Optimizations are transformations that aim at improving the execution speed by 
cllOosing among several execution plans. 

We have a fully implemented system that does the transformations described in this pa-
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per. The system, called ADB (Active DataBase), includes a main memory interpreter for 
Datalog rules. The system allows OSQL-based databases to be completely represented, 
updated, and queried. The interpreter supports referential integrity so that a database 
update invalidates definitions that depend on deleted objects. The referential integrity 
system guarantees that critical assumptions made by the code optimizer are always valid, 
or otherwise the code is invalidated. 

The system is designed for efficient execution in main memory. To achieve good perfor­
mance we have carefully optimized the representation of critical system data structures, 
e.g., object representation, type information, and the representation of function defini­
tions. For these cases we use tailored main memory data structure representations, rather 
than using relations. For example, our object identifiers are represented as variable-length 
records, where one field points to the object's type information and another points to 
its function definition. It is critical that this information is represented efficiently since 
it is extensively looked up both during compilation and during interpretation of OSQL 
functions. 

We use an extended foreign function mechanism to give transparent access to special­
purpose data structures such as the type system. The architecture relies on optimization 
of such foreign function calls. 

In section 2 we give a short introduction to the basic concepts of objects, types, and 
functions in OSQL. Section 3 describes the abstract query representations used during 
the transformations. Section 4 and 5 describe ameliorations and optimizations that are 
used. Section 6 contains some performance measures indicating the importance of our 
optimizations, and finally, in section 7, we summarize our experiences and point out some 
possible future work. 

2 Basic OSQL Concepts 

Throughout this paper we will use OSQL [6, 1] as a query language to model object­
oriented databases. OSQL models objects based on the three concepts of types, objects, 
and functions. In OSQL, objects are atomic object identifiers (OIDs), types classify OIDs 
into groups, and functions associate properties and relationships between objects. For a 
more complete description of OSQL and Iris, see [6]. Here we will review some of the basic 
OSQL constructs for maintaining and searching object-oriented databases. 
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2.1 Types 

The statement create type creates a new OSQL type, optionally as a subtype of one or 
more other types. For example, 

create type Person; 
create type Student subtype of Person; 

1* Illustrates inheritance *1 
create type Teacher subtype of Person; 
create type TeachingAssistant subtype of Teacher, Student; 

1* Illustrates multiple inheritance *1 

With the subtype of construct, types will be partially ordered in an acyclic type graph. 

2.2 Objects 

A special variant of create is used for creating and initiating objects of prespecified types. 
For example, 

create Student; 

will create a new object of type Student. Objects may have one or several properties (or 
attributes) which are actually modeled as typed functions. For example, a person may 
have a property, Name, which is actually represented as a function that, given an object of 
type Person, returns a string. The properties may be set as part of the create statement, 
e.g.: 

create Student (Name) instance ("Karl"); 

will create a new Student and also set the property Name to "Karl". 

The system maintains referential integrity of objects so that if an object is deleted all 
references to that object are also deleted. If a type is deleted all subtypes are deleted as 
well as all functions defined over the deleted types. 
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2.3 Functions 

OSQL functions model both object attributes as well as relationships between objects. 

OSQL functions are of three kinds: 

1. Stored functions are stored as database tables. 

2. Foreign functions are programmer-defined operators implemented by escaping to an 
underlying procedural language. 

3. Derived functions are derived combinations of other functions; derived functions are 
related to views in relational databases. 

Figure 1 gives some examples of OSQL function definitions that will be used in our exam­
ples in the rest of this paper. 

Methods of the type found in Small talk and C++ are modeled in OSQL as functions whose 
only argument is bound to an object identifier. In the example, objects oftype Person have 
the attributes Name, Income, Taxes, Parent, Netlncome, GrandSParentNetlncome, 
etc., represented as OSQL functions of a single argument bound to objects of type Person. 

The functions Income, Net Income and Bothlncomes are examples of overloaded functions 
that have different definitions depending on the type of their first argument. For example, 
there are two variants, or resolvents, of the Income function, one for incomes of given 
persons and another one for incomes of given names of persons. 

Resol vents can be defined as any of the three basic function types. Overloaded functions 
handle the cases when different classes have attributes with the sanle name; the overloading 
on the first argument (the object instance) does the class dispatch. CLOS[7] represents 
methods similarly by using overloaded functions. 

The function Minus in the definition of the OSQL function Net Income is an example of a 
foreign function call. 

