Comparative Analysis of RDBMS and OODBMS:
A Case Study

M.A. Ketabchi

Department of Electrical Engineering and Computer Science
Santa Clara University
Santa Clara, CA 95053

T. Risch

Database Technology Department/Stanford Science Center
Hewlett-Packard Laboratories
1501 Page Mill Rd.
Palo Alto, CA 94304

Abstract

The underlying hypothesis of the case study described in this article is
that the development, implementation, operations, and maintenance of
large complex data intensive applications such as computer integrated
manufacturing can be simplified through the use of object-oriented
DBMS. The objective of the case study is to verify this hypothesis.

The approach of the case study is to prototype sclected representative
components of a computer integrated manufacturing system, which have

been developed on top of a relational DBMS, using an object-oriented
DBMS.

The results of the study illustrate that the object-oriented prototype has a
superior schema, is capable of providing convenient access to
information, and is easier to extend and maintain.

1. Introduction

Database Management Systems (DBMS) are software systems which
provide facilities to model, manipulate, and maintain large amount of
interrelated data which are shared by many users over a long period of
time. A DBMS is an implementation of a data model, and a set of
facilities to help maintain the database. The data model [TSIC82]
defines the set of structures which are utilized to model the information,
a set of operations which are utilized to manipulate these structures, and
a set of constraints which define the consistent states of the data. As an
example, the relational model [CODD70, DATESS] supports relations

S. Mathur

Data Management Systems Division
Hewlett-Packard Company
19447 Pruneridge Ave. Bldg.47L
Cupertino, CA 95014

J. Chen

Corporate Product Generation Process Department
Hewlett-Packard Company
3155 Porter Drive, Bldg. 28AD
Palo Alto, CA 94303

3. Transaction management - DBMS users can request that a
sequence of database operations be treated as a single indivisible
unit. The unit will either be executed completely or will not
execute at all. The database will be consistent before the
operation begins and after it is completed.

Recovery - Data will not become inconsistent or will not get lost as
a result of system failures. If failure occurs in the middle of a
transaction then the changes made by the transaction will be
undone and the database will return to its state before the
transaction begin.

5. Query language - DBMS provide query languages which are high-
level, easy to use interfaces for accessing information.

Performance - DBMS provide efficient access to large amount of
persistent multi-user data.

7. Sccurity - Facilities are provided to protect the information against
unauthorized accesses.

The set of structures, operations, and constraints in relational data
model is limited and fixed. Consequently, any structure and operation
needed by the application should be mapped by the application into this
set. As the applications become complex this mapping becomes complex
and involves large amount of application code. Moreover, to retrieve an
application specific object, several DBMS operations must be
performed. Large application code makes their development and
i e difficult and expensive. The need to perform multiple

which are sets of tuples with fixed number of primitive data el ts.
The set of operations in the relational model includes operations on the
sets of tuples, and two operations of select and project. Select operation
allows those tuples which satisfy given conditions to be selected. Project
operation allows desired elements of all the tuples in a set to be selected.
Select cuts a relation horizontally and project cuts it vertically. An
important constraint enforced by most relational DBMS is that each
tuple in a relation must be uniquely identifiable.

The facilities provided by DBMS include:

1. Persistency - DBMS users can create data items which reside in
persistent storage, rather than volatile memory, without creating
files which contain the data and are referenced by their names.

2. Concurrency - Multiple users can access the same database
simultaneously without creating inconsistent results due to the
interactions of concurrent operations.

CH2843-1/90/0000/0528801.00 © 1990 IEEE

528

database operations to retrieve an application specific entity makes
applications slow. OODBMS were developed to solve these problems.

An OODBMS is a DBMS and as such provides the facilities listed above.
It is also an object-oriented system [GOLDS3] and as such supports the
following capabilities:

1. Object identity - System defines and maintains unique identifiers
for objects which represent entities. This allows equal objects
(objects which have the same attributes and equal attribute values)
to coexist. It frees users from the need to define unique keys for
entity instances.

