
REGULAR ENTRY IN
ENCYCLOPEDIA OF DATABASE SYSTEMS

http://refworks.springer.com/database-systems/

DISTRIBUTED ARCHITECTURE

Tore Risch, Uppsala University, Sweden, http://user.it.uu.se/~torer/

SYNONYMS

Parallel database, federated database, multi-database, peer-to-peer database

DEFINITION
A distributed database is a database where data management is distributed over several nodes
(computers) in a computer network. In a central DBMS the data is managed by one node
whereas in a distributed DBMS the data is managed by several nodes. A distributed DBMS is a
database manager consisting of several nodes distributed over a network. Each node is a
database manager by itself that communicates with other nodes in the network. In a regular
distributed DBMS it is up to the database administrator to manually specify how data collections
(e.g. relational tables) are distributed over the nodes when a distributed database is designed.
Queries and updates to the distributed relations are transparently translated by the distributed
DBMS into data operations on the affected nodes giving the user the impression of using a
single database, called query and update transparency. Thus the distributed DBMS provides
distribution transparency for database users but not for the database administrator.

Closely related to distributed DBMSes are parallel databases where a parallel DBMS engine

runs on usually a cluster. The parallel DBMS automatically determines how data structures are
internally distributed over the nodes providing distribution transparency also for the database
administrator, called schema transparency.

The purpose of heterogeneous databases is to be able to combine data from several

independently developed autonomous databases. Heterogeneous databases can be divided
into federated databases, mediators, and multi-databases. In a federated database the
database administrator defines a single global integration schema describing how data in

underlying databases are mapped to the integration schema view. This provides distribution
transparency for integrated data. Mediators allow the definition of several views over data from

different data sources. Since it may be difficult to define integration schemas and views when
there are many participating autonomous databases, multi-databases relax the distribution

transparency also for the database users who there specify queries and updates using a multi-
database query language where individual data collections in the participating nodes can be
explicitly referenced.

A related technology is peer-to-peer systems where networks of files are distributed over the
Internet. Meta-data is associated with the files and the user can search for files satisfying
conditions. Peer-to-peer search is usually made by propagating queries between the peers. The
consistency and correctness of queries are relaxed compared to regular databases in order to
provide better performance and node autonomy.

HISTORICAL BACKGROUND

http://refworks.springer.com/database-systems/

Distributed DBMSs were pioneered by System R and Ingres* in the beginning of the 80-ies.
Early distributed DBMSs assumed slow communication between nodes having limited amounts
of main memory geographically distributed in a wide area network. The database administrator
instructed the distributed DBMS where to place data, while the user could specify transparent
queries to the distributed DBMS without detailed knowledge of where data was placed.

The evolvement of computer clusters provided hardware resources for very high performing
database servers running on clusters, parallel databases. Since the communication between

cluster nodes is very fast and not geographically distributed, the database administrator need
not provide manual placement rules of distributed data, i.e. the parallel DBMS provides full
distribution transparency also for the database administrator. With the evolvement of fast wide
area computer networks parallel DBMS technology can be used also for some geographically
distributed databases. However, it should be noted that update latency has to be taken into
account for large geographical distances because of the speed of light. In general
geographically distributed databases still requires manual distribution.

Not least the development of the Internet has caused the need to integrate data from many pre-
existing databases. The area of heterogeneous databases deals with tools and methodologies

to combine data from several autonomous databases. While distributed and parallel databases
assumed all data managed by one distributed DBMS, heterogeneous databases integrate
databases using different DBMS and different schemas.

There are several flavors of heterogeneous databases:

 Federated databases require the definition of a global integration schema containing
mappings to the participating databases' schemas. The federated database becomes a
central server on top of the participating autonomous databases.

 As the number of databases to integrate increases it becomes very difficult or impossible
to define a global integration schema over the large numbers of autonomous databases.
Multi-databases provide no global conceptual schemas and instead a multi-database
query language allows specification of queries searching through many participating

databases.

 Mediators provide a middle ground between a single integration schema and no schema
at all. Instead the user can define mediator views that combine and reconcile data from
different data sources. Such views require a query language that can express queries
over several databases, i.e. a multi-database query language. The mediator system
becomes a middleware between users and wrapped data sources.

While distributed databases could handle transparent queries and updates for a small number
of nodes, the evolvement of the Internet requires technologies to deal with geographically
distributed databases having 1000s of nodes. Peer-to-peer systems enable such highly
distributed file access where users search for data stored in peers. In a peer-to-peer database

queries are propagated between the participating peer nodes. To improve performance at the
expense of query correctness the propagation may stop after a certain number of hops. This is
sufficient for many modern applications that do not have strict consistency requirements; for
example Internet search engines do not guarantee the full correctness of answers.

