

 1

aStorage

a main-memory storage manager

Tore Risch

Uppsala Database Laboratory

Department of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

2009-09-03

The Amos II DBMS uses a main memory database storage manager

called aStorage. All data in an Amos II database is stored in a database

image managed by aStorage. The storage manager is scalable allowing

data structures to grow very large gracefully and dynamically without

performance degradation. The system includes a garbage collector that is

incremental and based on reference counting techniques. This means that

the system never needs to stop for storage reorganization and makes the

behaviour of the system very predictable. The storage manager is

extensible so that users can define new kinds of object, storage types,

managed by the system. The system is written in ANSII C. aStorage is

tightly integrated with a Lisp system called aLisp. New aLisp data types

can be defined in C and made interoperable between aLisp and C.

This report documents aStorage. It also explains how to extend aLisp

with new datatypes and functions.

 2

Table of contents

1. Introduction ... 3

1.1. Handles ... 3
1.2. Physical Objects .. 4
1.3. Logical Data Objects... 5
1.4. Dereferencing .. 5
1.5. Assigning handles to locations.. 6

1.6. Allocating physical objects. .. 7
1.7. Defining storage types .. 10
1.8. Streams .. 10

1.8.1. Marshalling objects ... 12
2. Interfacing Lisp with C ... 13

2.1. Calling C from Lisp .. 13

2.1.1. Defining external Lisp functions in C ... 14
2.1.2. Variable arity external Lisp functions ... 16

2.1.3. Defining special forms .. 17
2.2. Error management in C ... 18

2.2.1. Unwind Protection .. 19

2.2.2. Raising errors. ... 20
2.3. Calling Lisp from C .. 20

2.3.1. Direct C calls... 22

2.4. C functions for debugging .. 23
2.4.1. Trapping memory corruption .. 23

2.5. Interrupt handling.. 24

 3

1. Introduction

aStorage is a main memory storage manager that represents data in the Amos II DBMS [3].

aStorage is responsible for allocation and deallocation of physical objects inside the database

image. A physical object is a C structure handled by aStorage. All data in an Amos II database

are internally represented as physical objects managed by aStorage. The C/C++ programmer can

define own persistent data structures as physical objects by using a set of storage manager

primitives.

The types and functions defined by the AmosQL language [1] are on a higher level than the basic

data primitives managed by aStorage. The storage manager handles physical objects in the

database image called storage types, while the Amos II kernel handles high level logical types

defined by the AmosQL language. This document describes the interface to the storage types

only.

The storage manager is independent of the rest of the Amos II system. Amos II has several system

layers on top of the storage manager. An important layer is a Lisp interpreter, aLisp [2], which is

tightly interfaced with aStorage. A large part of Amos II is written in aLisp. The aLisp system is

documented separately. This document includes a description of how to extend aLisp with new

data types and functions written in C.

With aStorage the C implementer has the choice of allocating data persistently by using a set of

primitives provided by the storage manager. Persistency in this case means that data is allocated

inside a memory area called the database image, which can be saved on disk and later restored.

Persistent data is saved to disk when the user calls the C function a_rollout(char *filename),

issues the AmosQL statement save; [1], or call aLisp’s ROLLOUT function [2]. The image is

restored when restarting the system with the image file as command line argument.

Another important service of the storage manager is to provide a garbage collection subsystem

that automatically deallocates persistent memory no longer in use in the database.

Data can also be allocated transiently by using the usual C routines malloc, etc., but transient

data cannot be saved on disk and are lost when the system exits. Furthermore the programmer is

responsible for deallocating transient data manually, as C has no automatic garbage collector.

1.1. Handles

All access to physical objects is made through handles which are indirect identifiers for physical

data records in C. The representation of handles is unsigned integers. In order to make the

application code both fast and independent of the internal representation of handles, the handles

are always manipulated through a set of C macros and utility functions. The interface with the

 4

storage manager is defined by the header file storage.h. The interface is connected to an

automatic garbage collector so that data no longer used is reclaimed when using those

macros/functions.

Handles to persistent objects must be declared of C type oidtype and must always be

initialized to the global C constant nil using the C macro dcl_oid(x). For example:

 dcl_oid(myhandle);

1.2. Physical Objects

With every handle there is an associated C structure, the physical object, stored in the database

image and holding the value of the handle. The physical data objects are C structures containing

the data stored persistently in the database image together with a physical type identifier

identifying the type of the object. The physical objects are accessed indirectly through the

handles. The layout of the physical data object depends on the data type. However, the first two

bytes of a physical object are always reserved for the system; the succeeding bytes are used for

storing the data. Every persistent data item must be represented as physical objects, including

literals such as integers and strings. For example, integers are represented by this structure:

struct integercell

{

 objtags tags;

 short int filler;

 int integer;

};

The field tags is used by the system, the field integer stores the actual integer value, and

filler aligns the integer to a full-word.

The header of a physical object (field tags with type objtags) is maintained by the storage

manager. It contains the identification of its physical type (1 byte) and a reference counter (1

byte) used by the automatic garbage collector.