2. Active data - Database may contain information which are defined
procedurally.

3. Classification - Similar entity instances are classified into types or
classes. A type defines the properties and operations which are
available to manipulate its instances. The relationships between
entity types and instances are known to the system and can be
utilized to formulate queries which span data and schema.

4. Generalization - Similar entity types can be generalized into
supertypes which capture their similarities. Existing types can be
refined to create subtypes which inherit the properties and
operations of their supertypes and may have their own specific
properties and operations.

5. Encapsulation - Objects are manipulated by operations which are
provided by their types. The implementation of these operations
may change without invalidating their use.

6. Composition - Objects may be assemblics of other object. In other
words, objects are not limited to primitive domains.

7. Extensibility - The set of operations, structurcs, and constraints
available to applications is not limited and fixed. Applications can
define new bperations and structures which are used the same way
as the built-in structures and operations.

Relational DBMS are well into commercial production environment
while OODBMS are in their infancy. However, there exists a significant
amount of interest in OODBMS which were developed in response to
the deficiencies of RDBMS and the requirements of new applications
such as CIM (Computer Integrated Manufacturing), CASE (Computer
Aided Software Engineering), and GIS (Geographic Information
Systems). To understand the differences between RDBMS and
OODBMS, and to gain experience in using OODBMS, we began a
project for prototyping an existing CIM (Computer Integrated
Manufacturing) application developed using a RDBMS. Iris [FISH88],
an OODBMS developed in Database Technology Department of
Hewlett-Packard was used to implement the prototype.

This paper gives an overview of the project and its results. Section 2
gives an overview of Iris and the application system. Section 3 is a
discussion of information modeling using RDBMS and OODBMS.
Section 4 compares the user interfaces of the RDBMS and OODBMS.
Section 5 describes the application of a new functionality supported in
Iris. Section 6 provides concluding remarks.

2.1 Overview of Iris Object-Oriented Database M. t S

5 &

The fundamental elements of the data model of Iris are objects, types,
and functions [FISH88, SHIP81]. An Iris object is represented by a
unique identifier. Each object is associated with at least one type. This
association supports classification. An object is said to be the instance of
the types with which it has classification associations.

Types participate in the definition of functions, as their input and output

ifications. A function can be applied to the instances of its input
types. Application of a function results in objects which are the instances
of its output type. An Iris schema consists of the definitions of types and
functions. Definition of a function consists of its specification and its
implementation. The specification of a function provides name of the
function, types of inputs to function, types of the outputs of the function.
Implementation of a function may follow directly after its specification or
may be given later. If a function is implemented by a stored table of
inputs/outputs tuples, it is called a stored function. If a function is
implemented by a query written in OSQL (Object SQL which is the
high-level data definition and manipulation language of Iris), it is called
a derived function. If a function is implemented by a link to an
executable code which may be written in a programming language such
as C, it is called a foreign function. In the following example the first
and the second functions are implemented by a stored table, the third
function is implemented by a query, and the fourth function is
implemented by a link to a routine called "avg_r".

create function name (Person p) -> Charstring n;

create function enrolled (Student s, Course c);
create function grandParent (Person p) -> Person gp as

select gp for each person gp
where gp = parent(parent(p));

create function average (bag of Real) -> Real as
link ’arg r’;

Iris functions model attributes, relationships, and operations. For
instance, function name defined above models the name attribute of type
Person, function enrolled models a relationship between types Student
and Course, and function average models an operation on bag of Reals.

2.2 Overview of the Application System

The application system is a Computer Integrated Manufacturing
application system which emphasizes the link between design and
manufacturing. It attempts to link the design and development phases to
manufacturing by providing an information centered integration of
applications which are used to carry out different tasks. We prototyped
two parts of the application system using Iris: Component Information
Center (CIC) and Electronic File Cabinet (EFC). CIC provides
functions for the acquisition, review and classification of purchased and
fabricated parts. It couples component search and selection with
computer aided enginering design tools. Its objective is to allow
automatic optimal parts selection based upon the characteristics of
design, and the preferred parts classification determined by the
manufacturing site.

The functionality of the CIC includes:

1. Enabling designers to perform online component search and
selection based upon the attributes of a component

2. Allowing users to enter or edit attributes of components for either
corporate or divisional information.

3. Providing authorized users with ability to create and execute rules
for classifying preferred parts based on the technology, reliability,
and vendor performance.

