Chapter 2

A FLEXIBLE AND EXTERNAL DATA DICTIONARY SYSTEM FOR PROGRAM
GENERATION

T. Risch

(Datalogilaboratoriet, Sweden)

A data dictionary is implemented as data structures

in a symbol manipulation 1anguage, separate from the
underlying data base system. A number of programs
are built around the data dictionary. The most impor-
tant program module is a query compiler, which trans-
lates a non-procedural query language into a lower
level language (COBOL). A feature of the system is
compile-time optimization of the access algorithm.
Design issues discussed include the decision to separate
the data dictionary from the underlying data base
system; the future possibility both to interpret and to
compile the query language; and the problem of
achieving an architecture convertible to any underlying
data base system. Experience with one such conver-
sion is reported.

1. INTRODUCTION

This paper describes a data dictionary system with a query language
handler. (We will use the term ‘'data dictionary' and 'data directory'
as synonyms). It has the following important properties:

- The system works with an existing data base system but is viewed
by the operating system as a separate program. The system in-
cludes a data dictionary which describes data bases in the under-
lying data base system. At present the system works with a data

base system called MIMER.2

- The user may specify data base access programs in a high level
query language. The system then automatically generates COBOL
programs which efficiently perform the specified searches.

- The system embodies general knowledge of how to compile the
query language. The special method which is used for optimi-
zation and code generation, the FOCUS method, is described
.elsewhere. 19

19




20 INTERNATIONAL CONFERENCE ON DATA BASES

- The system is designed to make it possible to use different
underlying data base systems. An earlier version of the system
9

12

worked with IMS. 11,

The work has resulted in a working system called LIDAM (LISP
Data Manager), which has been used since September 1977 as a tool
for data base applications at Uppsala Computer Centre. In this paper
we will describe the architecture of the system and discuss different
aspects of the design chosen.

2. DATA DICTIONARY IMPLEMENTATION

All data base systems contain some kind of a data dictionary. The
data dictionary describes the structure of the data bases using the data
base system, the physical data bases., Here 'structure' means a general
description of the appearance of physical data bases. In its simplest
form the data dictionary only contains names and sizes of fields and
files. In more sophisticated systems much additional information is
stored, like how different files are connected to each other, statistical
information, and so on.

Data dictionaries are used for several purposes. An important use
of data dictionaries in LIDAM is to optimize data base searches in a
high level query language.

The data dictionary can be connected to the data base system in
three main ways:

- The data dictionary can be internally stored in the data base system.
The user is given some kind of a language to describe the appear-
ance of data base structures. This Data Definition Language (DDL)
is given as input to a compiler, which translates the DDL source
code into internal tables in the data base system. The user may
not access these tables. This kind of data dictionary is the one
normally used by conventional data base systems, such as CODASYL

based systems7 and IMS.
- The tables are stored internally as in case one, but the user is
supplied with a number of subroutines to get and store data in

these tables. Sometimes, as in System R,1 the data dictionary
is stored in the data base system as conventional files.

- A third method, used by LIDAM, is that the data dictionary system
is totally disconnected from the data base system. It can, however,
generate data and programs to communicate with the data base
system.

3. MOTIVATIONS FOR THE SYSTEM ARCHITECTURE

An important property of the LIDAM system is the separation of
LIDAM from the underlying data base system, and therefore of the

o«




FLEXIBLE AND EXTERNAL DATA DICTIONARY SYSTEM FOR PROGRAM GENERATION 21

Notation: D Data Program

data dictionary
definitions

LIDAM 3
data dictionary
DOL of the
DBS in use
- 8
physical request
data base output

Figure 1. The relationship between LIDAM and the DBS
data base system,

data manipulation
requests (LRL)

data base

manipulation code

LIDAM data dictionary from the data base system's data dictionary,
Another important decision was to implement the system and the data

dictionary in the programming language INTERLISP.24’25 These design

decisions are motivated below.

The relationship between LIDAM and the underlying data base system
(DBS) is illustrated in Fig. 1.

Why INTERLISP? For the implementation we have used the INTER-

LISP system.%’zl5 A number of properties of this system have simpli-

fied the implementation.