Every physical type has an associated type identifier number and a unique type name string

known to the storage manager. The main memory array typefns represents information about

storage types. Since the type identifier is represented by one byte there can be up to 256 physical

types defined. A number of physical storage types are predefined, including LIST, SYMBOL,

INTEGER, REAL, EXTFN (an aLisp function defined in C), CLOSURE (internal aLisp

closures), STRING, ARRAY (1D fixed size arrays), STREAM (file streams), TEXTSTREAM

(streams to text buffers), HASHTAB (hash tables), ADJARRAY (dynamically extensible 1D

arrays), and BINARY (bit strings). In storage.h there are structure definitions defined for the

physical representation of most of the built-in storage types. The convention is used that if the

type is named xxx the template has the name xxxcell, e.g. REAL has a template named

realcell, etc. The type identification numbers for most built-in types are defined as C macros

 5

in storage.h, with the convention that a type named xxx has a corresponding identification

number XXXTYPE if it is defined as a C macro or xxxtype if it is bound to a global C variable.

For example, physical objects representing integers are identified by the data type tag

INTEGERTYPE stored as the 2nd byte in field tags of integercell.

The C/C++ programmer can extend the built-in set of physical data types with new persistent

data structures through the C function a_definetype, explained below. It defines to the

storage manager the properties of the new data type.

1.3. Logical Data Objects

Notice the difference between physical and logical objects: Physical data objects are C record

structures stored in the database image while logical data objects are object descriptors

referenced in AmosQL. Logical data objects are internally represented by one or several physical

data objects. For example, Amos II objects of logical data type INTEGER are directly

represented by the above mentioned physical data objects also named INTEGER. Similarly,

other simple literal objects (e.g. real numbers and strings) are internally represented as directly

corresponding physical objects. More complex objects, e.g. the logical datatype FUNCTION, are

represented by data structures consisting of several physical objects of different types. Surrogate

objects in AmosQL are represented as physical objects of a particular kind named OID with type

tag SURROGATETYPE describing properties of the logical object identifier of the surrogate. One

property of an OID object is a numeric identifier maintained by the storage manager; another one

is a handle referencing the Amos II type(s) for the logical object. References to OID objects are

very common in the database, e.g. to represent arguments or values of functions, extents of types,

etc.

The AmosQL user cannot directly manipulate physical objects; they can only be manipulated in

C/C++ or aLisp.

1.4. Dereferencing

In order to access or change the contents a physical object given a handle it has to be converted

from a handle into a C pointer to the corresponding physical object in the database image. This

process is called to dereference the handle. The dereferencing of physical data objects is very

fast and does not involve any data copying; it involves just an offset computation.

Once the physical object has been dereferenced its contents can be investigated by system

provided C macros and functions or directly by C pointer operations. However, notice that the

data in the image may move when new data is allocated, so the programmer must only keep

pointers to physical objects when it is guaranteed that no new data is allocated in the image. To

be safe physical objects should always be accessed by dereferencing handles.

 6

The following C macro dereferences a handle:

dr(x,str)

dr returns the address of the record referenced by the handle x casted as a C struct named str.

For example, if the C variable ic contains a handle to an integer, the actual integer’s value is

accessed with dr(ic,integercell)->integer.

The following C function prints an integer referenced by the handle ix:

void printint(oidtype ix)

{

 struct integercell *dix = dr(ix, integercell);

 printf(“ix = %d\n”, dix);

}

Notice that here the parameter ix must be a handle referencing an object of type INTEGER,

otherwise the system might crash. To make printint safe it therefore should check that ix

actually references an integer. The following C macro can be used for investigating the type of a

physical object handle:

a_datatype(x)

a_datatype returns the type identifier of a handle x.

For example, the function printint2 checks that ix actually is an integer before printing its

value:

void printint2(oidtype ix)

{

 if(a_datatype(ix) == INTEGERTYPE)

 printf(“ix = %d\n”,dr(ix,integercell)->integer);

 else printf(“ix is not an integer\n”);

}

WARNING: Storage manager operations may invalidate dereferenced C pointers because the

derefrenced objects might move to other memory locations when the image is expanded. Thus

dereferenced pointers may become incorrect once a system feature that causes the image to

expand is called. Object allocation is the only system operation that may cause this. Thus, if a

system function is called that is suspected to do object allocation (most do), the dereferencing

must be redone. It is therefore safer to always dereference through dr as in printint2 rather

than saving a dereferenced C pointer as in printint.

1.5. Assigning handles to locations

In order for the storage manager and garbage collector to function correctly, C locations

(variables or fields) of type oidtype must be initialized to the global variable nil by the C

 7

macro dcl_oid(x). To update the location the following C macro must be used:

a_setf(location,value);

a_setf() corresponds to an assignment, location=value, but, unlike an assignment, it

also updates the reference counter of value so it is increased after the assignment. The

reference counter increment indicates to the system that the C field location holds a reference

to the physical object and it therefore cannot be deallocated until the handle location is released,

meaning that the location does not need to access the object any more. A handle location x is

released with the C macro:

a_free(x)

The object x will not be physically removed from the database image if there is some other

location still holding a reference to it. a_free(x) is equivalent to a_setf(x,nil) but

faster.

No other location holds a reference to a physical object if the reference counter is 0. Thus, when

the reference counted is decreased to 0 by a_setf(), the physical object is passed to the

garbage collector for deallocation from the image. Thus, unlike the C function free(),

a_free() will deallocate x only when there is no other location holding a reference to it.

To handle reassignments of locations correctly, a_setf() decreases the reference count of the

handle previously referenced from loction and increases the reference counter of value.