An OSQL function may return a set of values; e.g. Parent (Person p) will normally return 
two parents. 
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create function 
create function 
create function 
create function 
create function 

select p 

Narne(Person p) -) Charstring nrn;/* stored */ 
Incorne(Person p) -) Integer i; /* stored */ 
Taxes(Person p) -) Integer i; /* stored */ 
Parent(Person c) -) Person p; /* stored */ 
PersonNamed(Charstring nrn) -) Person p as 

/* derived */ 
for each Person p 
where Narne(p) = nrn; 

create function Incorne(Charstring nrn) -) Integer i as 
select Incorne(PersonNarned(nrn»; /* overloaded */ 

create function NetIncorne(Person p) -) Integer n as 
select Minus(Incorne(p),Taxes(p»; /* derived */ 

create function BothIncornes(Person p) -) <Integer i, Integer n) as 
select Incorne(p), NetIncorne(p); /* two results */ 

create function BothIncornes(Charstring nrn) -) <Integer i, Integer n) as 
select i, n 
for each Integer i, Integer n 
where <i,n) = BothIncornes(PersonNarned(nrn»; /* overloaded */ 

create function NetIncorne(Charstring nrn) -) Integer n as 
select NetIncorne(PersonNarned(nrn»; /* overloaded */ 

create function SParent(Person c) -) Student s as 
select p 
for each Student p 
where p=Parent(c); /* Parent if parent is student */ 

create function GrandSParentNetIncorne(Person c) -) Integer ni as 
select ni /* Net income of grandparent 

if grandparent is student */ 
for each Integer ni, Person gp, Person p 
where ni = NetIncorne(gp) and 

gp = SParent(p) and 
p = Parent(c); 

Figure 1: Examples of OSQL queries 
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The arguments and results of a function together with their types are called the signature 
of the function. We denote signatures by 

For example: 

Income(Person p) -> Integer i 
BothIncomes(Person p) -> Integer i, Integer n 
BothIncomes(Charstring nm) -> Integer i, Integer n 

The arguments of a function are named by PI , ... ,P n; their actual values are restricted 
to types T

" 
... ,Tn. A function can have more than one result, named by QI,' .. ,Qm 

restricted to types UI , ... ,Um. Syntactically multivalued functions are called by using a 
bracket notation, as in BothIncomes. 

OSQL has a set-oriented sel ect statement to declaratively specify queries over the database. 
Derived functions are specified using select statements referencing other derived or stored 
functions. Select expressions allow functions to be used backwards, for example Name in 
the function PersonN amed. 

The select statement has the syntax: 

select <results> 
for each <declarations> 
where <predicate> 

The <results> is a list of expressions denoting the result(s) of the function. The <results> 
can be either a list of result variables or a list of function expressions, as illustrated by the 
two overloaded definitions of BothIncomes. 

We will here assume that the predicate is always a conjunct of simple predicates. Our 
implementation allows arbitrary nesting of conjuncts and disjuncts. 
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3 Query Abstractions 

Our algorithms operate on queries represented in canonical formats. In this section we 
briefly describe the formats of these abstracted queries. In the next sections we describe 
our optimization algorithms as transformations on the abstracted queries. We present the 
query abstractions by means of examples. It is outside the scope of the paper to describe 
how the system automatically translates between the abstractions. 

3.1 Flattened OSQL Queries 

The translation of OSQL queries into Datalog assumes select expressions where there 
are no functions references in the result list and where no function nesting occurs in 
the predicate. We say that such select expressions are flattened. We flatten select 
expressions by introducing new variables to remove unneeded function references. For 
example, the two resolvents BothIncomes would be translated into the following flattened 
definitions: 

create function BothIncomes(Person p) -> <Integer i, Integer n> as 
select _vi, _v2 
for each Integer _vi, Integer _v2, Person p 
where _vi=Income(p) and _v2=Netincome(p); 

create function BothIncomes(Charstring nm) -> <Integer i, Integer n> as 
select i, n 
for each Integer i, Integer n, Person _vi 
where vi = PersonNamed(nm) and 

<i,n> = BothIncomes(_vi); 

3.2 Type-adorned Queries 

We need a way to identify each resolvent of an overloaded function with a unique name. 
We create a unique naming scheme for resolvent functions by annotating the name of the 
overloaded function with the name of its signature types. For example, the definitions of 
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Income will have the type-adorned resolvents 

IncomePerson_ >Integer and IncomeCharstring_>Integer' 

