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his article describes Svniel, a knowledge rep-
resentation language used in building large-
scale expert systems for financial risk assess-
ment. Syntel is an outgrowth of rule-based
systems such as MYCIN' and network-based sysiems
such as Prospector.” Unlike typical rule- or frame-
based expert system shells, however, Syntel is a data-
driven, purely functional language providing
probabilistic inference plus many kinds of functional-
ity associated with spreadsheet and database systems.

Our use of Syntel exploits both the rapid-
prototyping style commonly associated with expert
system development, and a more traditional software
engineering methodology employing formal specifica-
tion, design, implementation, and testing phases. The
former exploits the Al workstation’s flexible develop-
ment environment to get early end-user understanding
and involvement, while the laiter provides the dis-
cipline and control needed to build commercial-scale
knowledge bases.

In either development mode, we implement the
knowledge base on Xerox 1100-series workstations
using knowledge engineering tools designed specifi-
cally for Svntel, We can execute resulting Syntel source
code on workstations, or port it to the IBM-based
mainframe delivery environment—an environment
supporting multiple users efficiently while providing
them with access to database and other important
information systems.

Syntel incorporates ideas from expert systems
research. It also draws heavily on concepts from func-
tional languages, spreadsheet programs, and relational
database systems. Specific needs of the application
domain called for this combination. Thus, we will
begin by describing the application's general nature in
sufficient detail to motivate the language features. We
will then define the language’s main concepts. Finally,
we will examine the process of knowledge base devel-
opment, and summarize the lessons learned from the
work.

Financial risk assessment

Financial risk assessment is a major part of many
business decision problems. In financial institutions,
assessing risk has long been a professional specialty,
For example, bank loan officers and insurance under-
writers devote most of their time to assessing risks
associated with business opportunities. Over time,
these professionals develop extensive expertise merit-
ing greater decision-making authority and responsibil-
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ity than can be given to more junior people. We
developed Syniel to caprure such expert knowledge
naturally, and to disseminate it effectively among less
experienced but still professional users.

Surprisingly diverse problems exist in financial risk
assessment, and subspecialties have developed address-
ing each. Even risk assessors specializing in only one
area require considerable experience before encounter-
ing all the situations that can arise. Despite this diver-
sity, the following commeon features characterize all
financial risk assessment problems:

(1) A mixture of gualitative and quantitative
reasoning. Few risk assessments are so obvious that a
quick gqualitative analysis will suffice, and even the
most experienced professional will want to “look at
the numbers’ before making a decision, However,
knowing what numbers to choose—and how to inter-
pret them—reguires qualitative analysis.

(2} A natural fit to functional or dataflow lan-
guages. One reason that financial people use spread-
sheet lanzuages so much more than procedural
languages is that spreadsheei languages directly cap-
ture meaningful functional relationships between
quantitative financial variables. Similarly, we have
found that dataflow languages have the same advan-
tages in expressing qualitative relationships.

(3) A combination of limited time and unlimited
data, To an experienced professional, each piece of
information about a case triggers new guestions.
Some important guestions cannot be answered; others
can be answered with further investigation, but each
answer’s value must be balanced against the cost of
getting that answer. Thus, assessment sysiems must
cope with incomplete and sometimes inaccurate infor-
mation.

(4) Judgmental inputs. While rational risk assess-
ment seeks to make objective decisions by basing risk
assessments on factual data, attempting to simulate
objectivity in truly subjective situations is foolish. For
example, suppose that part of an assessment requires
evaluating management’s ability to cope with person-
nel problems. While experts might be able to define
measurable factors correlated with such an evalua-
tion, relving on users to make such judgments is often
simpler and more satisfactory. Of course, users are
aften uncomfortable when called upon to make
vague, subjective assessments; therefore, assessment
systems should provide guidance whenever possible.

(5) Multi-atiribute assessments. Most risk assess-
ment problems involve multiple, interdependent
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considerations—{financial terms, previous financial
performance, the management experience of kev peo-
ple involved, possible internal and external changes,
possibilities for future business refations, and so
forth. Reducing assessments to simple formulas tha
will withstand ever-changing business conditions and
priorities is difficult. Assessment systems must help
organize decisions without oversimplifying complex
situations.

(6) Tabulated reference information, Professional,
governmental, and service organizations have com-
piled and organized data for many vears—data useful
for financial risk assessment. Some data, such as haz-
ard ratings for different occupations, are relatively
stable; others, such as financial reports for specific
companies, continually change, Such reference data
are available in numerous databases in either case,
and systems must be able to access easily whatever is
needed,

These risk assessment characteristics led to many of
Syntel’s technical features. Other features resulted
from the operational requirements of end users and
their organizations.