Lisp symbols (e.g. nil) are not garbage collected and thus not reference counted.

Notice that the location must be assigned to some handle before a_setf() can be used,

otherwise the system is likely to crash when trying to release a non-existing handle. It is

therefore required to always initialize C handle locations using dcl_oid() when declaring

them. An alternative is to use the macro a_let() the first time a location is assigned a handle.

It assumes the old value of loction was uninitialized and will therefore only increase the

reference counter of value, while ignoring the old value in location:

a_let(location,value)

1.6. Allocating physical objects.

Physical objects inside the database image can be allocated only through a number of storage

manager primitives (not through e.g. malloc()). When a physical object is allocated it initializes

the reference counter to 0. The built-in datatypes have allocation macros and functions defined in

storage.h, e.g.:

mkinteger(xx) allocates a new integer object.

mkreal(xx) allocates a new double precision real number object.

mkstring(xx) allocates a new string object.

 8

mksymbol(xx) allocates or gets the symbol named capitalized xx.

cons(x,y) allocates a new list cell.

For example, the following C function adds two integers:

oidtype add(oidtype x, oidtype y)

{

 int sum;

 if(a_datatype(x) != INTEGERTAG ||

 a_datatype(y) != INTEGERTAG)

 {

 printf(“Cannot add non-integers\n”);

 exit(1); Could call error manager here.

 }

 sum = dr(x,integercell)->integer + dr(y,integercell)->integer;

 return mkinteger(sum);

}

The following code fragment allocates two integers, calls add(), and prints the sum.

{

 dcl_oid(x), dcl_oid(y), dcl_oid(s); // Local handles must be initialized!

 a_setf(x,mkinteger(1)); // assign x to new integer 1

 a_setf(y,mkinteger(2)); // assign y to new integer 2

 a_setf(s,add(x,y)); // assign s to new integer being sum of a x and y

 printf(“The sum is %d\n”,dr(s,integercell)->integer);

 a_free(s); // release locations s, x, y

 a_free(x);

 a_free(y);

}

In storage.h, for each built-in storage type there is a C constant (upper case) or a variable

(lower case) containing the identifier for the type.

Type-name constant/variable Short description

LIST LISTTYPE Lists

SYMBOL SYMBOLTYPE Symbols

INTEGER INTEGERTYPE Integers

REAL REALTYPE Double precision reals

EXTFN EXTFNTYPE aLisp function in C

CLOSURE CLOSURETYPE aLisp function closure

STRING STRINGTYPE Strings

ARRAY ARRAYTYPE 1D Arrays

STREAM STREAMTYPE File streams

TEXTSTREAM TEXTSTREAMTYPE String streams

SOCKET sockettype Socket streams

HASHTAB HASHTYPE Hash tables

HASHBUCKET HASHBUCKETTYPE Internal to hash tables

OID SURROGATETYPE Object identifiers for surrogate objects

HISTEVENT histeventtype Update events

 9

For most built-in datatypes there are C macros or functions for construction and access. For

example, to allocate a new handle of type STRING with the content “Hello world” you can use

the macro mkstring() that returns a handle to the new string:

{

 dcl_oid(mystring);

 ...

 a_setf(mystring,mkstring("Hello world"))

 ...

 a_free(mystring);

};

To dereference a handle referencing a STRING object the macro getstring can be used:

{

 dcl_oid(mystring);

 char *mystringcont;

 a_setf(mystring,mkstring("Hello world"));

 mystringcont = getstring(mystring);

 printf("%s\n",mystringcont);

 a_free(mystring);

};

The following are examples of C library functions and macros used for manipulating the built-in

data types:

oidtype mkinteger(int x) (macro) Construct handle for a new integer

int integerp(oidtype x) (macro) TRUE if X is a handle for an integer

int getinteger(oidtype x) (macro) Dereference a handle for an integer

oidtype mkreal(double x) (macro) Construct handle for a new real

int realp(oidtype x) (macro) TRUE if X is a handle for a real

double getreal(oidtype x) Dereference a handle for a real

oidtype mkstring(char *x) (macro) Create handle for a new string

int stringp(oidtype x) (macro) TRUE if X is a handle for a string

char *getstring(oidtype x) (macro) Dereference a handle for a string

oidtype new_array(int size,oidtype init)

 Construct handle for a new array with elements init

int arrayp(oidtype x) TRUE if X is a handle for an array

int a_arraysize(oidtype arr) return the array size
oidtype a_seta(oidtype arr,int pos,oidtype val)

 Set an array element
oidtype a_elt(oidtype arr,int pos)

 Retrieve array element
oidtype a_vector(oidtype x1,...,xn,NULL)

 Create a new array and its elements x1 ... xn.

oidtype cons(oidtype x,oidtype y) Create handle for a new list cell

int listp(oidtype x) (macro) TRUE if X is a list cell

oidtype hd(oidtype x) (macro) Head of list cell

oidtype tl(oidtype x) (macro) Tail of list cell
oidtype a_list(oidtype x1,...,xn,NULL)

 10

 Create new list of x1 ... xn

oidtype mksymbol(char *x) (macro) Create a new symbol

int symbolp(oidtype x) (macro) TRUE if X symbol

oidtype globval(oidtype x) (macro) Get global value of symbol.

char *getpname(oidtype x) (macro) Get print name of symbol

a_print(oidtype x) Print object of any type. Very useful for debugging.

oidtype t Symbol T representing TRUE

oidtype nil Symbol NIL representing empty list and FALSE

1.7. Defining storage types

This subsection describes how to introduce new physical storage types to aStorage. This is

required when new C data structures need to be defined for aLisp or Amos II.

