
Active Rules based on Object-Oriented Queries

Tore Risch Martin Skôld

torri@ida.liu.se marsk@ida.liu.se

Department of Computer and Information Science

Linköping University
Sweden

Abstract

We present a next generation object-oriented database with active properties by introducing rules

into OSQL, an Object-Oriented Query Language. The rules are defined as Condition Action (CA) rules

and can be parameterized, overloaded and generic. The condition part of a rule is defined as a declarative

OSQL query and the action part as an OSQL procedure body. The action part is executed whenever the

condition becomes true. The execution of rules is supported by a rule compiler that installs log screening
Iliters and uses incremental evaluation of the condition part. The execution of the action part is done

in a check phase, that can be done alter any OSQL commands in a transaction, or at the end of the

transaction. Rules are first-class objects in the database, which makes it possible to make queries over

rules. We present some examples of rules in OSQL, some implementation issues, some expected results

and some future work such as temporal queries and real-time support.

Key Words: Active Database, Object-Oriented Query Language, Object-Oriented Rules

1 Introduction

A powerful query language will be an essential part of the next generation Object-Oriented (00) database

systems. When active properties are introduced into these databases, the query language should be extended

to support them.

The iPac4] project introduced ECA rules (Event-Condition-Action). The event specifies when a rule

should be triggered. The condition is a query that is evaluated when the event occurs. The action is executed

when the event occurs and the condition is satisfied.

In riel6] the event is made optional, making it possible to specify CA rules, which use only the condition

to specify logical events which trigger rules. Rules in PS51] and monitors in 8] have similar semantics.

In ECA rules the user has to specify all the relevant physical events in the event part. We believe that CA

rules are more suitable for integration in a query language, since they are more declarative. CA rules make

physical events implicit, just as a query language makes database navigation implicit.
We define active rules by extending the 00 query language OSQL of ris5J. OSQL is based on functions

for associating stored and derived attributes with objects. OSQL permits functional overloading on types,

and types and functions are first-class objects. Likewise, rules are first-class objects in the database oo3].
This makes it possible, e.g., to make queries over rules. By implementing rules on top of OSQL, overloaded

and generic rules are possible, i.e. rules that are parameterized and that can be instantiated for different

types. We also utilize the optimizations performed by the OSQL ompiler7].
Each rule is defined by a pair <Condition,Action>, where the condition is a declarative OSQL query aüd

where the action is an OSQL database procedure body. The rule language thus permits CA rules, where

the action is executed (i.e. the rule is triggered) whenever the condition becomes true, similar to OPS5 and

Arid. Unlike those systems, the condition can refer to derived functions (which correspond to views). Data

can be passed from the condition to the action of each rule by using shared query variables. By quantifying

query variables set-oriented action execution is ossible11].
We are implementing our ideas in the research prototype AMOS’ (Active Mediators Object System)

by extending a Main-Memory version of Iris, WSIris7]. OSQL queries are compiled into execution plans

1The AMOS project is supported by Nutek (The Swedish National Board for Industrial and Technical Development) and

CENIIT (The Center for Industrial Information Technology), Link6ping University

27

in an 00 logical language. The system logs all side effect operations on the database. The rule compiler
analyzes the execution plan for the condition of each rule. It then generates ‘log screening filters’ which

check events that are added to the log. When a log event passes a log screening filter associated with a

condition, it indicates that the event can cause the corresponding rule to fire. The screening of the log is

often complemented with incremental valuation9, 10] of the condition.

Distributed execution of AMOS is being implemented too, and we plan to introduce temporal queries
and real-time facilities as well.

2 Object-Oriented Query Rules

The syntax for rules conforms to that of OSQL functions as closely as possible:

create rule rule-name param-spec as

when for-each-clause I predicate-expression]
do once] action

where

for-each-clause ::=

for each variable-declaration- corn malist where predicate-expression

The predicate-expression can contain any boolean expression, including conjunction, disjunction and

negation. Rules are activated and deactivated by:
activate rule-name parameier-value-commalist])
deactivate rule-name parameter-value-commalist])

The semantics of a rule are as follows: If an event of the database changes the boolean value of the

condition from false to true, then the rule is marked as triggered. If something happens later in the transaction

which causes the condition to become false again, the rule is no longer triggered. This ensures that we only
react to logical events2. In the check phase (usually done before committing the transaction), the actions

are executed of those rules that are marked as triggered. If an action is to be executed only once per

activation, the rule is deactivated after the action has been executed. We can also introduce an immediate

coupling ode4] by instructing the system that the check phase is to be done immediately after each OSQL
command.

Example 1:

The salary changes of employees and managers are to be monitored. We want to ensure that only

managers can have their salaries reduced. First we define the employee and manager types and the respective
income functions, where managers receive an additional bonus:

create type person;

create type employee subtype of person;

create type manager subtype of employee;
create function nanie(person) —> charstring as stored;

create function mgrbonus(manager) —> integer as stored;

create function income(employee) —> integer as stored;

create function income(manager m) —> integer i

as select i where i = employee.income(m) + mgrbonus(m);
create employee(name, income) instances

:joe (‘Jo. Smith’,30000);

create manager(name,employee. income) instances

:harold (‘Harold Olsen’ ,80000);

setmgrbonus(:harold) = 10000;

Then we define procedures for what to do when a salary is decreased:

create procedure compensate(employee e)

as sat income(e) = previous income(e); /s employee income cannot be decreased */

create procedure compensate(manager); /5 dummy procedure, managers are not compensated s/

2To support physical events the system should provide functions thai change value, whenever a physical event occur. and

thus can be referenced in the condition of a rule.