End-vuser requirements. Daily users want systems to
be tools that help organize analysis, provide relevant
information, and simplify documentation generation.
Most importantly, end users want to be in control,
Translated into system terms, this implies data-driven
operation. Standard goal-driven consultation **dia-
logues™ (in which systems ask long series of questions
that users must patiently answer) may be suitable for
infrequent users not familiar with the domain. How-
ever, frequent users must be able to control the
sequence in which things are {or are not) done.

Corporale requirements. Expert systems change the
way work is done, and the costs of changing existing
orgamizations are significant. To the greatest extent
possible, therefore, expert systems must fit into stand-
ard work-flow patterns. In addition, software must
work within existing data processing environments—
particularly within existing mainframe-based transac-
tion and database systems. Since corporations may
have to change rules quickly, responding to changes
in business conditions or carporate policy, they must
be able to make and distribute those changes quickly.
Finally, all standard software requirements for relia-
bility, accuracy, security, and maintainability apply
with equal force to expert systems,
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Figure 1. A risk assessment screen for a commercial insurance example showing a graphical display of uncer-

tainty.

An illustrative example

The following simplified but realistic examplée shows
how Syntel addresses the above requirements. Let's
assume the user is an insurance underwriter who must
provide property insurance for a medium-sized com-
pany, including coverage for its electronic data
processing (EDP) facility. Assume further that clerical
personnel have entered basic information found on the
application form, so that the underwriter can go at
once to a screen summarizing all requested coverages,
To analyze EDP risk, the underwriter can bring up
screens devoted specifically to that analysis.

Initially, our underwriter selects the EDP initial
evaluation screen (see Figure 1). Like all Syntel
screens, this screen organizes information in familiar
business form style—bringing together the following
considerations that senior underwriting experts who
developed the knowledge base deemed critical to
assessing EDP risks:

{1} The producer assessment. How informed and
reliable is the primary information source—the agent
or broker who submirtted the application?
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(2} The experience assessment. What are the
amounts and frequency of past insurance claims?

(3) The occupancy-exposure assessment. What cur-
rent activities are taking place in and around the EDP
facility?

(4) The moral-hazard assessment. What is the com-
pany’s financial condition? Is arson a reasonable
concern?

Should a few simple questions disclose serious
problems in any of these areas, no further time need
be wasted investigating other possible concerns.

Figure 1 shows the four key assessments in boxes
with a minus sign marked on the left and a plus sign
marked on the right. Both input data and output
assessments appear in the screen’s boxed areas.
Although only one input exists at this point (the name
of a fictitious *‘producer’’), two assessments are
shown—the producer assessment and the initial
underwriting evaluation.

Assessments are shown graphically as fuzzy gauges
that we call “*meters.”” Meters display an ordinal vari-
able’s value as a shaded bar whose position indicates
assessment value and whose width indicates uncer-
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tainty in the value. By convention, the meter’s left
side alwavs corresponds to unfavorable assessments
and its right side always corresponds to favorable
assessments, with the center being neutral. Internally,
the system associates probability values with every
point on the discrete ordinal scale. Qur convention
for graphically displaying probabilistic assessments is
that solid black bars show 25th to 75th percentiles,
and the union of black and gray bars shows 5th to
95th percentiles; users typically interpret black regions
as the “‘most-probable zones" and gray regions as
“still-plausible zones.'” Such graphical displays pro-
vide an overall impression of the risk profile quickly,
revealing problems at a glance.

Figure 1's producer assessment shows a solid *‘aver-
age,”’ but the initial underwriting evaluation reveals
an uncertain conclusian ranging from **far below
average' to “‘average.'" In this case, the system
obtained its producer assessment from database infor-
mation about the particular producer’s profitabilicy
and volume. The initial underwriting evaluation
shown combines the producer assessment with the
other three assessments, Since no input data currently
supports these other assessments, the system (1) uses
prior probabilities as defaults for the missing inputs,
(2) computes probabilities for the five possible
bottom-line evaluations, and (3) graphically displays
this probability distribution, Thus, while the absence
of factual information degrades and blurs the bottom-
line evaluation, it does not prevent an assessment
from being made.