In storage.h the basic built-in physical storage type tags are declared as macros. The include

file also contains the record templates for each storage type.

There is a global type table which associates a number of optional C functions with each physical

object type. A new storage type is introduced into the system (thus expanding the type table)

with a call to the C function a_definetype():

int a_definetype(char *name,

 void (*dealloc_function) (oidtype),

 void (*print_function) (oidtype,oidtype,int))

a_definetype() adds a new type named name to the type table and returns the new type

identifier as an integer.

dealloc_function() is a required C function taking an object of the new type as argument.

It is a destructor called only by the garbage collector when the object is deallocated. It

shall then release all locations referenced by the object and call storage manager

primitives to deallocate the storage occupied by the object.

print_function() is an optional print function called by PRINT to provide a customized

printing of physical objects of the new type. See section 1.8.1.

1.8. Streams

aLisp has several data types representing streams:

STREAM represents regular C file streams.

TEXTSTREAM represents streams over buffers in the database image.

SOCKET represents socket streams for communication with other aLisp systems.

 11

The following system standard streams are defined:

oidtype stdinstream for C’s standard input stream

oidtype stdoutstream for C’s standard output stream

oidtype stderrstream for C’s standard error stream

Streams are physically represented as other data types but with some special stream attributes in

the beginning of the structure template:

struct xxxcell

{

 objtags tags;

 short int bytes; /* Total size of object in bytes, incl. header */

 char autoflush; /* Flush after each item and new line */

 char filler[3]; /* Unused flags */

 int line_num; /* Current line number */

 oidtype logstream; /* Stream to copy input to if non-NIL */

 /*** end of stream header ***/

The attributes above must always be present for stream templates. Additional specific attributes

can be added after the end of the stream header. Once the data type has been defined using

definetype() the newly created type can be made into a stream by a call to a

define_stream()implementation:

int a_define_stream_implementation(int tag, /* Storage type */

 int(*getc)(oidtype),

 int(*ungetc)(int,oidtype),

 int(*feof)(oidtype),

 int(*puts)(char*,oidtype),

 int(*putc)(int,oidtype),

 int(*fflush)(oidtype),

 int(*fclose)(oidtype));

The first argument, tag, is the type tag (returned by definetype()) of the type to be made a

stream. Each stream should have the following associated functions (methods):

int getc(oidtype stream) Returns the next character in stream.

int ungetc(int c, oidtype stream)

 Put back character c in stream.

int feof(oidtype stream) Return TRUE if end-of-file reached.

int putc(int c, oidtype stream)

 Write character c to the stream

Int readbytes(oidtype stream, void *block, unsigned int len)

 Read a block of data from the stream. The slower putc method is used if

this method is NULL.

int writebytes(oidtype stream, void *block, unsigned int len)

 Write a block of data to the stream. The slower getc method is used if this

method is NULL.

int fflush(oidtype stream) Flush stream buffer contents.

int fclose(oidtye stream) Close the stream.

 12

Once these methods are defined and registered the user can use the following generic stream

functions to manipulate the new stream:

int a_getc(oidtype stream); Read one character

int a_ungetc(int c, oidtype stream); Unread one character

int a_puts(char *str,oidtype stream); Write string

int a_writebytes(oidtype stream, void *buff, unsigned int len);

 Write block

int a_putc(int c, oidtype stream); Write a character

int a_readbytes(oidtype stream, void *buff, unsigned int len);

 Read block

int a_fclose(oidtype stream); Close stream

int a_feof(oidtype stream); Test for end-of-file

int a_fflush(oidtype stream); Flush stream buffer

The performance of stream management can be improved by moving bulks of data to or from the

stream through calls to a_printbytes() and a_readbytes(). If the corresponding

methods are not registered with a stream, writing to and reading from the stream is slower.

1.8.1. Marshalling objects

Streams are often used for writing object in such a format that they can later be restored by

reading. This is particularly important when using streams to communicate data between aLisp

peers, e.g. using sockets [2]. The Lisp function PRINT prints object structures on a stream in

such a format (S-expression) that copies of the objects are later be allocated when the function

READ is reads the object from the stream. This PRINT and READ are Lisp’s generic (de-

)marshalling functions. Lisp’s S-expression notation provides standardized marshalling and

demarshalling for the basic Lisp datatypes. In addition customized (de-)marshalling can be

specified for user defined storage type, as will be described below.

In C the following functions can be used for (de-)marshalling S-expressions:

oidtype a_read(oidtype stream)

 Read (unmarshal) S-expression from a stream. This corresponds to the

Lisp function READ.

oidtype a_print(oidtype s) Print S-expression a followed by a line feed on stdoutstream, normally

for debugging.

oidtype a_printobj(oidtype s, oidtype stream)

 Print S-expression s followed by a line feed as delimiter on stream. This

corresponds to the Lisp function PRINT.

oidtype a_prin1(oidtype s, oidtype stream, int princflg)

 Print S-expression s on stream. If princflg is FALSE the printout be

marshalled for subsequent reading; if princflg is TRUE object will be

written as PRINC and cannot be read using a_read. Notice that, since no

delimiter is inserted as with a_printobj(), it is up to the user to ensure

proper object delimitation.