The system creates type-adorned function definitions by substituting overloaded functions 
in a flattened select expression with their type-adorned resolvents. We call such a substi­
tution algorithm overload resolution, which is an amelioration we will discuss in more detail 
later. For example, after type annotation, the definition of GrandSParentNetlncome will 
be transformed into: 

create function GrandSParentNetlncomeperson_>Integer (c) 
-) Integer ni as 

select ni 
for each Person c, Integer ni, Student gp, Person P 
where ni = Net Incomeperson_>Integer (gp) and 

gp = SParentperson_>Student(P) and 
p :: ParentPerson->Person (c); 

3.3 Datalog Queries 

The 08QL compiler transforms the type-adorned resolvents into corresponding type­
adorned Datalog rules and facts. In general, using Datalog terminology [14], we translate 
stored 08QL functions into extensional (EDB) predicates, derived functions into Data­
log rules, and foreign functions into built-in Datalog predicates, which in our case are 
user-definable. 

In our examples of generated Datalog programs, we use the conventional Datalog naming 
scheme where symbols spelled with capital letters denote variables and lowercase symbols 
denote constants. We type-adorn the Datalog rules and facts as before, with the difference 
that we do not differentiate between arguments and results in the Datalog rules. 

For example the two resolvent functions for Income would generate the following two type­
adorned EDB predicates: 

incomePerson,Integer (P , I) 
incomeCharstring,Integer CD J I) 
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The type-adorned definition of the derived function GrandSParentNetlncome would gen­
erate the following type-adorned Datalog rule: 

grandsparentnetincomePerson,Integer (C, NI) :-
net income Person,Integer (GP ,NI) & 

sparentPerson,Student (P ,GP) & 
parentPerson,Person (C ,P) . 

In general the type-adorned Datalog rules are direct mappings of the type-checked resol­
vents where the head of the rule is determined by the signature of the resolvent and the 
body of the rule its select expression. 

3.4 Binding Pattern Adorned Rules 

The optimizer will specialize further type-adorned Datalog rules into binding pattern 
adorned [15] Datalog rules. In binding pattern adorned Datalog rules, each literal is 
adorned with binding patterns, where superscripts band f indicate whether the corre­
sponding argument position is bound or free, respectively. The binding pattern adorn­
ments depend on which variables are arguments of the function as well as the order of the 
literals of the rule body. 

The goal of the translator/optimizer is to translate each OSQL function definition into 
an optimized, typed-adorned, and binding pattern adorned Datalog rule. This Datalog 
rule constitutes a customized global optimization for the OSQL function. For example, 
GrandSParentNetlncomePerson_>Integer could get translated into: 

grands parent net income~erson Integer (C ,NI) :-
, bf 

parentpersonPerson(C,P) & 
bf ' 

sparent Person Student (P, GP) & 
bf ' 

net income Person,Integer (GP ,NI) . 

Notice that when the optimizer reorders literals in the body of a rule, different binding pat­
tern adornments will be referenced by the literals. For example, an alternative suboptimal 
definition of the above rule would be: 
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grandsparentnetincome~erson Intever (C, NI) :-
, J f 

sparent Person,Student (P, GP) & 

parent3l'erson,Person (C, p) & 

netincome~erson,Integer (GP, NI) . 

4 Ameliorations 

Ameliorative techniques are ones that improve the execution in most (if not all) cases. For 
example, consider a query that has the following two conditions: 

income> 50 and income> 80 

Obviously, it is unnecessary to apply both conditions and the first condition can be elimi­
nated, resulting in improved performance. Therefore, as in this example to apply amelio­
rative techniques is generally useful. In this section we present a few of the ameliorative 
techniques that are particularly useful in the context of object-oriented queries. 

4.1 Overload Resolution 

Methods of objects are modeled in OSQL as functions, as was described in the introduction. 
The use of the same function (method) name for two object types introduces the need 
for overloaded functions. Overloaded functions carry the overhead of looking up which 
resolvent to use in each given situation. The system has an algorithm, called overload 
resolution, that for each function call finds out which resolvent to use in order to substitute 
the function call for a type-adorned function call. 

An important amelioration is to analyze select expressions and perform overload resolu­
tion at compile time (early binding) rather than at run time (late binding). At compile 
time, the resolvents are completely determined by the types of the for each declared 
variables.1 Compile time overload resolution has the following advantages: 

lThe early binding of overloaded functions can sometimes cause semantic problems, which are outside 
the scope of this paper. 
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1. Run time overload resolution (late binding) would require that the generated Datalog 
program contain variables bound to predicate names. Such higher-order predicates 
are inherently more difficult to optimize and interpret than ordinary Datalog rules. 