28

The function compensate uses the system operator previous to fetch the value of a function at the

previous checkpoint.
Finally we define the rule to detect decreasing salaries for all employees:

create rule no..decrease() as

when for each employee e

where income(e) < previous income(e)
do compensate(s);

Activate the rule:

activate no..decreaseQ;
If an employee that is not a manager gets his salary decreased, the rule will automatically set the salary

back to the old value at check time:

set income(:joe) = 20000; /c > reset income(:jo.) to 30000 at check time*/
Note: Since the rule is defined for all employees, and manager is a subtype of employee, the rule is

overloaded for managers. (Because the functions income and the procedure compensate are overloaded). If

a person of type manager gets a salary reduction, no action is taken. This is an example of a set-oriented
rule. The action is executed for every binding of the universally quantified variable e for which the condition
is true.

Example 2:

Rules can be parameterized and instantiated with different arguments. Take a rule that ensures that a

specific employee has an income below a certain maximum income, and the transaction is rolled back if an

employee receives an income above the threshold. This maximum income is fixed for all employees, but can

vary for individual managers.

create function maxincome(employee) —> integer
as select 50000;

create function maxincom.(manager) —> integer as stored;
create rule exceeding.maxincome(employee e) as

when income(e) > maxincome(e)
do rollback;

Set the income limit for Harold:

set aaxincome(:harold) = 120000;

Activate the rule for a particular employee Joe and manager Harold:

activate exceeding.maxincome(:Joe);
activate exceeding..maxincome(:harold);
set income(:joe) = 75000; /s rollback at check time because 75000 > 50000 */
set maxincome(:harold) = 90000; /* rollback at check time because 90000 + 10000 > 90000 */
set mgrbonus(:harold) = 45000; /* rollback at check time because 80000 + 45000 > 120000 */

it is non-trivial to determine the physical events that trigger an OSQL rule with many interdependent
and overloaded functions, such as the rule above. Hence we let the compiler determine this. This illustrates

the convenience of CA rules.

Example 3:

Since types are first class objects, one can write generic rules that are instantiated for a specific object
type:

create rule exceeding.maxincome(type t) as

when for each employee e

where typesof(e) = t and

incoae(e) > maxincome(e)
do rollback;

Activate the rule for all managers:
activate ezceeding..maxincome(typenamed(’manager’));

Since rules are first-class objects in the database, one can make queries over rules. For example, the

system could provide a function that returns all active rules dependent on a certain object type or a function

that takes a rule as argument and returns all the functions it depends on.

29

3 Expected results

The extension of OSQL with rules is expected to give a powerful language to express active properties in

an object-oriented database. The overloading of rules provides a way to specify reusable rules that can be

applied uniformly in different situations. One of the goals in the project is to investigate if CA rules can

be implemented as efficiently as ECA rules. This involves efficient event detection as well as incremental

evaluation of rule conditions. We will verify the applicability of 00 rules by investigating how they can be

used for various applications, e.g. in CIM.

4 Future work

Temporal rules can be introduced by having functions that. vary over time and by time-stamping events in

the database. The condition can then refer to the time when a certain event occurred. By introducing a

timer event, a rule can be triggered at a certain time. These extensions do not support all the possible

reasoning that can be made in an event algebra such as 2]. However, it allows for reasoning about whether

one event happened before another or vice versa (by comparing time-stamps).
Introducing real-time in the database would require to take the cost of executing an action into account.

Active database facilities are important for real-time applications that, e.g., monitors combinations of sen

sor data and perform actions whenever ‘interesting’ situations occur. The rule language will need to be

complemented with timeliness constraints for rule conditions and actions.

References

1] Brownston L., Farell R., Kant E., Martin A.: Programming Expert Systems in OPS5, Addison- Wesley,

Reading Mass. 1986

2] Chakravarthy S., Mishra D.: An Event Specification Language (Snoop) for Active Databases and its

Detection, UF-CIS Technical Report, TR-91-23, sept. 1991

3] Dayal U., Buchman A.P., McCarthy D.R.: Rules are objects too: A Knowledge Model for an Active,

Object-Oriented Database System, Proc. 2nd Intl. Workshop on Object-Oriented Database Systems,
Lecture Notes in Computer Science 334, Springer 88

4] Dayal U., McCarthy D., The architecture of an Active Database Management System, ACM SIGMOD,

1989, pp. 215-224

5] Fishman D. et. al: Overview of the Iris DBMS, Object-Oriented Concepts, Databases, and Applications,
ACM press, Addison-Wesley Publ. Comp., 1989

6] Hanson E. N.: Rule Condition Testing and Action Execution in Arid, ACM SIGMOD, 1992, pp. 49-58

7] Litwin W., Risch T.: Main Memory Oriented Optimization of 00 Queries using Typed Datalog with

Foreign Predicates, IEEE Transactions on Knowledge and Data Engineering Vol. 4, No. 6, December

1992

8] Risch T.: Monitoring Database Objects, VLDB conf. Amsterdam 1989

9] Rosenthal A., Chakravarthy S, Blaustein B., Blakely J.: Situation Monitoring for Active Databases, the

VLDB con!. Amsterdam, 1989

10] Paige R., Koenig S.: Finite Differencing of computable expressions, ACM Trans. Prog. Lang. Syst. 4.3

(July 1982) pp. 402-454

11] Widom 3., Finkelstein 5.3.: Set-oriented production rules in relational database system ACM SIGMOD

mt. Conf. on Management of Data pp. 259-270, Atlantic City, New Jersey 1990

30

	40979_DataEngineering_Dec1992_Vol15_No1 -4.pdf