 13

oidtype a_terpri(oidtype stream)

 Write a line feed on the stream.

2. Interfacing Lisp with C

An aLisp function can be implemented as a C function and C functions can call aLisp functions.

aLisp and C can also share data structures without data copying or transformations. The error

management in aLisp can be utilized in C as well for uniform and efficient error management.

In order to interface aLisp with C/C++ you must include the file alisp.h in your C program.

In the development version, the file democpp.cpp contains a simple C program that calls

aLisp and where aLisp also calls C.

This section describes how to call C functions from aLisp, and how to call aLisp functions from

C.

2.1. Calling C from Lisp

As a very simple example of an external Lisp function we define an aLisp function HELLO

which prints the string ‘Hello world’ on the standard output. It has the C implementation:

#include "alisp.h"

oidtype hellofn(bindtype env)

{

 printf(“Hello world\n”);

 return nil;

}

The include file alisp.h contains all necessary declarations for implementing external Lisp

functions in C; External Lisp function definitions must always return handles of type oidtype.

Do not forget the return statement, otherwise the system might crash!

In order to be called from Lisp, an external Lisp function implementation has to be registered

with a symbolic aLisp name, in this case the symbol HELLO, by calling:

extfunction0(“HELLO”,hellofn);

A system convention is that an external Lisp function named XXX is named xxxfn in C, as for

HELLO.

The call to register an external Lisp function should be done in a main C program, the driver

program, after the system has been initialized (i.e. after init_amos() or a_initialize()

 14

is called). The following driver program initializes the system, registers HELLO, and calls the

aLisp read-eval-print loop with prompter string ‘Lisp>’.

#include "alisp.h"

oidtype hellofn(bindtype env)

{

 printf(“Hello world\n”);

 return nil;

}

void main(int argc, char **argc)

{

 init_amos(argc,argv);

 extfunction0(“HELLO”,hellofn);

 evalloop(“Lisp>”);

}

When the above program is run the user can call HELLO from the read-eval-print loop by typing

(hello)

2.1.1. Defining external Lisp functions in C

Lisp functions can be implemented as external Lisp functions in C. An external aLisp function

fn() with optional arguments x1, x2,..., xn must have the following signature in C:

oidtype fn(bindtype env,oidtype x1,oidtype x2,..,oidtype xn)

The first argument env is the binding environment to be used by the system for error handling,

memory management, and other things.

For example, the following function implements an aLisp function to add two numbers:

oidtype addfn(bindtype env, oidtype x, oidtype y)

{

 int ix, iy, r; // will hold integer values of x, y and result

 IntoInteger(x,ix,env); // Retrieve value of integer x into ix and raises

 // aLisp error if x is not an integer object

 IntoInteger(y,iy,env); // This will not be executed if x is not an integer

 r = ix + iy; // Both x and y must be integers for this to execute

 return mkinteger(r); // Return a new physical integer object

}

addfn is registered with

exfunction2(“add”,addfn);

The number ’2’ after ’extfunction’ indicates that this aLisp function takes two arguments.

External Lisp functions need to be very careful to check the legality of the handles they receive,

 15

otherwise the system may crash. To check that a handle is of an expected type use the C macro:

OfType(x,tpe,env)

A standard error will be generated if x does not have the type tag tpe. For integers the above

used macro IntoInteger() is a convenient alternative to OfType.

External Lisp functions are registered (assigned to aLisp symbols) by calling a system C

function:

extfunctionX(char *name, Cfunction fn);

name is the aLisp name for the external Lisp function

fn is the address of the C function.

Different versions of extfunctionX() are available depending on the arity X of the external

Lisp function. For example,

extfunction2(“add”,addfn);

There are corresponding aLisp registration functions for functions with arity 0, 1, 2, 3, 4, 5

named extfunction0(), extfunction1(), etc.

When a physical object handle whose reference counter has been managed by a_setf() is to

be returned from a C-function the following C-macro should be used:

a_return(x);

a_return() returns x from the C-function after the reference counter of value has been

decreased without deallocating x if the counter reaches 0.

For example, the following external Lisp function calls addfn() twice to sum three integers:

oidtype add3fn(bindtype env, oidtype x, oidtype y, oidtype z)

{

 dcl_oid(s);

 a_setf(s,addfn(env,x,y));

 a_setf(s,addfn(env,s,z));

 a_return(s);

}

The variable s holds the result from add3fn(). If it had been returned by the C statement

 return s;

the result object would never be released from the location s since the reference counted would

not have been decreases, and there would be a memory leak.

For example, the following function reverses a list:

 16

oidtype reversefn(bindtype env, oidtype l)

{

 ccl_oid(lst), dcl_oid(res);

 a_setf(lst,l);

 while(listp(lst))

 {

 a_setf(res,cons(hd(lst),res));

 a_setf(lst,tl(lst));

 }

 a_free(lst);

 a_return(res);

}

Register REVERSE with:

extfunction1(“REVERSE”,reversefn);

WARNING: You cannot assign C function parameters (such as l in the example) with

a_setf() or release them with a_free(). C function parameters are not reference counted.