2. With early binding we know at compile time exactly which resolvents are called 
from a given OSQL definition. This allows us to make global optimizations for each 
resolvent, by translating each resolvent to type-adorned and binding pattern adorned 
and optimized Datalog rules. 

3. There is higher a cost to doing dynamic function resolvent lookup at run time. The 
overload resolution is a potentially expensive operation since the type hierarchy needs 
to be traversed to find matching resolvents. 

4. By doing overload resolution at compile time we detect typing errors early. 

In Iris the overload resolution algorithm is a function of the first argument only; thus given 
a function call,2 

we get the resolvent by looking only at the name of the called function, f, and the type, 
Ti , of its first argument, Ai.3 The overload resolution algorithm can therefore be expressed 
as a function with the signature 

Resolve(Function F,Type T) -> Function R 

returning a resolvent function, R, for a given function, F, and the type of its first argument, 
T. The current overload resolution algorithm traverses the type hierarchy bottom up from 
Ti looking for resolvents, similar to method lookup in Smalltalk and other object-oriented 
programming languages. Overload resolution is undefined if the overload resolution algo­
rithm is unable to find a resolvent. Since OSQL allows multiple inheritance, it is possible 
to get more than one resolvent for a given signature, in which case the overload resolution 
algorithm signals ambiguous resolvents, which is regarded as an error. We will not further 

2In order to avoid backtracking during type checking the first type functionally determines the other 
types of the resolvents. 

3It is conceivable to generalize the overload resolution algorithm to operate on other function arguments 
and results as well. 
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elaborate on the overload resolution algorithm here; we just assume that there is a func­
tion, Resolve, that either computes a unique resolvent, given that the first argument of a 
function call is known, or fails. 

Given a flattened predicate, we can assume that every argument of a function referenced 
in the predicate is an unambiguously typed variable. 

The general rule 'for overload resolution of select predicates is that if we have a function 
reference 

and the type of the first argument Ai is known to be Ti , and Resolve(f, Ti)=fT" ... ,-> ... , 
then we can transform the function reference into the type-adorned function reference 

fT
" 

... ,-> ... (Ai, ... ) 

For example, in GrandSParentNetIncome we use the following overload resolution trans­
formations: 

Resolve(NetIncome,Person) 
Resolve(Parent,Student) 
Resolve(SParent,Person) 

-> Net IncomePerson_ >Integer 

-) Parentperson->Person 

-> SParentPerson->Student 

In summary, OSQL modeling of methods as functions introduces the need for overloaded 
functions. The method lookup is optimized by overload resolution at compile time. Global 
optimization needs early binding to be able to optimize the entire search expression called 
from an OSQL function. 

4.2 Type Check Removal 

The for each type declarations in select expressions restrict value types of each declared 
variable. In OSQL we can regard every object to have an associated set of types to which 
it belongs. The set of types is normally obtained by traversing the type graph upward 
from the declared type of the object.4 For example, an object of type TeachingAssistant 
would have the associated type set 

40SQL also has a feature to allow dynamic modification of the list of types associated with an object[GJ. 
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{TeachingAssistant, Teacher, Student, Person, UserTypeDbject} 

For testing type membership of objects there is a built-in function, TypesDf, with signature 

TypesDf(Dbject 0) -> Type t 

TypesOf returns the set of types to which a given object belongs, 

-The general rule for adding type checks is to add a call to TypesDf for each variable 
declared in a select statement in order to test that the objects bound to the variables are 
of the declared types,S For example: 

create function GrandSParentNetIncomeperson_>Integer (c) 
-> Integer ni as 

select ni 
for each Person c, Integer ni, Student gp, Person p 
where TypesDfObject->Type (c) =typePerson and 

TypesDfObject->Type (ni) =typeInteger and 
TypesDfObject_>Type (gp) =typeStudent and 
TypesDfObject->Type (p) =typePerson and 
ni = NetIncomeperson_>Integer (gp) and 
gp = SParentperson->Student(P) and 
p = ParentPerson->Person (c); 

The variables typeInteger, typeStudent, and typePerson refer to constants denoting 
type objects for types Integer and Person, 