At this point, users have several options. They can
enter input data, override output dara, ask for infor-
mation about any box, or execute any command
associated with the command bar at the top of the
screen. Both inputting and overriding cause the sys-
tem 1o recompute output values on the form. The
ability to override enables users to modily conclusions
at will, freeing them from having to accept system
evaluations.,

Let us suppose the initial evaluation sufficiently
favorable and the account sufficiently large to war-
rant more detailed analysis of specific potential con-
cerns such as fire, flood, and security. Figure 2 shows
the screen associated with fire risk. Notice that some
questions are strictly factual (1s smoking allowed in
the EDP room?), whereas others require judgment
(How adequate are other fire protective services?). In
Figure 2, the menu’s bottom half gives typical choices
for judgmental questions and the top half gives com-
mands pertinent to input items—the Clarify com-
mand, for instance, providing elaborated rephrasing
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of questions and guidelines for selecting answers. For
outpul items, a corresponding Show Reasoning com-
mand provides explanations by searching paths hack
to supporting inputs. Hiding underneath the menu is
the gualitative net-fire-exposure assessment and a
quantitative Premises load—the insurance premium
portion needed to cover this exposure to risk. These
outputs will be important components of the case's
[inal analvsis.

This example illustrates how Syntel responds to
financial-risk-analysis svstem requirements. However,
it omits one major feature—the treatment ol prob-
lems involving multiple instances of the same kind of
analysis. Suppose that our fictitious company had
several EDP facilities located in several different
states. Syntel handles multiple instances by
parameterizing the analysis. We can make inputs and
outputs depend on one or more instance parameters,
such as Site-WNumber or State. The system makes over-
all assessments by ageregating over individual
instances. Scheduled items in business applications are
typically handled by such parameterized analysis.

The Syntel language—an overview

This section describes the Syntel inference engine
illustrated in the previous example. We will limit our
discussion to basic concepts; Reboh and Risch give a
more detailed description.’

General characteristics. [n general terms, Syntel is a
nonprocedural dataflow language.*’ Knowledge bases
expressed in this language are functional specifica-
tions of how input values combine to produce output
values. The temporal sequence in which inputs are
entered and functions evaluated is of no consequence,
since the language is completely free from side effects.
In particular, no functions exist for accepting input
from or providing output to users. Instead, an
independent but tightly coupled (and similarly non-
procedural) forms fanguage lets knowledge engineers
specify the interface through which users interact with
the knowledge base. Both the knowledge base and the
forms specification can contain conditional (if /then)
statements; however, these conditionals select from
alternative data elements, and do not affect control
flow.

As oar example illustrates, every Syntel variable has
an associated probability distribution. Syntel uses a
probability mass function lor categorized variables
and a probability density function for numeric varia-
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Figure 2. An input menu far an ordinal variable on a screen including various inputs.

hles. These distributions allow inferencing to continue

X1, X2, X3 : Given even in the absence of complete input information; as
we shall see, they also provide a uniform and well-
X4 <-- F1( X1, X2) understood mechanism for expressing uncertainty.,
Viewed abstractly, Syntel’s most basic objects are
X5 <-- F2( X2, X3, X4 ) B variables and functions. Variables are either input

variables or functions of other variables. Functions
are composed from a predefined library of standard
functions. Syntel allows arbitrary functional compasi-
tion and a restricted form of self referencing, but full
recursion (circular dataflow) is not allowed. Thus,
given the variables X5, X5, and X5, we can form

X, «— Fi(X,, X3)
and
X: ~ FilG, X5, X)

but we are not allowed to add, say, X, — F(X:). If
we think of variables as nodes in a directed graph,
where arcs point from arguments to functions, then a
Syntel equation network must be a directed, acyclic
graph (see Figure 3).

Figure 3. A Syntel function network is a directed, acy- In these equations, the **=""symbol indicates defi-
clic graph., nition, not gssighment—an important point. Proce-
2 IEEE EXPERT




Table 1. A table of values for the variable ConstRisk[Bldg]. Mote that each Syntel variable can be viewed as a table
in a functional database, the parameters being the keys and the values being the probability distributions. These
values, of course, are dynamic and change at runtime. Since the inference engine maintains the relations
between varlahles specified by the knowledge base, the complete set of variables is effectively a data-driven,
active database.

dural languages commeanly assign the same variable
different values in different parts of the program,
whereas it would be invalid for Syntel to give the same
variable more than one definition. The arrow can also
he viewed as indicating dataflow direction, since
changes in X, or X, values can change X,'s value, but
a change in X (caused by user override, for example)
is not propagated backward to change X, or X,

Unidirectional propagation also characterizes
network-based systems such as Prospector,” Agness,’
and Lucas and Risch's equation-based system.” A
more general approach would define constraints such
as FIX,, X5, X5) = 0, without specifying a preferred
dataflow direction.” However, such generality greatly
complicates the value-updating problem.