4. Ensuring the availability of the data which are required in various
manufacturing processes.

5. Providing form-oriented user interfaces for viewing and entering
information,

The current CIC which has been implemented using a commercial
relational DBMS has approximately 550 MB of component related data.
120 MB of thesc data are independent of the category of component.
This portion includes information such as contracts, suppliers, and
drawings. The ining portion of the data depends on the category of
components. This portion includes information such as logic-size for
Digital and density for Memory.

EFC application attempts to improve the communication of design and
manufacturing data by providing a means of electronic storage and on-
line access to manufacturing proccss and product data and their
relationships. It provides an integration framework for programs and
translators, which are normally used as stand-alone tools for
communicating data g different prc

The functionality of the EFC includes:

1. Managing internal documents (documents which are stored in
EFC), and the relationships among the internal and external
documents (documents which are known to systems but are stored
off-line).

2. Managing extended material list and the description of hicrarchical
structures of products.

3. Providing facilities for revision management for products, parts,
and assemblies.

4. Supporting data or demand driven start of transfer and/or
translation processes.

5. Supporting event-triggered distribution of information by mail to
predefined distribution lists.

The current prototype of EFC has been developed on top of a
commercial relational DBMS.

In the following sections we describe and compare the schema and
interface of the relational and Iris implementation of the application
system.

3. Information Modeling

This section describes and compares the relational and Iris schemas of
the CIC and EFC. It describes the observations we made in the course
of the project, and identifies the features of OODBMS which we found
important and useful.

3.1 Component Information Center

The Component Information Center consists of two kinds of data. One
kind of data describes information which is applicable to all parts
independent of their categories. Examples of this kind of data, referred
to as non-parametric data, are confract, usage, and failure. The second
kind of data describes category dependent properties of components.
Some of these data, such as part_number and Manufacturer are applicable
to the most general category of components called Part. Because all
components are Parts they have Part_ number and M
Subcategories of Part have information which are specific to them.
Examples of data which are subcategory specific are technology for
Digital and Memory, logic_size for Digital, access_time for Memory, and
temp_coef for Fixed Resistors. We refer to this kind of data as
parametric data.

turer.

3.1.1 Relational Schema for Component Information Center

The CIC in it’s relational implementation consists of approximately 28
relations which contain non-parametric information, and 160 relations
which contain parametric information. These relations form an
unstructured set, because there exists no apparent relationship among
them in the schema.

There are 32 categories of parts with 4 to 8 subcategories within each
category. There is a relation for each subcategory. Each subcategory
relation has approximately 16 attributes, therefore, there are more than
2,500 parametric attributes in the schema. 40% of the attributes among
the tables within each subcategory are common. Intuitively, this is
because these relations describe parts which belong to the same
category. Examples of tables representing subcategories are shown in
figure 1. The first two tales, Digital and Memory belong to category IC,
and the second two tables, Fived and Var_sgl belong to category Resistor.
As can be seen, the first 6 attributes in the first two relations, and the
first 6 attributes in the second two relations are the same. Moreover,
the first three attributes among all four relations are the same.

Another cause of repetition in the relational schema are compound keys.
Compound keys in certain parts of schema consists of several attributes
and appear in many relations. For instance, there are compound keys
with up to 7 attributes which appear in more than 10 different relations.
These keys create redundancy and increase the complexity of the
database, its use, and maintenance.

3.1.2 Iris Schema for Component Information Center

Iris schema for CIC is hierarchical. The root of the hierarchy is a system
defined type called UserTypeObjects. The nodes of the hicrarchy are Iris
types which define the entity types. Attributes of these entity types are
defined as Iris functions. The edges in the hierarchy represent
subtype/supertype (specialization/generalization) relationships which
support inheritance.

Generalization and the related inheritance allowed us to impose
structure onto the set of entity types in the database, capture the
semantics of categorization of components, and at the same time
eliminate multiple occurrences of the same attributes, and therefore
reduce the size of the schema considerably.