The logical data structures we needed, lists and trees, are well
supported in LISP. In LISP many procedures and programs are available
to manipulate and debug list structures (a large procedure library, a
structure oriented editor, structure oriented 1/0 facilities etc.).

LISP supports symbolic manipulation allowing the user to associate
data structures and procedures with each symbol, by using property lists.
The LISP data structures are very useful for internal representation
of program code. Since it is possible to associate procedures and data

with each symbol, the manipulation of the internal representation is
simplified. To some extent, LISP itself therefore can be regarded as
a compiler-compiler.

The data structures of LISP are also very useful for representing
the data dictionary. Since LISP is equipped with predefined 1/0 for its
data structures in contrast with other languages, it is easy to make
programs to save the internal list structure representation of the data
dictionary on an external file and to load it later.




22 INTERNATIONAL CONFERENCE ON DATA BASES

The program development is simplified by the very interactive
architecture of INTERLISP and by the favourable debug facilities. An

overview of these and other properties of LISP are given by Sandewall. =
The disadvantage with the programming system chosen is that such

a flexible system as INTERLISP of course will not have as good perfor-

mance as conventional programming languages. However, we have not

regarded the efficiency considerations as critical since:

- The system generates production programs (which of course are
as efficient as possible) and this generation is only made a few
times,

- The programming effort has been kept within reasonable bounds.
This has made it possible for one person to carry out the system
development in less than two years of programming time.

- The system has become more flexible and easy to modify, and
thus less dependent of underlying data base system and built in
strategies.

Why Separate the Data Dictionary? Since the LIDAM data dictionary
is independent of the underlying data base system, programs can be
built to work with different data base systems. LIDAM is therefore
less dependent on the data base system used.

The LIDAM data dictionary is represented using the LISP data struc-
tures. This provides full control over the content and the manipulation
of the data dictionary, which has greatly simplified the development of
the LIDAM program modules. All the LIDAM program modules make
extensive use of the content of the data dictionary.

A detailed data dictionary will have a relatively complicated data
structure, which is very extensively manipulated. At the same time the
data dictionary is of limited size. Conventional data base technology is
more oriented towards handling of large data volumes with little structure,
than towards small data bases with complicated structure. TFor these
reasons it is preferable not to store the data dictionary using conventional
techniques, but as data structures held in the primary memory (i.e. the
data structures of LISP in our case).

LIDAM can communicate with the data dictionary of the underlying
data base system by a transformation program between the LIDAM data
dictionary and the Data Definition Language (DDL) of the data base system.
(Illustrated by the arrows between box four and five in Fig. 1).

One disadvantage with having the data dictionary separated from the
data base system is that the information stored in the data dictionary
may get out of date as the physical data base is modified. For example,
some of the statistical information may be changed. If the data dic-
tionary is connected directly to the physical data base, statistical in-
formation may be updated continuously. With the LIDAM approach, pro-
grams unfortunately have to be run periodically to go through the physical
data base in order to generate statistical information for the data dic-
tionary. Some of the statistical information is, however, not simple to




LY

FLEXIBLE AND EXTERNAL DATA DICTIONARY SYSTEM FOR PROGRAM GENERATION 23

update continuously, so that statistical programs have to be run also by
an integrated data dictionary.
In System R, for example, statistical information is collected when

14 .
loading the data base. Also, statistical programs have to be run when
the statistical information becomes out of date. A similar method is used

also by Hammer and Chan, 10 where statistical information is collected for
each query processed. This statistical information is added to the data
dictionary during data base reorganization.

Furthermore, with the LIDAM technique it is possible to generate the
statistical programs needed.

4. SYSTEM OVERVIEW

The LIDAM architecture, with a separately stored data dictionary
in LISP, has entailed the development of a number of program modules
around the data dictionary. First we will give a short description of
these modules, and then an overview of the query language and the pro-
gram generator.

4.1 Program Modules. Figure 2 below shows the program modules
in LIDAM and their control structure. The figure is a blow up of box 4
in Fig. 1.