Instead the parameter l is assigned to the local variable lst in order to subsequently use

a_setf(). C function parameters are returned using a_return().

WARNING: The C implementation of an external Lisp function must always return a legal

handle, otherwise the system might crash. It is therefore recommended to run the system in

’debug mode’ while testing external Lisp function where the system always checks the legality

of data passed between aLisp from C.

2.1.2. Variable arity external Lisp functions

Variable arity external functions accept any number of arguments. External Lisp functions with

more than 5 arguments also need to be defined as variable arity functions. Variable arity external

Lisp functions have the signature:

oidtype fn(bindtype args,bindtype env)

where env is the binding environment for errors, and args is a binding environment

representing the actual arguments of the function call. To access argument number i use the C

macro:

nthargval(args,i)

The arguments are enumerated from 1 and up.

The C function

int envarity(bindenv args)

returns the actual arity of the function call.

 17

For example, the following aLisp function sumfn() adds an arbitrary number of integer

arguments:

oidtype sumfn(bindtype args,bindtype env)

{

 int sum=0, arity = envarity(args), i, v;

 for(i=1;i<=arity;i++)

 {

 IntoInteger(nthargval(args,i),v,env);

 sum = sum + v;

 }

 return mkinteger(sum);

}

Variable arity functions are the registered to the system with extfunctionn():

extfunctionn("SUM",sumfn);

The Lisp function LIST has the following implementation:

oidtype listfn(bindtype args,bindtype env)

{

 dcl_oid(res);

 int arity=envarity(args), i;

 for(i=arity;i>=1;i--)

 {

 a_setf(res,cons(nthargval(args,i),res));

 }

 a_return(res);

}

Notice how the iteration over the arguments is done in reverse order to get the correct list

element order.

2.1.3. Defining special forms

Special forms are external Lisp functions whose arguments are not evaluated by the aLisp

interpreter when the C implementation function is called.

C functions implementing special forms have the signature:

oidtype fn(bindtype args,bindtype env)

Analogous to variable arity functions the macros envarity() and nthargval() can be

used to investigate the actual arguments. The difference is that nthargval() here returns the

unevaluated value, unlike for variable arity functions where evaluated values are returned.

For example, the following C function implements the aLisp special form QUOTE:

 18

oidtype quotefn(bindtype args, bindtype env)

{

 return nthargval(args,1);

}

Special forms are registered using extfunctionq():

extfunctionq("QUOTE",quotefn);

For evaluating unevaluated forms this system function can be used:

oidtype evalfn(bindtype env, oidtype form)

For example, the following C function implements the special form (WHILEA PRED FORM1

FORM2 ...) that iteratively executes FORM1 etc. while PRED is non-nil:

oidtype whileafn(bindtype args, bindtype env)

{

 dcl_oid(cond), dcl_oid(v);

 int arity = envarity(args), i;

 a_setf(cond,nthargval(args,1));

 for(;;)

 {

 a_setf(v,evalfn(env,cond)); /* Evaluate condition */

 if(v == nil) /* Condition false */

 {

 a_free(v); /* Release v and cond before returning */

 a_free(cond);

 return nil;

 }

 for(i=2;i<=arity;i++)

 {

 a_setf(v,evalfn(env,nthargval(args,i)));

 }

 }

}

Notice that v and cond must be released before the function is exited. Furthermore, the above

definition is not fully correct, since if evalfn() fails because of some logical error in the

evaluated form, an error will be thrown which will make evalfn() never return. Thus, in case

of an error in the evaluation, the storage referenced by v and cond will never be deallocated.

Another version of whilea() which also manages this memory deallocation correctly will be

presented in the next section.

2.2. Error management in C

aLisp has its own error management system integrated with the storage manager. In order for the

storage manager to correctly release data after failures, abnormal function exits should always

use the system error management, rather than e.g. directly calling C or C++ error management.

 19

2.2.1. Unwind Protection

To unconditionally catch failed operation the unwind protect mechanism is used. This is

necessary sometimes to guarantee that certain actions are performed even if some called function

terminates abnormally. For example, space may need to be deallocated or files be closed. For this

purpose the system provides an unwind-protect feature in C, similar to what is provided in aLisp

[2]. Unwind protection is provided through the following three macros:

{unwind_protect_begin; /* Always new block */

 main code

 unwind_protect_catch; /* This statement MUST ALWAYS be executed */

 unwind code

 unwind_protect_end;} /* Will continue abnormal evaluation */

The main code is the code to be unwind protected. The unwind code is always executed

both if the main code fails or succeeds. In the unwind code, a flag, unwind_reset, is set to

TRUE if the code is executed as the result of an exception. The unwind code is executed outside

the scope of the current unwind protection. Thus, exceptions occurring during the execution of

unwind code is unwound by the next higher unwind protection.

WARNING: The unwind_protect_end code must be executed; never return directly out of

the main code block. If unwind_protect_end is not executed after an exception, then the

exception is not continued. Always execute unwind_protect_end, unless you want to catch

all possible exceptions.