530

The Iris schema for the portion of the database in figure 1, is shown in
figure 2. Connections among nodes of the hierarchy in figure 2
represent generalization relationship. Part, the root of the hierarchy is
the most general entity type because all components are Parts. The
nodes at the second level of the hierarchy are categories of parts, and
the nodes at the third level are subcategories. Subcategories are the
most specific types of parts. Because all components are parts, they
inherit the attributes defined in type Part. An Instance of a subcategory (
for example, an instance of Memory) is an instance of is category (for
example, an instance of IC) as well, therefore, Memory inherits the
attributes defined in type IC. In the relational schema there is no /C and
Resistor and the fact that an instance of Memory is an IC is not stored in
the database. Because of the structure and additional semantics, the
schema in figure 2 contains more information than the schema in figure
1, and it is easier to understand.

Inheritance along the generalization relationship allowed us to reduce
the size of the schema, which deals with the parametric data, by more
than 35%. We factorized the common attributes among subcategories
and defined them once in the categories. This reduced the number of
attributes defined at subcategory level by almost 50%. We then
factorized the common attributes of the categories and defined them as
the attributes of the Part. Note that this reduction does not affect the
size of the database. It reduces the size of the schema only.

We reduced the size of the schema further by replacing compound keys
with object identifiers which are defined and maintained by Iris for each
entity instance. As we mentioned, in the relational schema, there are
compound keys which have up to 7 attributes and appear in more than 10
relations. By replacing these compound keys with object identifiers the
size of the schema was reduced. Moreover, the readability and the
semantic contents of the schema were enhanced. For instance, there is
a compound key part_number + part_revision + facturer_name +
manufacturer_address which appears in any relation which references a
part. In the relational schema all the elements of the compound key
appears for each of these references without any syntactic indication that
they, together, reference a part. In the Iris schema they are replaced by
a single attribute whose type is declared to be Part.

Replacing multiple occurrences of compound keys reduces the size of the
database as well, but this reduction may be offset by increased space
utilization due to system-defined object identifiers.

The notion of user defined type enhances the semantic contents of the
schema because they are used to specify the types of the attributes which
are references to other objects. For instance, assume parts have an
attribute whose values are the organizations which are responsible for
their designs. We can then define the design_org attribute of parts to be
of type Organization. In the relational version, the type of the attribute
design_org will be Char(30), or a similar primitive type (RDBMS which
support referential integrity may simplify this problem). The fact that
design_org of Part are Organizations is embedded in the values of
Char(30).

The ability to define functions which return a list of values (an aggregate
value) further enhanced the semantic contents of the schema. Assume
we need to define height, length, and width of the packages of parts. In
the relational schema these attributes will be defined independently or
they will be defined as the attributes of another relation. In the first case
the fact that they all belong together is lost, and in the second case a new
user-defined key attribute or a compound key which consists of four
elements has to be defined. In Iris we defined package dimension
function shown below, which takes a Part and returns a list of four
values.

create function package_dimension (Part p) ->
<Real height, Real length, Real width, Charstring unit>;

To retrieve dimensions of the package of a part P1 one needs to execute
the expression: package_dimension (P1), which returns a list of four
elements.

3.1.3 Comparison of Relational and Iris Schemas
We believe Iris CIC schema is superior to relational CIC schema:

1. It contains more semantics because it captures generalization,
supports user-defined types, and supports functions (which model
attributes) which return aggregate values.

It is smaller because of inheritance and object identifiers.

It is easier to understand because it is better structured, and has a
simple mapping to the logical view of data.

3.2 Electronic File Cabinet

Electronic File Cabinet (EFC) is a databased application which manages
R&D and Manufacturing related documents. It addresses the need of
getting the right revision of the right data to the right place at the right
time. EFC was a part of a set of CIM based applications, we set out to
prototype using Iris.

The original application was designed for a relational database system.
The corresponding Entity Relationship (ER) schema is shown in the
figure 3. The schema designers had run into problems often associated
with traditional ER based schema design and had come up with Object-
Oriented solutions to get around some of these problems. In this section
we describe some of the schema design issues that came up during the
redesign of EFC schema using Iris.