1
——4 Entry of data dictionary

’ 2
DOL input

2 DDL output

LIDAM top loop DML program generator

r—a Structure editor

Documentation tools for
the data base structure

‘XY Handling of views

Figure 2. The program modules in LIDAM and their control
structure.




24 INTERNATIONAL CONFERENCE ON DATA BASES

The LIDAM top loop. The centre of LIDAM is the LIDAM top loop.
The different program modules in LIDAM are activated from this top loop.
The user can give commands to call the modules. The top loop is table
driven to make is easy to extend it with new commands.

Entry of the data dictionary. The data dictionary is normally created
by a special data dictionary entry program. It is an interactive program
that prompts the user for name, size, type etc. of data bases, fields
and files. From the answers to these questions new parts of the data
dictionary are created. During data dictionary entry all the data read is
checked to protect the data dictionary from becoming erroneous or incon-
sistent. The data dictionary entry program is table driven to make it
easy to change what to prompt the user for, and how the input will be
controlled and stored in the LIDAM data dictionary.

The information content of the data dictionary overlaps with opera-
tional information in the underlying data base system. Programs are
available to transform data both ways (this is illustrated by the arrows
between box 4 and 5 in Fig. 1).

The DML program generator is described later.

The structure editor. In many cases the user wants to make changes
in the data dictionary, for example to optimize the data dictionary for
common searches. For this reason a specially designed editor, the
Structure Editor, is included in the system. The Structure Editor checks
that all changes are correct and admissible, in order to keep the data
dictionary consistent.

LIDAM as documentation tool. An important use of LIDAM is as a
documentation tool. The system can be used to answer queries about
data base items, e.g. which file descriptions are stored in the data
dictionary, sizes of files and fields, relations between files, statistical
values etc, The data dictionary thus documents the structure of the under-
lying data base.

Views, LIDAM contains a module to define views (or external schemes).
A view in the view of LIDAM contains of a number of fields from some of
the files in the data base. From that view, the user may regard all of
the data base as a flat file with these fields. The program generator
automatically maps the view onto the current data base by using the data
dictionary.

The views may be linked to different LIDAM data dictionaries. This
makes the views less dependent on the data base structure.

4.2 The Query Language. The query language we use, LIDAM
Request Language (LRL), is of a similar type as the relational data base
languages. In some respects, however, LRL is more powerful than many
of the presently available relational data base languages. For example,
LRL allows multi-relational queries, i.e. queries where the logical access
paths are not specified by the user, but are determined automatically by




FLEXIBLE AND EXTERNAL DATA DICTIONARY SYSTEM FOR PROGRAM GENERATION 25

the system. Similar techniques are used by Carlsson,4 Osborn,16 and

20
Sagalowicz. In some other respects it is less powerful, for example,
our intention has not been to construct a relationally complete query

1anguage,8 but to make a language which is user-oriented and solves prac-
tical problems.
In LIDAM the data base administrator regards the data base as a net-
work data base, but the user still has the relational view of the data,
and furthermore may regard the data base as one big flat file (or relation).
A typical simple LRL statement has the form:

sRETRIEVE <output fields> WHERE < predicate>;
For example:
sRETRIEVE DEPARTMENT WHERE EMPLOYEE="SMITH';

In <output fields> the user states the fields whose values are to be
retrieved. The output fields may refer to arbitrary files in the data base,
with some restrictions. The <predicate> is the selection rule, i.e.
an arbitrary predicate with conditions on some fields in arbitrary files
in the data base. The predicate can be composed with AND, OR and
parentheses when needed.

The query language mainly contains four types of constructs:

- Data Manipulation Language (DML) constructs, to specify the data
base search,

- Features to display the result, i.e. a report generator.

- Features to specify the form of the input to the generated programs,
i.e. a dialog generator,

- The usual programming language constructs such as loop statements
and procedures. At present LRL only contains a few such constructs,
but this set of statements will later be extended.

The users of the system have influenced the design of LRL, and par-
ticularly motivated the need for the report generator; the dialog generator;
multi-relational queries; and views.