Svntel variables. At runtime, Syntel behaves like a
spreadsheet program, propagating variable values
through an equation network. However, Syntel vari-
ables are more general than tyvpical spreadsheet varia-
bles in at least three ways: (1) their values can be
svmbolic as well as numeric, (2) they can be indexed
by one or several numeric or symbolic parameters to
allow for multiple entity instances, and (3) rather than
having single values, Syntel variables have associated
probability value distributions. By defining successor
functions for parameters, knowledge engineers can
express parameterized variable values in terms of their
preceding instance values; this is the restricted form
of self referencing referred to above, and is particu-
larly useful when forming financial projections.

Using a concrete example from the insurance
domain, let Bfdg be a formal parameter identifving a
particular building and let ConsiRisk(Bidg] represent
an assessment of the fire risk arising from how a
building is constructed. Suppose that a risk assess-
ment value is restricted to the symbolic ordered set
{ Very-Low, Low, Average, High, Very-High }.
Then, at some point, we might represent the variable
ConstRisk[Bidg] by a table of values (see Table 1).
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Thus, we can represent a single parameterized vari-
able’s state internally as a set of probability distribu-
tions, one distribution for each instance. A knowledge
engineer knowing nothing about an instance can
either specify a prior distribution of the traditional
Bayesian sort or leave the distribution undefined. In
practice, while philosophical arguments have vet to be
resolved over the proper treatment of ignorance in
expert systems, we have found it necessary to provide
both alternatives,

Note that each Syntel variable can be viewed as a
table in a functional database, the parameters being
the keys and the values being probability distributions.
These values are dynamic, changing at runtime. Since
the inference engine maintains the relations between
variables as specified by the knowledge base, the com-
plete set of variables is effectively a data-driven,
active, functional database.

As we mentioned earlier, Syntel associates a proba-
bility mass function with categorized variables, and a
probability density function with numeric variables.
Working with arbitrary probability density functions
is too expensive for numeric variables; thus, we have
used a moment approximation, storing only the mean
and the variance (the so-called second-order statis-
tics). While these two moments only erudely describe
an arbitrary density function's shape, the variance is a
mathematically meaningful measure of uncertainty
that usefully exposes the effects of input information
that is missing.

Syntel functions. Syntel provides some 55 standard
functions for knowledge base construction—functions
supplving a set so complete that Syntel provides no
escape Lo the procedural host language. Standard
functions fall into four basic families: (1) logical,

(2) arithmetical, (3) table and database instantiation,
access, and deletion, and (4) voting. Most of these
resemble the usual functions provided by any fune-
tional programming language. Some are more



unusual, however, and a few examples will show how
they can be used to represent risk assessment knowl-
edge. For simplicity, deferring the treatment of uncer-
tainty to our next section, let’s assume we know all
variables exactly.

We can use logical and arithmetical functions alone
to implement large parts of a knowledge base. For
example, suppose an experienced underwriter knows
that fire risk for old frame buildings is very high. This
could be represented in rule-like form by the func-
tional composition

ConstRisk{Bldg] —1F( AND(EQI{Const TvpefBlde],
'Frame), GT(AgefBldg/, 15)), "Very-High).

Here, the nominal variable Const Type/Bldg] identi-
fies the construction type; the numeric variable
AgefBldgf gives the building’s age in vears; AND, EQ
and GT are obvious predicates; and [F is the condi-
tional function. In particular, IF(P, ¥) is a function
of two variables whose value is the value of Vif the
predicate P is true, and is undefined otherwise. Thus,
whenever we learn values for ConstType and Age for
the same instance of Bldg, the inference engine can
use this function to define a value for
ConstRisk [Bidg/.

We can handle other possibilities by adding more
rules and a little more logic to combine them. If the
problem has sufficient regularity, a few rules might
cover all possibilities. In many cases, however, each
possibility seems to need a different rule. In such situ-
ations, it is expedient to use the TABLE function

ConstRisk{Bldg] = TABLE(Const Type(Bldz],
AgefBldeg]; ConstRisk Table)

where the ConstRisk Table might specify Table 2's
dependence of risk on construction type and age.

Such tables are convenient when all input value
combinations are significant, or when only one output
variable is involved. When tables are sparse, or when
the same inputs key several output variables, we may
prefer to store information in a relational table and
use relational database access functions. This mecha-
nism has proven particularly effective for handling
specialized knowledge associated with various code
systems used in banking and insurance (such as Stand-
ard Industrial Classification codes, Insurance Services
Organization codes, and National Council on Com-
pensation Insurance codes).

Frequently, the Syntel weighted-voting function
expresses assessments naturally through the formula
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where v{.) are piecewise linear functions mapping the
argument domains to a common numeric range of
votes. The special cases where v{.) are linear fre- '
quently arise in statistical applications as linear regres-
sions, and in financial applications as :
“weight-and-rate'’ schemes. The use of additive vot- [
ing functions presumes some kind of independence of
arguments, since votes cast by variable X, are
independent of other variable values. Here, the great
virtue is simplicity; one voting function often replaces
many rules (or an uninformative table) with some-
thing that is logically equivalent but considerably eas-
ier both to build and to understand.