SCIENTIFIC FUNDAMENTALS

The architectures of DDBMSs can be classified along different dimensions. The following table
classifies different kinds of distributed DBMS architectures:

 Autonomy Schema
transpare
ncy

Query
transpare
ncy

Update
transpare
ncy

Naming
transpare
ncy

Central
schema

Parallel no Yes Yes Yes Yes Yes

Regular
Distributed

no No Yes Yes Yes Yes

Federated yes No Yes Limited Yes Yes

Mediators yes No Yes Limited No No

Multi-
databases

yes No No No No No

Peer-to-
peer

Yes No Yes Yes Yes No

Autonomy and Heterogeneity

Different distributed DBMS architectures provide different levels of autonomy for the
participating nodes.

A homogeneous distributed database is a distributed database where all nodes are managed by

the same distributed DBMS. A homogeneous distributed database can be regarded as a central
database distributed over many nodes where data and processing is internally transparently
distributed over several nodes. By contrast, a heterogeneous database is a (distributed or
central) database where data originates from participating autonomous databases possibly
using different DBMSs.

Regular distributed and parallel databases are homogeneous. One distributed DBMS manages
all data. Distributed database design involves designing the schema in a top-down fashion as

for a conventional central database. Parallel databases provide automatic and transparent data
placement without user intervention, while regular distributed databases require the database
administrator to specify how data should be distributed over nodes. In regular distributed and
parallel database the nodes have no autonomy at all.

Federated databases are central database servers that integrate data from several participating
databases. Federated databases are thus heterogeneous. Global integration schemas are

defined that integrate data originated in the participating databases. The design of the
integrated schema needs to deal with data integration issues on how to combine the same or
similar data represented differently in different participating databases. Different participating
databases may use different DBMSs. The schemas of the participating databases are designed
before the integrated database schema is designed. Thus the design process for
heterogeneous databases becomes bottom-up, whereas homogeneous databases are usually
designed top-down. The design of the integrated schema needs to deal with data integration
issues on how to combine the same or similar data represented differently in different
participating databases.

Both federated databases, mediators, and multi-databases are heterogeneous. The main
difference between them is how integration schemas are defined. Federated database assume
one global integration schema. If there are many different participating databases it is difficult to
define such a global integration schema. This is relaxed in mediators, which allow the definition
of many integration schemas as views over wrapped underlying data sources of different kinds.

In multi-databases the user is given access to a multi-database query language where he can
specify queries over many sources. A multi-database query language provides the basis for
defining mediator views.

Finally, the aim of peer-to-peer databases is distributed queries in a widely distributed network
of heterogeneous nodes. Unlike parallel and distributed databases the individual nodes are not
managed by a single system, but independently.

Transparency

Distributed databases can be classified according to what kinds of transparency they provide
w.r.t. distribution of data. Three different kinds of transparency can be identified for different
kinds of services provided by the distributed DBMS, schema transparency, query transparency,
and update transparency.

Schema transparency means that the distributed DBMS decides completely on its own where to

place data on different nodes. The database administrator has the impression of using a single
database and specifies the logical schema without considering any distribution at all. However,
often it is desirable to allow the database administrator to specify how to distribute data, and
thus relax schema transparency. For example, for performance and to allow local control, a
geographically distributed database for a large enterprise may need to cluster employee data
according to the countries where departments are located. Therefore full schema transparency
is often provided only on local area networks or cluster computers where the communication
between nodes is very fast.

With query transparency the distribution of data is not reflected in user queries. Queries are

transparently translated by a distributed query optimizer into queries and updates to the affected
nodes giving the user the impression of using a single database. By analyzing a given user
query the distributed query optimizer can often statically determine which nodes to access.
Query execution plans can execute in parallel on different nodes with partial results transported
between nodes and combined on other nodes. Query transparency is very important for
distributed databases since it is very difficult and error prone to manually implement distributed
communicating execution plans.

Update transparency allows database updates to be specified without taking distribution into

account. A distributed transaction manager propagates updates to affected nodes.
Distributed or parallel DBMS provide update transparency.

In the classification above, only parallel DBMSs provide complete transparency for everyone
using the database, database administrators as well as users. The term regular distributed
database refers to a distributed DBMS with query and update transparency but without schema
transparency.

With naming transparency users are provided with a single name for a distributed relation
defined in terms of several internal relations stored on separate nodes. Regular distributed,
parallel, federated, and peer-to-peer databases provide naming transparency, which is relaxed
for mediators and multi-databases.

Distributed database design involves manual specification to the distributed DBMS of the
distribution of data collections. The database administrator can tune the data placement in a
wide area computer network. The two fundamental methods for such manual data distribution

are fragmentation and replication. Fragmentation splits a collection (e.g. table) into separate
non-overlapping segments on different nodes, while replication stores identical copies of a
collection on different nodes. The distributed DBMS guarantees that queries and updates of
fragmented or replicated collections are transparent so the user need not be aware of how data
is distributed.