To simplify the comparison between the original schema and the Iris
solution, we decided to retain the design of the original schema as much
as possible. If we had started designing the Iris schema from the scratch,
the final Iris schema would have possibly appeared much different from
the current version.

32.1 EFC Schema.

The figure 3 shows part of the EFC schema which we implemented in
Iris. The main entities in the schema are - User, Process, Assembly, Part,
Operation and Document. Since most of these main entities participate in
similar relationships with other entities, a new entity called EFC Object
was created. All of these main entities are related to EFC Object via the
relationship object_ref, and the EFC Object entity can play the role of any
of the specific main entities. This way all similar relationships on the
main entitics could be defined on the entity EFC Object rather than
defining separate relationships on each of the main entities. For
example most of the main entities have a relationship with the entity
Document called object_desc. Rather than defining it repeatedly for the
entities User, Process, Assembly, Part and Document, this relationship
needs to be defined once for the entity EFC Object. If a particular Part
p1 has the relationship object_desc with a Document d1, we first find the
EFC Object eol which acts as a surrogate for pl via the relationship
object_ref and then relate eol to the Document d1.

Let us look at some of the main entities mentioned above. The entity
User refers to the users of the documents managed by the EFC. Part
refers to the actual physical parts (like ICs and resistors) which are used
in the manufacturing processes. Document refers to any on-line
documentation maintained by the system. Assembly refers to aggregate
structures which could be composed of individual documents, parts or
other sub-assemblies. Process refers to the processes understood by
EFC. Processes take assemblies as inputs and create (output) other
assemblies. Some of the processes (like text formatting, compilation)
could actually be invoked from within EFC, and information is
maintained for their execution. For other processes, which cannot be
invoked via EFC, only auxiliary information is maintained. EFC also
maintains a list of operations which are applicable on assemblies, and
keeps track of the users who could invoke these operations.

Certain users who behave in a similar way, can be grouped in user
groups called User Group. Similarly, processes, assemblies, parts and

531

documents which behave in the same way, are also grouped together in
groups called Process Group, Assembly Group, Part Group and Document
Group respectively. Together we refer to these entities as EFC Group.
The relationship group_object keeps track of which EFC Objects belong
to which EFC Groups. Using groups we can describe information about
more than one EFC Objects at a time. So if a particular document d1
describes a number of parts, we can group all these parts in one group
and then use the relationship group_desc to relate the document d1 to
this group. This will relate the document d1 to all of the parts in the part
group.

Users can put locks on other assemblies to prevent certain operations on
these objects. EFC also stores information regarding the projects users
work on, and the EFC Objects which are relevant for a particular project.
EFC also does primitive revision management, It keeps track as to which
assemblies are actually revisions of older assemblies, and who is
responsible for maintaining these revisions.

3.2.2 Iris Schema for EFC

As mentioned earlier, we had chosen a path in which we wanted to map
the original EFC ER schema into Iris schema with minimum possible
transformation. Therefore, most of the entities in the ER schema are
mapped directly to Iris types and most of the relations were mapped into
Iris functions. The Iris schema is shown in figure 4.

The entity EFC Object was mapped into an Iris type called EFC _Object.
EFC Objects - User, Process, Assembly, Operation and Document are
subtypes of EFC_Object. All relationships common to all EFC Objects
are defined as functions on the type EFC_Object. Since Iris provides
inheritance, all of these functions defined on EFC Object are also
inherited by its subtypes and the semantics of the original EFC schema
are maintained.

Since all documents and all parts are also considered to be assemblies (a
part could be considered to be a assembly composed of that part and no
other substructure), the type Document and Part are subtypes of type
Assembly. A hierarchy parallel to that under EFC_Object is formed
under the type EFC Group, which keeps track of all EFC groups
maintained by the system. The only difference in the hierarchies is that
there is no Operation_group because the operations known to EFC are
not grouped together. For each subtype of EFC Object there is a
function called belongs_to which returns the corresponding subtype of
EFC_Group and which relates an EFC_Object to the group it belongs to.