Frequently, we must combine the values of differ-
ent parameterized variable instances. Consider again
the variable ConstRisk[Bldg], which gives the con-
struction risk for different buildings. Given such a
variable, one might waut to sort buildings by risk to
find the largest risk, the average risk, and all build-
ings whose risk satisfies some predicate. These opera-
tions typify query functions one would want for a
relational database system. Syntel provides 11 func-
tions for such operations. Most of these are conceptu-
ally straightforward, but complications arise when
parameterized variable values are uncertain. Next,
therefore, we turn to the probabilistic treatment of
uncertainty.

Probability distribution propagation. The inference
engine’s basic function is to propagate forward
through the equation network the effects of changes
to variable values. The state of any variable is either
undefined, or defined with some probability distribu-
tion on its values. Given an eguation £ = F{X,, ...,

X ) and the states of the n arguments, the inference
engine must determine whether or not £ is defined
and, if it is, must compute the probability distribution
for its values. For a parameterized variable, the infer-
ence engine must do this for all parameter instances.

In the language of probability theory, separate dis-
tributions for the n arguments P/X) are known as the
marginal distributions of the joint distribution funec-
tion PrX,, ..., X, and the distribution of a function
F resulting from distributions of its arguments is
known as the induced distribution. In the case of a
univariate F(X) function, a general solution exists for
computing the induced distribution. Let X be a
discrete-valued variable, and let Sy(f) be the set of X
values for which FrX) < f. Then, the cumulative dis-
tribution function for Fis given by
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PriFfX)<f}=58umPr{ X},
Xin 5,

from which we easily obtain the distribution for F (an
analogous formula involving integrals holds for
continuous-valued arguments). In the multivariate
case, we obtain exactly the same formal solution if we
substitute the vector (X, ..., X,J for the scalar X.
Unfortunately, this solution requires that we know
the joint, n-dimensional distribution of all arguments
PrX,, ..., XJ, not just the n one-dimensional mar-
ginal distributions Py X ). Since we rarely (if ever)
know these joint distributions, this solution has only
theoretical interest.

However, things simplify greatly when variables are
statistically independent, so that joint distribution can
be written as the product of marginal distributions.
For example, consider Table 2 for computing fire risk
due to construction. If we want to determine the
probability that ConstRisk is Average, we note from
the Table that two mutually exclusive input situations
exist producing that output—new frame construction
and old joisted-masonry construction. Thus, we have
to compute

P(ConstType=Frame, 0<Age<8) +
P(Const Type = loisted-Masonry, Age>135),

which we cannot determine from the separate distri-
butions for construction type and age. However, if
construction type and age are statistically indepen-
dent, the calculation simplifies to the sum of products

P{ConstType =Frame)*P(0< Age<8) +
P(Const Type = Joisted-Masonry}*P{Age> 15),

which we can compute from the separate distributions
for construction type and building age.

All procedures built into Syntel for computing the
induced probability distribution of a function from
the probahility distributions of its arguments make
assumptions about statistical independence. In some
cases, these assumptions can be theoretically justified;
in others, they are either suspect or demonstrably
false. When variables are only weakly correlated, we
can often neglect errors generated by assuming inde-
pendence. However, knowledge engineers basically
have only two choices when they know strong correla-
tions exist: (1) reformulate the problem, defining new
variables or new network structures that factor the
problem into independent components; (2) use Syntel
functions that extract probability distributions and
build subnetworks that compute desired probability
distributions. While the latter solution is available, it
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Table 2. A tabular representation of rule-like knowledge
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Figure 4. The coupling between screens and the func-
tion network,

tends to produce knowledge bases that are harder 10
understand. Fortunately, we have rarely encountered
situations in practice where the reformulation
approach was not possible.

The Forms system. Of the many factors determin-
ing expert system acceptability, the user interface is
the most visible. Since all knowledge base interaction
takes place through the interface, developers place a
high priority on making it as effective and natural as
passible. Because we have chosen a business form as
the basic display metaphor, we call our interface the
Forms system. The Forms system design is compli-
cated by the size of the typical knowledge base, and
by the fact that the system is data driven. With goal-
driven systems, programs merely have to present users
with the one input item of interest to the system. With
data-driven systems—particularly one with several
thousand variables of potential interest 1o users—it is
more challenging to simplil'y user access to just what
they want.