For example, a correct version of while that releases memory also in case of an error in the

evaluation can be defined as follows:

oidtype whilebfn(bindtype args, bindtype env)

{

 dcl_oid(cond), dcl_oid(v);

 int arity = envarity(args), i;

 {unwind_protect_begin

 a_setf(cond,nthargval(args,1));

 for(;;)

 {

 a_setf(v,evalfn(env,cond)); /* Evaluate condition */

 if(v == nil) /* Condition false => exit for loop */

 break;

 for(i=2;i<=arity;i++)

 {

 a_setf(v,evalfn(env,nthargval(args,i)));

 }

 }

 unwind_protect_catch;

 a_free(v); /* Release v and cond before exiting function */

 a_free(cond);

 unwind_protect_end;

 return nil; /* This statement not executed in case of an error */

 20

 }

}

WARNING: Some compilers (e.g. gcc) may not restore local variables correctly when an

exception has occurred unless they are defined as volatile. The macro dcl_oid(x) declares x

as a volatile variable initialized to nil.

2.2.2. Raising errors.

Every kind of error has an error number and an associated error message. There are predefined

error numbers for common errors defined in storage.h. To raise an aLisp error condition use

the system function:

oidtype lerror(int no, oidtype form, bindtype env);

no is the error number.

form is the failed expression.

env is the binding environment for the error.

For example, the following code implements the Lisp function CAR:

oidtype carfn(bindtype env, oidtype x)

{

 if(x==nil) return nil; // (CAR NIL) = NIL

 if(a_datatype(x) != LISTTYPE) return lerror(ARG_NOT_LIST,x,env);

 return hd(x);

}

A few convenience macros for common error checks are defined in storage.h:

OfType(x,tpe,env) Raise a standard error if x is not of type tpe.
IntoString(x,into,env) Set the variable into (declared char* into) to a copy of the text of

a symbol or string object x (declared oidtype x). The copy is

pushed on the C stack and automatically freed when the C function is

exited.
IntoInteger(x,into,env) Convert numeric object x into C integer.
IntoDouble(x,into,env) Convert numeric object x into C double.

To register a new error to the system use:

int a_register_error(char *msg);

a_register_error gets a unique error number for the error string msg. If msg has been

registered before its previous error number is returned.

2.3. Calling Lisp from C

An aLisp function can be called from C by using the following C function:

 21

oidtype call_lisp(oidtype lfn, bindtype env, int arity,

 oidtype a1, oidtype a2,...)

lfn is the aLisp function to call.
env is the error binding environment.

arity is the actual arity of the call.
a1,a2,... are the actual arguments of the call.

For example, the following code implements an aLisp function (MYMAP L FN) which applies

FN on each element in L:

oidtype mymapfn(bindtype env, oidtype l, oidtype fn)

{

 dcl_oid(res), dcl_oid(lst);

 {unwind_protect_begin;

 a_setf(lst,l);

 while(listp(lst))

 {

 a_setf(res,call_lisp(fn,env,1,hd(lst)));

 a_setf(lst,tl(lst));

 }

 unwind_protect_catch;

 a_free(res);

 a_free(lst);

 unwind_protect_end;

 }

 return nil;

}

Notice that unwind protection has to be used here to guarantee that the temporary memory

locations are always released even if the call to fn() causes an aLisp error.

Also notice that the called aLisp function might allocate new data objects and these have to be

freed correctly by assigning res using a_setf() and always releasing res when the function

is exited.

The use of symbols is convenient for calling named aLisp functions from C. For example, the

following function prints each element in a list:

oidtype mapprintfn(bindtype env, oidtype l)

{

 dcl_oid(printsymbol), dcl_oid(lst);

 printsymbol = mksymbol("print");

 a_setf(lst,l);

 while(listp(lst))

 {

 call_lisp(printsymbol,env,1,hd(lst));

 a_setf(lst,tl(lst));

 }

 return nil;

 22

}

Notice that symbols like PRINT are permanent and when a symbol is referenced from a location

it need not be reference counted as in the assignment of printsymbol above. Also the call to

PRINT is guaranteed to not generate any new objects and need not be released.

To call Lisp functions with variable arity use:

oidtype apply_lisp(oidtype fn, bindtype env, int arity, oidtype args[]);

The difference to call_lisp() is that the arguments are passed in the array args. Don’t

forget to release the result.

To evaluate a C string of Lisp forms use:

oidtype eval_forms(bindtype env, char *forms);

All forms in forms are evaluated. The value of the last evaluation is returned as value. Don’t

forget to release the result.

2.3.1. Direct C calls

If the name of a C function implementing an aLisp function is known, it is more efficient to

directly call the C function than to use call_lisp(). However, arguments and results of

direct C calls must be handled carefully to avoid storage leaks. The automatic deallocation of

temporary storage is NOT performed with direct C function calls. For example, the following

correctly defined external Lisp function prints ‘hello world’ by directly calling the aLisp function

PRINT:

oidtype hellofn(bindtype env)

{

 dcl_oid(msg);

 a_setf(msg, mkstring(“hello world”));

 printfn(env, msg, nil); // PRINT has two arguments

 a_free(msg);

 return nil;

}

 By contrast, the following incorrect implementation would cause a storage leak because the

‘hello world’ string is not deallocated:

oidtype hellofn(bindtype env)

{

 printfn(env, mkstring(“Hello world”), nil);

 return nil;

}

Notice that call_lisp() automatically garbage collects its arguments upon return; thus

temporary objects among the arguments are automatically freed. For example, the following

 23

definition of myhello() would be correct but slower than the previous definitions:

oidtype hellofn(bindtype env)