4.3 The Program Generator., LRL is a compiled language. The user
gives a number of LRL statements to the LRL compiler at one time. They
are transformed into a COBOL program containing calls to the data base
system. The COBOL program is compiled by the COBOL compiler and
executed the normal way. 18

A comparison is given in Risch™ = of compilation versus interpretation
of high level query languages. The reasons why we have chosen to compile
the query language are in brief: a more extensive optimization can be
done, the generated programs will be of limited size, and the system will
be less dependent on underlying data base system. In Section 6 we will
describe how our design can be used to combine compilation and inter-
pretation. Another example of a system having a compiled query language




2 INTERNATIONAL CONFERENCE ON DATA BASES

is System R.15 Katz13 has measured the considerable efficiency im-
provement for different levels of compilation of the query language in the

INGRES system.23
The method used encourages the specification of simple specialized
programs working over the data base. These specialized programs answer
simple, specialized queries by prompting the user for desired values of
specific fields. The programs are very simple to use, and those who
use them do not have to master any query language. It is our intention
that the programs shall be used by casual users. LIDAM can generate
specialized programs for each application of interest (e.g. account search).
To compile LRL-statements into efficient searches in the physical
data base, the program generator has knowledge about search strategies
in the data base system. Information from the data dictionary is used to
optimize the generated prograns.
Steps of the Program Generation. The original LRL statements are
successively transformed by the program blocks in the program generator

Program block

Notation: C) Data block

LRL statements

Parsing and Checkingi 2

3

Code generator 4

MACRO form 5

LIDAM-COBOL compiler 6

‘COBOL program 7

Figure 3. The transformation of the original LRL statement
to data blocks.




-

FLEXIBLE AND EXTERNAL DATA DICTIONARY SYSTEM FOR PROGRAM GENERATION 27

into new representations or data blocks. The program generator has
three steps. They are illustrated by Fig. 3, which is a blow up of Box 4
in Fig. 2. It also illustrates the data flow from box 1 via box 4 to Box 7
in Fig. 1.

Parsing and Checking. The LRL statements are parsed in this program
block and their syntactic and semantic correctness is checked. Incorrect
statements must be rewritten. There is also a capability to correct some
errors interactively when LIDAM finds them, and to do simple editing of
the LRL statements. The output data block from this step represents the
LRL statements parsed into an internal list structure form, form F2,
where references to data base items (files and fields) are replaced by
pointers to the corresponding LIDAM descriptors. The substitution of
these pointers is done in parallel with the check that the items referenced
exist in the data dictionary. This step also checks that the user has the
authority to access the referenced data base items, and the names of fields
in the view are replaced by the corresponding field descriptors.

Form F2 is saved together with the original LRL statement. No further
errors than those detected already by the checker can occur. Form F2 is
thus guaranteed to be correct.

The Code Generator. The form F2 data block is given as input to the
code generator. A special user command (GO) collects all form F2 struc-
tures and gives them to the code generator. The form F2 structures are
translated by the code generator into another data block, the MACRO form.
This data block is a LISP oriented control structure describing data base
manipulations in the data base system, and also describing other normal
program operations (arithmetic etc.). The structure of the MACRO form
is thus independent of target language (COBOL at present) but contains
special handles for the data base system in use (MIMER at present).

The optimization algorithm is applied in this step.

The LIDAM-COBOL compiler. The MACRO form is translated by a
LIDAM-COBOL-compiler into COBOL source code. If other languages
than COBOL are preferred (e.g. FORTRAN or assembler) this program
module must be rewritten. The MACRO form is designed in such a way
that it is simple to compile it into source code in any general purpose
language.

The COBOL programs contain both calls to the data base system and
calls to a number of subroutines to conduct dialogs with the user and to
report generation. Thus, it is assumed that there is a small runtime
system for the generated programs.

Processing of the Generated Programs. The generated COBOL code
is written to a temporary file and the LIDAM system is exited. Then the
generated program is completed with control commands. LIDAM generates
control cards containing references to the OS-data sets where the physical
data base is stored, and to the runtime system for LIDAM generated pro-
grams. At this point the generated program can be compiled and executed.