The Forms system addresses this task by allowing
knowledge engineers to define any number of screens,
providing viewports into selected parts of the knowl-
edge base (see Figure 4). These screens present an
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Figure 5. A top-level dataflow diagram for a site assess-
ment knowledge base.

*arthogonal view" of the knowledge base, permitting
dilfferent ways of grouping variables for different
assessment purposes. Using the Forms system’s non-
procedural language, knowledge engineers can specify
{1) the hierarchical organization of the screens, (2) the
layout and format of data elements within any given
screen, and (3) the association between these data ele-
ments and Syntel variables. The system then takes
care of such things as creating a screen index, creating
appropriate menus, selecting output formats, justify-
ing lavouts, and computing bitmaps.

Frequently, certain guestions on a screen or even
entire screens are relevant only in particular situa-
tions. For example, questions in our insurance exan-
ple are relevant only when a request exists for EDP
coverage. In such cases, knowledge engineers can
specify particular regions an 4 screen or particular
screens o be conditionally visible—the conditions
being defined by states of variables in the knowledge
base. Thus, the initial screen index might be small,
providing access only to those screens that define the
risk assessment problem. As users enter information,
additional viewports into the knowledge base become
enabled. Users have complete freedom to move to any
enabled screen and to enter or change any displayed
item on an enabled screen, but are restricted to what
is currently visible.

In addition to providing mechanisms for inter-
acting with the knowledge base, the Forms system
gives us a highly effective way to control a well-
known weakness of data-driven svstems (namely,
their tendency toward a combinatorial propagation
explosion). At any given time, users view only one
screen and can see only a relatively small number of
input and output variables. Using compile-time analy-
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sis, the system determines for every node a list of
screens that node can affect. Whenever users change
node values (whether by entering new inputs or aver-
riding old outputs), those changes are propagated
through the equation network as long as and only as
long as the current screen is affected. Thus, results of
changing a node value do not propagate throughout
the entire knowledge base, but are blocked at a ron-
tier defined by the current screen. The system defers
propagation beyvond this frontier until users move 1o
another sereen that must be updated. Because Syntel
is free from side effects, this method for limiting
propagation provides a dramatic increase in perform-
ance while maintaining full logical consistency.

Knowledge engineering methodologies

While the application of Al and expert system tech-
niques to sofiware engineering has received considera-
hle attention, ™" relatively little has been written on
the application of software engineering principles to
expert systems'*'""—probably because the need for dis-
ciplined development has been recognized only
recently, as large-scale expert systems have begun to
enter commercial use.

Knowledge engineering and software engineering.
We usually consider knowledge engineering to be the
design and implementation of knowledge bases; that
is, the representing of knowledge about a particular
domain in some knowledge representation language.
Unfortunately, this definition emphasizes the siaric
character of knowledge, slighting its dynamic purpose
and use. It also supports the myth that knowledge-
based systems can be endlessly improved by continu-
allv expanding knowledge bases without concern for
how various pieces of knowledge will be used or will
interact.

Wwe contend that knowledge engineering in Syntel 15
essentially a form of programming, differing from
conventional programming primarily in that it is non-
procedural. Viewed in this light, a knowledge base 15 a
program in a nonprocedural language, an inference
engine is an interpreter for that language, and a
professional knowledge engineer is a software
engineer. This viewpoint emphasizes the purpose and
dynamic use of knowledge bases. It also encourages
us to learn from past lessons when seeking ways 1o
control cost, manage complexity, and maintain
knowledge base quality.
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One such lesson is that there is a place for both
rapid prototyping and structured methodologies.
Rapid prototyping provides an effective way to make
progress on unusual new applications. Larger and bet-
ter understood safltware projects require top-down
design, structured implementation, and similar pro-
gramming disciplines.

Rephrasing this for expert system development:
When neither experts nor end users nor knowledge
engineers know clearly what the system will be like,
implementing knowledge base fragments helps us
obtain something concrete that can be critiqued and
quickly revised.

When experts and end users understand what can
and cannot be done, and when knowledge engineers
understand how to do it, the problem changes from
one of feasibility to one of scale. In addition, when
completing a knowledge hase within time constraints
requires teams of knowledge engineers, a uniform and
disciplined approach is also required. Under these
conditions, knowledge base development shares the
same life cycle as other large software systems includ-
ing such traditional phases as requirements analysis,
specification, design, implementation, testing, and
maintenance.'+"*

Fortunately, Syntel suits both research-and-
development and software engineering phases of
knowledge base development. In research and devel-
opment, we make maximum use of the programming
environment associated with Syntel’s implementation
in Interlisp-D on Xerox 1100-series Lisp machines. In
addition to the powerful facilities inherited from
Interlisp, this environment provides interactive editors
customized for creating and modifying Svnrel ohjects,
graphical means for displayving network structures,
and various useful knowledge-base-debugging tools.
These advantages of Lisp-based-experi-sysiem devel-
opment systems are well known, and we will not
describe our particular tools in further detail here;
instead, the remainder of this section will focus on the
less-discussed software engineering phase of knowl-
edge base development.