{

 call_lisp(mksymbol(“print”),2,env, mkstring(“Hello world”), nil);

 return nil;

}

2.4. C functions for debugging

The reference counter of a physical storage object referenced by a handle is obtained with:

int refcnt(oidtype x)

Any aLisp object can be printed on the standard output with:

oidtype a_print(oidtype x);

When defining new physical storage type it is important to make sure that object allocation and

deallocation works OK. Therefore there is a facility in the Amos II and aLisp top loops to trace

how many objects are allocated, or deallocated, respectively. Turn on that facility by evaluating

the form

(STORAGESTAT T)

The system will then make a report of how many objects have been (de)allocated for each

physical storage type. Make sure that the same number of objects is deallocated as allocated if

that is expected. Notice that object references might be saved in the database log and therefore

you should rollback database updates when necessary to get the balance between allocated and

deallocated objects.

Turn off storage usage tracing with:

(STORAGESTAT NIL)

In C memory leaks can be traced also by calling the system function:

void a_printstat(void)

It prints a report on how much storage was allocated since the previous time it was called.

2.4.1. Trapping memory corruption

When adding C-code to the system it may happen that the database image accidently becomes

corrupted, meaning that some handle references some illegal location. If not all the conventions

for writing C-code are not systematically followed errors typically occur in a completely

different place of the system. When the system finds a corrupted memory location in the image it

 24

will print an error message:

Memory corruption in location 134000 (= 12345)

The two numbers 134000 and 12345 indicate that memory location denoted by handle (oidtype)

134000 is corrupt and points to a word containing the integer 12345. To trap this when it actually

happens can be done by calling the function

 a_setdemon(oidtype loc, int val)

for example

 a_set_demon(134000, 12345);

It causes the aLisp interpreter to continuously check if loc is equal to val. Whenever loc becomes

equal to val an error is raised and the demon is turned off.

2.5. Interrupt handling

The interrupt handling system is managed by the aLisp function (CATCHINTERRUPT). This

function is called whenever an interrupt has occurred. It either prints a message or catches the

interrupt. The following C macro checks if an error has occurred and calls CATCHINTERRUPT

if that is the case:

CheckInterrupt;

 An interrupt is indicated when the global C variable InterruptHasOccurred is set to

TRUE. CheckInterrupt is called by the aLisp interpreter after every function call. If you

write long-running C code you should insert calls to CheckInterrupt to allow interrupts to

be managed.

References

1 Staffan Flodin, Martin Hansson, Vanja Josifovski, Timour Katchaounov, Tore Risch, and Martin Sköld:

Amos II Release 11 User's Manual,

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html

2 Tore Risch: aLisp v2 User’s Guide, UDBL, Dept. of Information Technology, Uppsala University,

http://user.it.uu.se/~torer/publ/alisp2.pdf, 2006

3 T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Distributed Mediator System

in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional Approach to Data Management

- Modeling, Analyzing and Integrating Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2003,

http://user.it.uu.se/~torer/publ/FuncMedPaper.pdf.

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html
http://user.it.uu.se/~torer/publ/alisp2.pdf
http://user.it.uu.se/~torer/publ/FuncMedPaper.pdf

 25

Index
a_datatype ... 6

a_definetype .. 10

a_free... 7

a_let ... 7

a_print ... 10, 23

a_printstat .. 23

a_register_error ... 20

a_return ... 15

a_setf ... 7

apply function from C 22

apply_lisp .. 22

binding environment 14

call_lisp ... 20

calling C from Lisp 13

calling Lisp from C 20

datatype ADJARRAY 4

datatype ARRAY .. 4

datatype BINARY 4

datatype CLOSURE 4

datatype EXTFN ... 4

datatype HASHTAB 4

datatype INTEGER 4

datatype LIST.. 4

datatype REAL.. 4

datatype STREAM 4

datatype STRING.. 4

datatype SYMBOL 4

datatype TEXTSTREAM............................ 4

debugging C .. 23

dereferencing objects 5

destructor... 10

direct C call ... 22

dr, dereferencing objects 6

envarity ... 16

error condition ... 20

error message.. 20

error number ... 20

eval_forms... 22

evaluate C forms 22

exfunction ... 14

external function registration 13, 15

external Lisp function 13

extfunction .. 15

functions .. 22

garbage collection 3, 4, 22

global value ... 10

handle initialization 7

handle release .. 7

handles .. 3

image expansion.. 6

IntoInteger ... 15

lerror .. 20

logical objects ... 5

malloc .. 3

memory corruption.................................... 23

mksymbol .. 10

nil, C handle .. 4, 10

nthargval ... 16

objtags ... 4

OfType .. 15

oidtype, declaring handle 4

persistent data.. 3

physical objects 3, 4, 5

print function ... 10

print name ... 10

QUOTE ... 18

reference counter 4, 23

ROLLOUT .. 3

SETDEMON ... 23

special forms ... 17

standard error .. 11

standard input .. 11

standard output .. 11

storage leaks .. 23

storage manager 3, 18

storage types.. 10

storage.h .. 4

STORAGESTAT 23

surrogate objects ... 5

t, C handle ... 10

transient data ... 3

type identifier .. 4

type name .. 4

type table ... 10

unwind protection in C........................ 19, 21

value of handle .. 4

variable arity external Lisp functions 16

variable number of arguments 16

 26