Notice here, that equality (=) for a multivalued function like TypesDf means that there 
exists a result value among the set of values returned by TypesDf which is equal to the 
type objects typeInteger, typeStudent, typeStudent, and typePerson, respectively, 

We allow built-in functions to be used bi-directionally as a relationship between arguments 
and results, For example, TypesDf can be used either for testing if an object is of a given 
type or to get all objects of a given type, For example, the function AllStudents returns 
the set of all students: 

5We will soon describe an amelioration to remove most of these type checks. 
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create function AllStudents() -> Student s as 
select s 
for each Student S; 

After adding TypesDf tests to the definition of AllStudents we get: 

create function AllStudents() -> Student s as 
select s 
for each Student s 
where TypesDf(s)=typeStudent); 

In this case TypesDf will be run backward to get all the possible objects, s, that have type 
Student. 

In summary, by adding calls to TypesDf we get dynamic type checks as well as typed 
object generators. We will now describe an amelioration to remove unnecessary calls to 
TypesDf. 

None of the TypesDf tests in the definition of GrandSParentNetlncome are actually needed. 
The reason for this is that the system guarantees the integrity of OSQL Junctions so 
that whenever an argument or result of a function is of a certain type the system will 
make sure that actual arguments match this type. In GrandSParentNetlncome we know 
that the argument and result of ParentpersOn_>Per80n nlust be of type Person, which 
obsoletes the type test TypesDfObjeet->Type (p) =typePerson. Similarly, since we know that 
Incomeperson->Integer returns integers we may remove the test 
TypesDfObject_>Type(ni)=typelnteger. Equivalent arguments can be made to remove all 
other type checks in GrandSParentN etlncome. 

In general, consider a type-adorned function call, 

where some variable, Aj is declared to be of type Dj. Then we may remove the type check 
for Aj if the type Tj is equal to Dj or a subtype of Dj, denoted as 

T· C D· J - J 

15 



We say that f is a type container for the variable Aj. When a stored function is updated, the 
integrity maintenance system makes sure that the update does not violate the type restric­
tions of the signature of the function. Similarly, our type checking mechanism guarantees 
that derived functions can never return objects that violate its type restrictions. 

The function SParent is an example of a function where dynamic type checking is needed 
for testing if the variable p is of type Student. The type test for p cannot be removed 
since Parentperson->Person is not a type container for Student. 

create function SParentperson->Student (c) 
-) Person p as 

select p 
for each Person c, Student p 
where TypesDfObject_>Type(p)=typeStudent and 

Parentperson_>Person (c) =p 

4.3 Equality Rewrite 

The function ParentS returns the parents of children who are students: 

create function ParentS(Person c) -) Person s as 
select p 
for each Person p, Student s 
where p = Parent(s) and 

s = c; /* Parent if child is student */ 

As can be seen by the function ParentS, equality checks are convenient for testing if an 
object is of a given type. However, if no further optimizations are made, the calls to = will 
result in inefficient calls to a foreign predicate, =. We will the get the following type- and 
binding pattern adorned Datalog rule: 6 

parents~erson,Studen/C'P) :- parent~erson Person (C, P) & 
fb ' 

typesOfObjeot,Type (S, typeStudent) & 

=i:ibject,object (C, S) . 
----------------------

6The type annotation: =-Object,Object denotes a boolean function whose both arguments are of type Obj ect. 
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It can easily be seen from the definition that the introduction of the variable s in the 
definition of ParentS is present only to generate a test that c is of type Student. 

The general rule is that the system will eliminate calls to = by substituting the variables 
in the calls. The system handles equality transitivity so that if A = B and B = C then A 
may be substituted for C. 

In the example we get the following definition after an equality substitution: 

parent st;feT'on,Person (C, p) ;- bi 
parentpersonPerson(C,P) & 

bb ' 
typesOfObjeot,Type (c, typeStudent) . 

This is a considerable optimization in this case, since the original definition of ParentS 
would first get all objects, S, of type Student and then test if C is equal to S.7 

In summary, in object-oriented queries, equality tests are often used for testing type mem­
berships. Optimization of equality tests are therefore important. 

5 Optimizations 

Query optimization techniques need to be applied judiciously, because the resulting execu­
tion can be worse than before the application of the technique. Most (if not all) commercial 
optimizers use a cost-based optimizer that applies optimization techniques depending on 
the cost improvements estimated by a cost model. In this section, we describe some of the 
techniques that fall into this category. We describe each of these techniques by inferring 
the increased need in the context of 00 queries and relate the applicability of the known 
relational/Datalog techniques. 