28 INTERNATIONAL CONFERENCE ON DATA BASES

5. EXPERIENCES WITH CHANGING THE UNDERLYING DATA BASE SYSTEM

We will give an overview of the experiences with the change-over from
IMS (the previous data base system used) to MIMER (the data base system

presently used). This is described in detail in Risch.18

Three types of system changes were made:

First, old program modules were adapted to the new data base system.
Second, the system was generalized in order to facilitate adaption to
new types of data base systems in the future. It should at least be adap-
table on both IMS and MIMER. Since the system has been changed during
the conversion.,, some work remains to extend LIDAM also to work with

IMS.
This involved the third, that the system be extended with some wholly
new facilities,

File Coupling. The logical linking between files may be achieved in
two ways.

Either the access paths could be specified in the query language, or
the process paths could be implicitly stored in the data dictionary. The
query language compiler would then select the access paths.

In LIDAM we selected the second method in order to minimize the
dependence on the underlying data base system and on the data base struc-
ture. Qur ambition has been to make it theoretically possible to use
exactly the same LRL statement to specify a retrieval both for IMS and
MIMER (and eventually also another data base system). The use of views
(Sect. 4.1) makes it possible for external data bases that have the same
content to have the same logical view in both the data base systems.

The Program Generator, The program generator is the module which
is the most difficult one to transform to work with different data base
systems. We will describe how the different parts of it have been af-
fected.

The change-over from IMS to MIMER had nearly no effect at all on
the parser, since the query language used for IMS and LRL on the whole
have the same syntax.

The checker is also the same in most parts. One difference is that
the algorithm to determine the access paths is different.

The MACRO form may be divided into data base system dependent and
data base system independent primitives (as shown in Sect. 4.3)., Note
that the goal is that LRL shall be independent of the form of the data base
system. This will not hold for the MACRO form, which contains direct
handles on the data base system. The primitives of the MACRO form may
therefore be divided in the following way in a system allowing several
types of data base systems (DBS):

When changing data base system, the data base system independent
primitives remain. The MACRO form must, however, be extended with
new data base system dependent primitives for each new data base system.

The code generation for data base independent parts of LRL may
remain the same when changing data base system. However, other code




-

FLEXIBLE AND EXTERNAL DATA DICTIONARY SYSTEM FOR PROGRAM GENERATION 29

DBS independent primitives

Primitives for Primitives for etc.
DBS A DBS B

Figure 4. The division of primitives in a system allowing
several types of data base systems,

generation will differ considerably. The most difficult problem in the
conversion of the program generator is the optimization algorithm. It is
not only dependent on the overall structure of the data base system but
also on the detailed internal working of the data base system., Information
about the latter may be difficult to obtain.

Some data base systems (such as ADABASzz)have their own data base
search optimizations. To be able to perform detailed optimization as
performed by LIDAM, the system must have access to non-optimizing data
base system primitives. The more advanced and user-oriented the data
base system primitives are, the more difficult it will be to go around the
data base system optimizations in order to apply the LIDAM optimizations.
This is an example of how intelligence shared by two processes will become

difficult to combine. Another example is given by Palme. 17

If the ambitition level is not too high, both the optimization algorithm
and the conversion work is simplified. When changing data base system it
is therefore recommended to begin with a simple code generation algorithm,
and then successively improve the algorithm. This is the way we worked
in the change-over from IMS to MIMER.

6. FUTURE WORK

There are many possible future improvements to the LIDAM system,
and directions for further research. We will discuss two extensions to
the system which are relatively easy to implement.

Query Language Interpretation. We will describe a method to combine
compilation with interpretation of the query language. The idea has been

used in an implementation of a procedural query (and update) langua\ge.4
for our data base system (MIMER).

An important difference between LISP and most other programming
languages is that programs and data have the same representation. As a
matter of fact, the programs are list structures of a particular form.
These programs, represented by list structures, are interpreted by the
LISP interpreter.

Because of this property it is easy to write programs in LISP to
manipulate other LISP programs. It is also easy to make programs
generate other programs, and then immediately execute (interpret) the
programs generated. This can be done without leaving the LISP system,
unlike normal programming languages which have to be recompiled before
execution.




30 INTERNATIONAL CONFERENCE ON DATA BASES

This property of LISP has made it possible to construct advanced
programming systems within the LISP system, containing file handling,
editors, error handling etc. Normally there is also a compiler included
in the LISP system to translate the LISP programs from list structure
representati on into pure machine language.