Processes generate assemblics from other assemblies. The input
assemblies might be simple assemblies like parts or individual
documents, or could be complex assemblies themselves. To store this
information, we define two functions - input and output on the type
Process. The function input relates a Process to all the assemblies it takes
as inputs and the function output relates a process to all assemblies the
process generates. Since this is useful information for assemblies
themselves, we also define a derived Iris function called generated | from
on assemblies. The function generated_from takes an assembly as input
and returns all the assemblies it is generated from. This information is
not actually stored in this function but is derived from the input and
output functions of Processes. This is possible in Iris because any query
(in this case it would be a query which determines the process which
generates the assembly and then reports all the input assemblies to this
process) could be modeled as a derived function and so duplicate
information need not be stored.

We created a type called Project which maintains information about
projects known to EFC. The functions works_on relates users to the
projects they work on, the function responsible_for relates the users to
the projects they are responsible for. The function relevant '_for keeps
track of all the EFC objects relevant for a specific project. Similarly the
functions hip and responsibility relate documents to the users who
own and are responsible for the document respectively. The type Lock
keeps track of the locks placed by users on the assemblies to prevent
invocation of certain operations.

What we have described above are some of the main types and functions
in the Iris schema. Besides these, a few types and a number of other
functions were defined which keep auxiliary information about the main
entities. In Iris, we model attributes as functions and each of the main
types have a number of functions defined on them which play the role of
attributes. Since they do not illustrate any major point, we have not
mentioned them here and neither do we show them in the figure 4.

3.2.3 Design Issues in EFC ER and Iris schema.

Let us look at some of the differences in the ER and Iris schemas for
EFC which illustrate some of the design issues involved. As you can
observe from figures 3 and 4, there is no relationship object_ref in the Iris
schema. This relationship is used in the ER schema to relate main
entities (User, Process, Assembly, Document, Part and Operation) to the
generic entity EFC Object. For each main entity instance, there is a
corresponding EFC Object instance related via the relationship
object_ref. This EFC Object instance acts as a surrogate for the
corresponding main entity instance so that the relationships which were
to be defined on the main entity instances, are now defined over the
surrogates. Besides this problem of indirection, the ER schema suffers
from the problem of maintaining a unmique surrogate for each
corresponding main entity instance. To keep track of this
correspondence, the ER schema had similar attributes defined over all of
the main entities, and these attributes acted as unique keys. The actual
maintenance of this correspondence itself, was the job of the applications
written on top of the ER schema.

In Iris both of these problems are solved simply. The problem of
indirection is solved because Iris provides the mechanism of inheritance,
and all relationships (functions) on the type EFC Object are
automatically inherited by it’s subtypes. These functions are defined
directly on objects of the subtypes like User, and we do not have to go
through the intermediate step of first accessing an intermediate entity
instance, as we have to do in the ER schema.

The second problem of maintaining regular, unique keys for the EFC
Objects does not arise in Iris because the system automatically generates
a unique identifier for all objects known to Iris. This unique identifier
can be used to refer to an object in a regular fashion.

Another point to note is that the relationship revision_of in the ER
schema has been modeled as a type in Iris. This relationship relates an
old assembly to it’s revision. The date on which this change was made
and the information about the engineer who made this change is kept in
attributes defined over the relationship. In Iris you cannot have user
defined attributes over the functions. We had a choice of either modeling
this relationship as a multi-argument function or as a type (this choice is
made clear in section 3.3). We chose to define revision as a new type,
which has an attribute o/d_a linking this revision to the old assembly; an
attribute new_a linking this revision to the new assembly; and two other
attributes - date and project_engr returning the date when this link was
established and the name of the engineer responsible for this link.

Another advantage of using Iris is the ability to define derived
information in Iris schema. Any query in Iris could be thought of as a
function taking certain arguments and returning certain results. In Iris,
one can define derived functions which take certain arguments, invoke
the query which defines their function body based upon the value of the
input arguments, and return the results of this query. No information is
actually stored in these functions, but the information is obtained by
accessing other pre-defined stored or derived functions. We see an
example of this when we define the relationship generated from on
assemblies. The function generated_from uses the information stored in
functions input and output to obtain the required information. In the
corresponding ER schema, either this information would have to be
stored redundantly or the designer would have to encode this derivation
in the application.