Knowledge base description and documentation.
Documentation is extremely important for all parts of
the knowledge base life cycle. In developing our
knowledge bases, we have exploited the fact that Syn-
tel knowledge bases directly correspond to the classi-
cal Data-Flow-Diagram,/Data-Dictionary (DFD/DD}
methodology for program specification and documen-
tation.'” This methodology’s central idea is to
(1) defer specification of detailed procedural steps
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stating how output data will be computed from input
data, and (2) focus instead on what data transforma-
tions are required. Thus, until one reaches the lowest
level module descriptions, dataflow diagrams give a
nonprocedural program description.

Since Syntel is a dataflow language, the DFD/DD
approach provides a natural hierarchical way to
describe and document knowledge bases—something
essential for knowledge base specification, design,
and maintenance. As an illustration, consider the
development of a hypothetical knowledge base for site
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Figure 6. Expansion of Module 1: Assess Physical
Facility.

assessment. Let’s assume the user is a commercial real
estate agent or facilities manager who has to evaluate
candidate sites for a small manufacturing plant. Fig-
ure 5 gives the top-level view of the entire knowledge
base. This DFD shows the four major modules in the
knowledge base and their associated dataflows; mod-
ule and dataflow descriptions are given in the data
dictionary (a portion of which is shown in the accom-
panying box).

At this level, most entering data comes from users,
but some comes from database files (namely, the
Regional-Reference-Data). We associate no concept
of time (or sequencing, or control) with this or any
other DFD. In particular, we need not **execute”
Muodules 1-3 before Module 4 can combine the major
assessments. At any given time, some data elements
will be known and the rest will be unknown; the infer-
ence engine must ensure that whatever output data
elements must be computed from current input data
elements are in fact computed.

As is usual with dataflow diagrams, modules are
either primitive or nonprimitive; nonprimitive mod-
ules are further articulated in a standard top-down,
recursive manner. The DFD /DD description allows
knowledge engineers to descend top down through the
knowledge base until they reach primitive modules
and primitive data elements. For instance, let's go
more deeply into Module 1—Assess Physical Facility,
Figure 6 shows that this module is comprised of the
following eight modules:
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1.1 Assess Physical Space

1.2 Assess Heating/Lighting /Ventilation
1.3 Assess Protection/Security

1.4 Assess Internal Conditions

L.5 Assess Ltilities/Power

1.6 Assess Transportation

1.7 Assess External Conditions

1.8 Combine Facility Assessments

While these modules are also nonprimitive, we find
a security assessment with the following data diction-
ary description if we descend further into Module 1.3:

1.3.2  Assess Building Security:
Primitive.
Output(s): BLDG-SECURITY-
ASSESSMENT
Weight and combine the following data
elements:
Perimeter surveillance
Fence alarm
Door alarms
Entrance and exit monitoring
Central control and monitoring

Al this point, we have reached a primitive Syntel
function—the weighted-voting function. Specifying
values for the voting functions is all that remains to
complete the description. While we could put all of
that information in the data dictionary, it is equally
well documented in the Syntel code.

This example shows that a standard DFD/DD
methodology provides natural and effective documen-
tation for a knowledge base, providing a description
that moves seamlessly from the highest level abstrac-
tions to basic Syntel primitives. Of course, it is not the
only possible form of knowledge base documentation.
For example, we have sometimes found it useful 1o
express the knowledge base in terms of equations.
During knowledge base implementation, we often
make use of network diagrams like those used for
Prospector.” In addition, we need separate documen-
tation for screen specifications. However, the
DFD/DD approach is particularly well suited to
defining knowledge base specifications that can be
used during implementation, as well as for testing and
maintenance phases of the knowledge base life cycle.

Svntel’s current status

Syntel has been in full use since the fall of 1985,
Syntelligence installed the first delivered system at
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American International Group, a New York insurance
company, in the fall of 1986. The Syntel approach has
been used to develop several customized versions of
five different financial-risk-assessment knowledge
bases ranging in size from 800 to over 2000 nodes,
with chains more than 100 functions deep and rela-
tions containing over 100,000 values. Comparing these
size measurements with traditional rule-based systems
is difficult since many rules are often required to
obtain the behavior of one function, but by anv mea-
sure these are large-scale expert systems.