7 A cost-based model for reordering foreign predicates, such as the one proposed by [3], would in this case 
have avoided the pitfall as well by reordering typesof and =, but it would still not entirely have removed 
the = call. 
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5.1 Datalog Optimization 

Choice of bindings (i.e., join ordering, selection pushing) and access methods (e.g., join 
method, index creation/use) are two of the useful techniques that were considered very 
important in relational/Datalog query optimization. In fact, these techniques can result in 
many orders of magnitude improvement to the query. We term this improvement Datalog 
optimization because the techniques can be viewed as optimizing the Datalog program 
by ordering the body of each rule (i.e., determine the binding pattern adornment) and 
choosing the appropriate access methods. Viewed in this manner, it is obvious that the 
Datalog program corresponding to the query can be optimized using traditional technology 
and can accrue the phenomenal improvement. 

Intuitively, the binding pattern adornment chooses the necessary nesting and inverting of 
functions that are deemed useful by whatever criteria dictated by the cost model. The use 
of different access methods allows the efficient implementation of computation of the func­
tions, thereby accruing the advantages of restricting the computation to a smaller relevant 
set of facts. The important observation here is that the correspondence between OSQL 
queries and Datalog programs allowsthe straightforward use of traditional optimization 
technology in the context of 00 queries. 

With the object-oriented programming style of modeling object attributes as functions, 
the most common usage of OSQL functions from application programs is to call OSQL 
functions in the forward direction, where the arguments are known but the results are 
unknown.s Therefore, when an OSQL function is defined, the system will always optimize 
its body for use in the forward direction, i.e., where the arguments of the resolvent are 
known but its results computed. In order to use Datalog optimization techniques, we need 
to know for each Datalog predicate which arguments are bound or free. For example, the 
typed-adorned OSQL function GrandSParentNetlncomeperson_>Integer will be translated 
into a type- and binding pattern adorned Data.log rule, 
GrandSParentNetlncome~erson_>Integer> and optimized according to that binding pattern. 
The unoptimized rule would look like 

80SQL also has primitives to modify values of stored functions, which are used when updating object 
properties. We do not further elaborate on OSQL function updates here, but the reader is advised to read 
about updates in Iris in [6]. 
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grandsparentnetincome~erson Integer (C, NI) :­
, ff 

netincomeperson Integer (GP, NI) & 
ff ' 

sparent Person Student (p, GP) & 
bb ' ( ) parent Person Person C, P . , 

The rule above is clearly extremely inefficient and needs to be optimized. In this section 
we describe some useful optimization techniques. 

5.2 Rule Expansion 

The object-oriented nature of OSQL encourages the usage of many small functions where 
each function corresponds to attributes of objects, and where attributes are very often 
defined in terms of other attributes. For example, the function GrandSParentNetlncome 
is defined in terms of the functions Sparent, Parent, and Netincomej Sparent is defined 
in terms of Parentj and Netincome is defined in terms of Minus, Income, and Taxes. To 
avoid the interpretation of many small Datalog rules and to be able to globally optimize ex­
pressions as large as possible, we first perform rule expansion[15] on the generated Datalog 
program, which substitutes Datalog literals with nonrecursive rule bodies. 

For example, after rule expansion, the Datalog rule for GrandSparentNetlncome will have 
this (still very inefficient) definition: 

grandsparentnetincome~erson IntefJer (C, NI) :­
'f! 

income Person Integer (GP, _V2) & 
bf ' 

taxesPersonInteger(GP,31) & 
bfb ' 

pI us Integer Integer Integer eV2 , NI ,31) & 
bb I I 

typeso;fb;ect,Type (GP, typeStudent) & 

parent Person Per.on (p , GP) & 
bb ' parent Person Person (C, p) . , 

First, it easy to argue that rule expansion is not always a useful transformation. This is 
because, in the presence of disjuncts,it would result in a large number of rules and effectively 
eliminate the common subexpressions. On the other hand, in the presence of foreign and 
derived functions with restricted allowable bindings, such transformations would make a 
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difference between safe and unsafe executions. This is because one ordering of the derived 
functions may be unsafe if imposed on the original rules whereas the different rules in 
the expanded program can be ordered differently. Needless to say, that lack of safety is 
an extreme case of unoptimized execution and examples can be constructed wherein the 
advantage of expanded rules ordered independently can easily outweigh the disadvantage 
of the lack of common subexpressions. 