Fragmentation (or partitioning) allows the administrator of a distributed database to manually
specify on which nodes the DBMS should place different sections of each distributed data
collection. In a distributed relational database tables are fragmented. For example, the
placement of employee records in a relation can be fragmented according to in which countries
different employees work. Fragmentation speeds up database queries and updates since it
allows parallel access to distributed fragments. Furthermore, by analyzing queries and updates
the query optimizer can often determine exactly which nodes are affected and send the
query/update statements only to those nodes.

Replication allows the DBA to declare to the DDBMS to place the same data collections on

more than one node. For example, a relational table may be replicated on several nodes.
Replication speeds up data access at the expense of update cost. However, as explained
below, if consistency is relaxed the update cot may be reduced.

Federated databases also provide query and update transparency by allowing the database
administrator to define a global integration schema that hides the underlying integrated

databases.

Mediators provide some query transparency by allowing users to define views over integrated

databases. Update transparency is more problematic as it requires updatable views.

With multi-databases transparency is further relaxed so the user can reference individual
databases explicitly in queries and updates.

Finally, peer databases provide query and update transparency in widely distributed systems
but do not require fully correct query answers.

Consistency

If data is widely distributed over many nodes in a network the cost of maintaining data
consistency may be very high. The transaction manager must guarantee that all transactions
are atomic and updates propagated to affected nodes so that the database is kept consistent.
Two and three phase commit protocols are needed when more than one node is affected by an
update to guarantee full update transparency. These protocols are expensive when many nodes
are involved and relaxed update transparency may suffice to enable higher transaction
performance. If the same kind data is present on many nodes updates must be propagated to
all replicas, which can be very expensive in a geographically distributed database.

Regular distributed databases usually provide transaction atomicity as an option. However,
because of the high cost of transaction atomicity modern distributed DBMS also provide the
option to propagate updates lazily, thus compromising the consistency.

In a parallel DBMS running on a cluster, the nodes inside the cluster run DBMS kernel software
which is completely controlled by the parallel DBMS. From the user’s point of view it looks like a

central DBMS; the main difference being the higher performance provided by parallelization of
DBMS kernel software.

In regular distributed and parallel DBMSs a single database kernel manages all distributed data.
All individual nodes are running the same distributed DBMS software. Different nodes may have
different roles, e.g. some nodes handle query processing, some nodes handle locking, some
nodes handle recovery, etc. The DBMS is a monolithic systems distributed over several nodes
controlling the consistency of the individual nodes.

In general consistent updates are difficult to achieve with heterogeneous databases since the
participating databases are autonomous and the integrating DBMS may not have access to
transaction managers of the participating databases.

In peer-to-peer databases the data consistency is relaxed for higher update and query
performance. Data can be partly replicated for efficiency but the system does not guarantee
consistency among the replicas so updates need not always be propagated to all replicas at
every update. This means that queries may return less reliable result, which is often acceptable
in a widely distributed database. This is similar to how search engines compromise query quality
for performance.

Distributed catalog management

A particular problem for distributed databases is how and where to handle catalog data, such as
the overall schema, statistics about data collections, the location of data collections, and how
data collections are replicated and partitioned. The catalog information is accessed intensively
by database users in queries and updates. On the other hand, in most DBMSs it is assumed
that schema and catalog information changes slowly, which, for example, permits pre-
compilation of (distributed) database queries. The assumption that catalog data changes slowly
but is intensively accessed is a case for replicating catalog information on many nodes, in
particular on those coordinating nodes with which the users interact. On the other hand, in a
heterogeneous database with many participating autonomous nodes, the assumption that
schemas and data placements do not change usually does not hold.

Regular distributed and parallel databases assume few participating non-autonomous nodes
and the catalog is therefore replicated. Federated databases have a central architecture where
all interaction with the database is through the global schema and it contains replications of
catalog information from the participating databases. For mediators, multi-databases, and peer-
to-peer there is no central global schema and the query processing nodes are autonomous.
Therefore the catalogue data cannot be fully replicated and it will be up to different nodes to
cache catalog data when needed. The validity of cached catalog data needs to be properly
handled though; otherwise queries may fail or even return the wrong data.

CROSS REFERENCES
Distributed databases
Parallel databases
Peer-to-peer databases
Data integration
Mediators

RECOMMENDED READING

[1] M. T. Özsu and P. Valduriez: Principles of Distributed Database Systems, 2
nd

 ed., Prentice

Hall, 1999

[2] A. P. Sheth and J. A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computer Surveys, 22(3):183-235,
September 1990.
[3] W. Litwin, L. Mark and N. Roussopoulos, Interoperability of Multiple Autonomous Databases
ACM Computing Surveys, Vol. 22, No. 3, September 1990
[4] Wiederhold, G., Mediators in the architecture of future information systems. IEEE Computer,
Vol 25, No 3, 1992.
[5] Special Section on Peer-to-peer-based Data Management, IEEE Transactions on
Knowledge and Data Engineering, Vol. 16, No. 7, July 2004