Our current delivery environment uses a distributed
architecture. The knowledge bases, developed on
Xerox 1100-series workstations, use knowledge engi-
neering tools and an inference engine written in Inter-
lisp. The inference engine, written in PL/1, runs on
IBM System,/370 mainframes under MVS /XA using
CICS. The interface software, written in C, runs on
3270 PC/AT workstations. In addition, the mainframe
system includes special software to handle database
queries and manage business-case data. Cross-
development environments are complex; however, they
allow powerful tools to speed development while
retaining the many advantages of conventional sys-
tems for delivery.

e have described Syntel and its applica-
tion to particular problems in financial
risk assessment. Now that this applica-
tion has passed from prototvpe to full-
scale implementation and daily use, let’s review the
lessons we've learned. Syntel’s nonprocedural,
dataflow character has effectively handled most of the
risk assessment problems we've encountered. In fact,
we believe it applicable to many other problems in
assessment or estimation. On occasion, we have
excluded kinds of functionality better provided by a
procedural language, particularly when the problem
invalved an arbitrarily complicated search. However,
Syntel’s freedom from side effects has repeatedly
praven highly advantageous—whether for providing
averride capability, allowing “‘what-if** experiments,
retrieving old cases, or merging knowledge bases,
Using ordinal values to represent degree of risk—
and preobabilities to represent uncertainty in risk
assessment—nhas been effective and readily accepted
by our users. In particular, the ability to use prior dis-
tributions has been essential since it allows the system
to make assessments without experiencing the mislead-
ing sense of certainty that comes from simple defaule
values. We can not always assign reasonable prior dis-
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tributions, however, particularly when numeric quanti
ties are involved; thus, we allow the use of undefined
distributions as an alternative expression of ignorance.
This blocks conclusions in the face of incomplete
infermation—an undesirable but unavoidable result.
In addition, knowledge engineers need to be alert to
the assumptions of statistical independence employed
by Syntel. When variables are correlated (perhaps
because of some common underlying cause), unex-
pected value pairs should be investigated rather than
just combined. Despite these limitations, probability
theory provides an understandable and effective way
to deal with uncertainty introduced by missing infor-
mation.

Although an expert system’s human interface
usually receives less attention than the inference
engine, it’s critical from the user’s viewpoint. Even
experts find it easier to think about systems in terms
of screen interactions than in terms of dataflows. For
business applications, the familiar business form
remains the most natural interface. While it doesn't
give the impression of a “‘thinking computer’ that
comes from ‘‘question-and-answer’ dialogue charac-
terizing goal-driven consultation systems, it provides a
much maore effective mechanism for data-driven sys-
tems. Moreover, when the propagation of conclusions
is limited to those items visible on the screen, it pro-
vides a natural way to control the combinatorial explo-
sion that can otherwise cripple data-driven contral,

Finally, our experience verifies the effectiveness of
well-known software engineering concepts in the-
development of large knowledge-based svstems.
Although expert system technology is new, general
principles of managing complexity remain the same,
Since Syntel is a dataflow language, it might not seem
surprising that the DFD/DD documentation method
fits so well. However, DFD suitability can also be
viewed as a consequence of separating knowledge
bases from inference engines—the standard expert sys-
tem approach. Knowledge bases tend to be ‘*data
rich’” and are naturally described in terms of
dataflows. By contrast, inference engines tend to be
“‘control rich’ and are not naturally described that
way at all. By providing a completely nonprocedural
language—not allowing knowledge engineers any kind
of procedural escape—Syntel might be viewed as an
extreme case. However, we share the belief that
DFD/DD methodology can apply to a wide spectrum
of knowledge-based expert systems, and expect that it
will become a widely adopted form of knowledge base
documentation. "

As in any computer application, providing good



solutions for technical problems is just one require-
ment for success. In this article, we have focused on
considerations specific to expert systems; by and
large, we have ignored the work required to imple-
ment systems on (and interface them to) conventional
data processing systems, and to carry out the many
activities needed to put systems into daily use. How-
ever, even if these other activities consume most of
the total effort, the unique characteristics of expert
systems provide the financial industry with many new
opportunities for computer use,

Large-scale expert systems are being used daily in
financial institutions. The benefits they provide stem
from their ability to capture and disseminate expertisc.
Such easily identified benefits as improved uniformity
and consistency, better documentation, and faster
institutional reponse justify current developments. We
believe that additional benefits, only dimly perceived
at present, will eventually emerge.

Formalizing previously unformalized knowledge
will provide experts with new insights that will change
traditional business practices. As new sysiems become
widely used, the data they capture will provide entirely
new views of the **book of business'—an objective
basis for strengthening subjective parts of knowledge
bases. Recognizing and realizing such benefits will
provide a worthy challenge for our creative abilities. B
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