5.3 Binding Pattern Optimization 

The rule-expanded definition of grandsparentnetincome}ferson,Integer is clearly very sub­
optimal. We need to reorder its literals in order to get an optimal execution plan. At this 
point we postpone the problem of optimizing the order in which the two foreign functions, 
TypesOf and Plus, are called by simply placing them at the end of the rule to guarantee 
safe execution. The important optimization here is to reorder the other literals. 

The system uses a method that combines the bound-is-easier heuristic of NAIL! [15J with 
knowledge of index availability and cardinality of the EDB relations involved. By simply 
applying bound-is-easier in this case we get the following optimal order: 

grandsparentnetincome}ferson Integer (C, NI) :­
, bf 

parent Person Person (C, P) & 
bf ' 

parent Person Pecson (P, GP) & 
bf ' 

income Person Integer (GP, _V2) & 
bf ' 

taxeSPerson Integer (GP, 31) & 
bfb' ( ) 

plus Integer,Integer Integer _V2, NI, _Vi & 
bb ' 

typesofObject,Type (GP, typeStudent) & 

5.4 Foreign Predicate Optimization 

The optimization of foreign predicates can be succintly stated as the optimal adornment 
of the binding pattern for each foreign and derived function. Whereas a relation in a 
Datalog rule can be adorned with any binding, foreign and derived functions are restricted 
by the fact that only certain bindings are allowable by its definition. This means that the 

20 



suboptimal binding pattern adornment can result in unsafe execution, i.e., in invoking a 
function with bindings that cannot be supported by its definition. For example, finding 
all values of x that satisfy the inequality x > 5 is an unsafe execution that is an extreme 
case of suboptimal execution. Consider, for example, a foreign or derived function that 
is defined for two out of four bindings but both the allowable bindings are not equally 
efficient. For example, the function typesDf (X, T) computes the type of the object X. 
Naturally, computing the type of a given object is very efficient but finding all the objects 
of a given type is not. 

The necessity of choosing the adornment is also evident in the ability to pose constraints in 
formulation of the query. Our optimization method is similar to the constraint compilation 
technique [10J used for efficient constraint propagation. 

Consider the OSQL function ftoc to convert Farenheit degrees into Celsius: 

create function ftoc(Real f) -> Real c as 
select Div(Times(Minus(f,32.),5.),9.); 

Assume we have stored the Celsius temperature of a person and want to use the function 
above as a constraint to calculate the Farenheit temperature: 9 

create function ctemp(Person p)-> Real c' , 
create function ftemp(Person p)-> Real f 

as select f 
for each Real f 
where ftoc(f) = ctemp(p) ; 

Our foreign predicate mechanism also allows Minus, and Di v to be defined as constraints 
in terms of the two foreign functions, Plus and Times: 

create function Minus(Real x, Real y) -> Real r as 
select r 
for each Real r 
where Plus(y,r) = x; 

9This case is more general than Iris' foreign function implementation[5J. 
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create function Div(Real x, Real y) -> Real r as 
select r 
for each Real r 
where Times(y,r) = x; 

With the above definitions we get the following unoptimized definition of ftemp: 

ftemp~ersonReal(P,F) :-, 
bff ( ) plUSReal,Real Real 32,33 ,F & 

bbf ' 
timesReal Real,Real CV3, 5, _V2) & 

bfb ' 
times Real,Real,Real (9, _V1, _V2) & 

ctemp~e"on Real (p, 31) . , 

The problem here is that the foreign predicates plus and times can only be called if two 
of their arguments are known, so their calls have to be reordered by the Datalog optimizer 
to generate a safe evaluation. In the example above, plusU!aI,Real,Real is undefined and the 
rule is unsafe. 

The final, optimized and binding pattern adorned definition of ftempPerson will look like: 

ftemp~e"on,Real (p ,F) :- ctemp~er$on Real (p, _V1) & 

times~tal R:al,Real (9,31,32) & 
fbb ' 

timesReal Real Real (33,5, _V2) & 
bbj , ! 

pluS Real,Real,Real(32,33,F) . 

Our optimization here uses the bound-is-easier heuristic combined with trying at each step 
to choose only legal binding patterns for foreign predicates. 

The following steps generate the above literal order: 

First we place ctemp~erson,Real (P, _Vi) 

Now we have P and _V1 bound, and we must place times~!al,Real,Real (9, _V1, _V2) next. 