There are a few other languages having this property, among them
APL, SNOBOL, and pure machine language. In APL and SNOBOL the
programs are represented as strings instead of list structures. APL
programming systems have also been constructed, even though they are
not as advanced as the LISP programming systems. We know of no similar
programming system in SNOBOL, although it is probably possible to con-
struct one,

One interesting extension of the system is to make an interpreter in
LISP for the MACRO form. When the MACRO form is generated, instead
of translating it with the LIDAM-COBOL compiler (see Fig. 3), it may be
directly interpreted. It is possible to go even further; the different
MACRO expressions may be defined as LISP functions. The normal LISP
interpreter may then perform the interpretation.

Tomake it possible to interpret the Macro form directly, handles must
be built into LISP to access the data base (i.e. the data base system).
Thus, it must be possible to call the data base access functions directly
from LISP. This can be done in either of two ways:

~ A general facility can be built into the LISP system to load ex-
ternal subroutines into the LISP system and thus make them
directly callable from LISP. In this way the subroutines of the
data base system can be made generally callable from LISP
functions. The facility to connect external subroutines to the LISP
system is available in several LISP systems.

- The LISP interpreter can be extended with the new data base
access functions. This implies that a new LISP system is gene-
rated with the data base system built in.

Once the data base system is accessible from LISP, the LRL com-
piler could be used both to generate specialized programs (in COBOL
as at present) and to generate and directly execute the MACRO form.

The MACRO form will in this case be used as a conventional LISP
program. Therefore the MACRO form can be compiled by using the
LISP compiler. 1In this way specialized and efficient LISP programs may
be generated directly callable from LIDAM. To optimize the compilation,
'compiler macros' may be written to inform the LISP compiler how to
compile the different MACRO expressions more efficiently.

Distributed Data Bases. Using LIDAM and the query language LRL,
it is possible to generate programs for different data base systems. A
possible LIDAM extension is to add modules that know in which computer
and in which data base system each type of data is stored. Then, if the
data bases are connected in a computer net, and LIDAM has access to
the net, LIDAM can make connections automatically and send the generated
program to the desired computer to be run there.




FLEXIBLE AND EXTERNAL DATA DICTIONARY SYSTEM FOR PROGRAM GENERATION 31

A similar technique is used by Sagalowitz20 in the IDA system, The
IDA technique, however, differs from our technique in that it transfers
several pieces of code for each retrieval, whereas LIDAM generates a
complete retrieval program at once.

8. SUMMARY

We have presented a data dictionary system having an architecture
with the following properties:

~ The data dictionary is stored separately from the underlying data
base system, and it is represented as data structures in a high
level symbol manipulation language (LISP).

- Efficient COBOL programs may be generated for data base access
from specifications in a very high level query language.

- The architecture of the system has made it possible to work with
different types of underlying data base systems.

The general principles of the query language, LRL, are discussed.
Both the design and implementation are of interest. The query language
allows a powerful type of queries, multi-relational queries, which makes
it user oriented and little dependent on the structure and type of under-
lying data base system. Our practical experiences with LRL have shown
the LRL-type of query language to be very useful for solving practical
retrieval problems, even though LRL at present is not fully relationally

complete.8 Several LIDAM-generated programs are in practical use, and
many of the features of LRL are developed from users' demands.

The architecture of the query language compiler as well as properties
of the programming language LISP make it possible to use the query
language in the future both in compiling and interpreting mode.

The design of the system also makes it possible to use the system in
a distributed computer system, where programs are generated in one
computer and executed in other computers.

REFERENCES

1. M.M. Astrahan et al., "System R: Relational Approach to Data Base
Management", ACM Transactions on Data Base Systems, pp.97-137
(June 1976),

1. A. Berghem, A. Haglund, S.G. Johansson, A. Persson, "A Partially
Inverted Data Base System with a Relational Approach, MIMER
(earlier RAPID)", Uppsala University Data Centre, Uppsala, Sweden
(1977).