Then we know P, _V1, and _V2 which forces us to place times';::al Real ReaICV3, 5,32) next. 

Finally we place plus~!al,Real,Real (32,33 ,F) last. ' , 

In summary, the need to optimize the foreign and derived functions is deemed very impor­
tant in the context of 00 queries. The crux of the problem is to integrate the optimization 
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of these functions in a seamless fashion to the optimization of the rest of the functions. 
One such proposal was used in the context of £1)£ [3], wherein the optimization of these 
computed functions was achieved by modeling them as 'infinite' relations, with certain 
finiteness constraints and the cost modeled using schematic information. 

Here we use a simplified mechanism by which the user can specify different definitions of the 
foreign functions depending on their binding patterns. The system also allows a simple 
cost-based heuristic by allowing the user to specify different priorities on the different 
binding pattern adorned foreign predicate definitions. We have found our simplified foreign 
predicate scheme to be very effective. 

6 Performance Measurements 

To give an indication of the effects of the various optimizations, we have measured the 
execution times of some of our OSQL functions with and without optimizations. Our 
database contains 1000 Person objects and we have measured the CPU time to execute 
each derived OSQL function in the forward direction.lO The measurements have been 
made for a main memory implementation of OSQL written in HP CommonLisp IV and 
run on an HP9000/370. Compile time overloading and foreign function reordering must 
be always active in order to produce executable Datalog expressions. 

Function Optimization levels 

GrandSParentIncome 
ParentS 

F = Full optimization 
TC = No type checking 

F TC 

3.2ms 25ms 
1.8ms 2.4ms 

JO = No join order optimization 
EQ = No equality optimization 

JO EQ 

514s 3.2ms 
1.8ms 12s 

As expected, our measurements show that join order optimization is potentially the most 

lOWe also made the test for 10000 objects, but the worst case execution speed then got prohibitive, while 
the best case remained approxilnately the same. 
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important one when object-oriented queries are specified declaratively. Even though we 
optimized our query system for very fast dynamic type checking, the effect of removing 
dynamic type checks gave one order of magnitude performance improvement for the rela­
tively complicated function GrandSParentlncome. Finally, the use of equality substitution 
to simplify ParentS also made a one order of magnitude performance improvement. 

7 Summary and Conclusions 

We have described how to translate an object-oriented query language, OSQL, into corre­
sponding optimized Datalog rules and facts. We described some important optimizations 
and ameliorations that are applied during the translation process. 

Some optimizations that make use of OSQL constructs, such as function definitions and 
type checking, are applied as part of the translation into Datalog. Other optimizations 
transform the generated Datalog programs to make them executable and efficient. 

V>/e described some of the optimizations that are particularly important because of the 
object-oriented nature and usage of OSQL. Optimizations of importance from this point 
of view are static overload resolution, type check removal, foreign function removal, equality 
substitutions, and function optimization in the forward direction. Conventional relational 
and Datalog optimizations are also extremely important. We illustrated each type of 
amelioration and optimization with examples of how object-oriented OSQL queries are 
translated. 

All algorithms are completely implemented in a main memory OSQL implementation, 
ADB. By including a simple top-down (SLR) interpreter for Datalog programs we are able 
to represent and manipulate full OSQL databases in ADB. The system uses maximally 
efficient representations of system data, and leverages its foreign predicate optimization 
technique to make system information transparently available at run time. The implemen­
tation techniques have allowed us to make a very compact system implementation (less 
than 2000 lines of CommonLisp code). 

Future work would include extending the system to handle a larger class of recursive 
queries efficiently, for example by using techniques devised by NAIL! [14, 15J and £1)£ 
[11, 3, 4J. Special care will have to be taken to handle the duplicate semantics of OSQL 
([12J describes some methods). 
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Other research directions would include the handling of late binding of overloaded func­
tions, leading to the use of uninterpreted function symbols in generated Datalog programs 
[8J. Such techniques can also be used when constructing heterogeneous query languages 
where all database relations are not known at compile time [9J. 

Another interesting research area is to combine our main memory OSQL implementation 
with a disk-based one with primitives, to check out parts of the database to work ar­
eas represented In ADB. During long sessions the user would work against efficient ADB 
databases and only occasionally check data back into the central database. 

It should be investigated if a formal description of the translation process from OSQL to 
logic combined with a formal semantics for the generated class of logic programs could 
serve as a method to formally define the semantics of OSQL. 

VVe are working on extending the current implementation to handle aggregation and nega­
tion. 
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