3. C.R. Carlson and R.S. Kaplan, "A Generalized Access Path Model
and its Application to a Relational Data Base System'", Proc. of the
International Conference on Management of Data, Washington D.C.,
pp. 143-154 (1976).




32 INTERNATIONAL CONFERENCE ON DATA BASES

4. M. Carlsson, "MIMAN - a query language for DBMS Mimer", DLU
79/5, Datalogilaboratoriet, Sturegatan 2B, Uppsala, Sweden (1979).

5. D.D. Chamberlin, J.N. Gray, I.L. Traiger, "Views, Authorization,
and Locking in a Relational Data Base System', Proc. AFIPS National
Computer Conference, Anaheim, California (May 1975).

6. D.D. Chamberlin et al., "SEQUEL 2: A Unified Approach to Data
Definition, Manipulation and Control"”, IBM Research Journal (November
1976).

7. "CODASYL Data Base Task Group April 71 Report'", Ass. for Comp.
Machinery, New York (1971).

8. E.F. Codd, '"Relational Completeness of Data Base Sublanguages',
Data Base Systems, Courant Computer Science Symposium 6,pp. 6598,
Ed. R. Rustin, Prentice Hall, New York (1972).

9. C.J. Date, "An Introduction to Data Base Systems', Addison-Wesley
Publishing Company, ISBN 0-201-14452-2 (1975).

10, M. Hammer, A. Chan, "Index Selection in a Self Adaptive Data Base
Management System'", Proc. of the International Conference on
Management of Data, Washington D.C. (1976).

11. IBM, Information Management System Virtual Storage (IMS/VS)
General Information Manual, GH20-1260-1.

Information Management System/360, Version 2, Application Pro-
gramming Reference Manual, SH20-0912-4.

Information Management System/360, Version 2, Utilities Reference
Manual, SH20-0915-2,

12. M. Jainz, T. Risch (Eds.), "A Data Manager for the Health Infor-
mation System Berlin", Computer Programs in Biomedicine 6 (1976).

13. R.H. Katz, "Performance Enhancement for Relational Systems through
Query Compilation", National Computer Conference (1979).

14. F. King, Speech at Data Base Symposium at Uppsala Computer
Center (September 1977).

15. R.A. Lorie, B.W. Wade, "The Compilation of a Very High Data
Language", IBM Research Report RJ008(28098) (May 1977).

16. S.L. Osborn, "Towards a Universal Relation Interface'", Conference
on Very Large Data Bases, Rio de Janeiro (1979).

17. J. Palme, "How I Fought with Hardware and Software and Succeeded",
FOA, Report C10075-M3(E5,H9), Swedish National Defense Institute
(FOA), Stockholm (1977).

18. T. Risch, "Compilation of Multiple File Queries in a Meta-Data Base
System', (Ph.D. Thesis), Department of Mathematics, University of
Linkoping, Linkoping, Sweden (1978).

19. T. Risch, "Optimizing Non-Procedural Multiple File Queries", DLU
79/1, Datalogilaboratoriet, Sturegatan 2B, Uppsala, Sweden (1979).

20. D. Sagalowicz, "IDA: An Intelligent Data Access Program', Con-
ference on Very Large Data Bases, Tokyo (Qctober 1977).

i 21. E. Sandewall, "Programming in an Interactive Environment; The
‘ LISP Experience', ACM Computing Surveys, Vol. 10, No. 1 (1978).

22. R.C. Sprowls, '"Management Data Bases'. ISBN 0-471-81865-8,

John Wiley & Sons Inc. New York (1976),




FLEXIBLE AND EXTERNAL DATA DICTIONARY SYSTEM FOR PROGRAM GENERATION

23. M. Stonebreaker, E. Wong, P. Kreps, G. Held, "The Design and
Implementation of Ingres'", ACM Transactions on Data Base Systems
(TODS), pp.189-222 (Sept. 1976).

24, W. Teitelman, INTERLISP Reference Manual, XEROS Palo Alto
Research Center, Palo Alto, California (1974).

25, "INTERLISP/360 and /370 User Reference Manual", 1975-02-01,
Uppsala University Data Center, S-75002 Uppsala, Sweden.

33