532

A final point to note is that we have been comparing the ER schema of
EFC with the Iris Schema. Actually the information is not stored in the
ER schema, but a transformation to the relational tables has to be
carried out. This transformation is usually a non-trivial task. Since the
relational database designers have to store all entities and relationships
as flat tables, a part of the information is lost in the process of
transformation. The designers have to maintain the correct semantics
(logical view) at the application level. They also have to take care of
issues like normalization and referential integrity. None of these issues
come up as a major problem in designing Iris schema. This makes
designing Iris schema a much simpler task.

3.3 Mapping ER Schema into Iris schema.

Our experiences with the CIC and EFC projects suggest that it is very
simple to map an ER schema into an Iris schema. However, the reverse
transformation is nontrivial because Iris provides much more semantics
than ER schema. Some of the constructs modeled in Iris need complex
transformation before they can be modeled in ER schema.

The two basic constructs in ER model are - entities and relationships.
Some people consider attributes to be different from relationships, but
we will consider them together in the following discussion.

Any ER entity could be modeled as an Iris type. The entity instances
would then correspond to Iris objects. However, some entities could also
be modeled as Iris functions. Most of these would fall into the category
of entities which are created to avoid many-to-many relationships. Even
though ER model allows many-to-many relationships, designers
sometimes introduce an artificial entity corresponding to the many-to-
many relationship because the underlying physical database may have
difficulty in managing many-to-many relationships. A typical example
would be the entity Enrollment, which might be created to avoid the
many-to-many relationship between Courses and Students (figure 5).
Such entities could easily be modeled by Iris functions which can take
multiple arguments and return multiple results. The Iris model allows
and manages such many-to-many relationships without any difficulty.
The advantage of such an Iris schema is that it models the real world
semantics of a relationship, rather than introducing artificial entities.

The relationships in ER model can easily be modeled as functions in Iris.
One can restrict participation of Iris function argument and result
parameters to obtain one-to-one, one-to-many, many-to-one Or many-
to-many relationships.

ER model relationships can also be modeled as Iris types. A good
beuristic to determine whether a relationship should be modeled as an
Iris function or an Iris type is as following, If the relationship is
interesting in itself, ie. we are interested in manipulating information
about the relationship itself, we should map this relationship into an Iris
type. However, if the relationship is only interesting because it relates
various entities, we should model such a relationship by an Iris function.

Let us again consider the example of enrollment of students to illustrate
this point. If we only use the relationship enrollment to establish the
connection between students and classes, then we should model this
relationship as an Iris function. This function may take a student and a
class as arguments and return true if and only if the student is enrolled in
the class. However, if we also want to manipulate information about the
enrollment itself - like counting the total number of enrollments - we
should model enroliment as an Iris type. This type would have two
attributes - student and class - which will refer to the student and to the
class in which the student is enrolled.

Another reason for modeling enroliment as an Iris type is - we might be
interested in adding more information about the relationship at a later
time. For example, if later on we decide to associate a grade received by
the student with each enroliment, it will be trivial to add a new attribute
grade to the Iris type Enrollment and assign it’s value for each
enroliment. However, if we had mapped enrollment to an Iris function,

we would have to delete this Iris function, and in the process destroy all
the relationships it kept track of. We would then have to create a new
function which might take three arguments - students, classes and grades
- and reestablish the link between students, classes and grades. As you
can observe, the second alternative (enroliment as an Iris function) leads
to more work in this particular case.

Another example where we model an ER relationship into an Iris type is
when we map the relationship revision_of in EFC ER schema to a type
Revision in Iris schema. We made this decision because we felt that
revision was an interesting relationship by itself and we would like to
keep information about the date on which this link between an old
assembly and a new assembly was established, and about the engineer
responsible for maintaining this link.

In general it is very easy to transform ER schemas into Iris schema.
Unfortunately the reverse transformation is difficult. Iris has additional
semantics - like inheritance and ability to define derived functions -
which are difficult to model using ER schema.

4. Interface

The relational DBMS used in the implementation of the application has
SQL interface and allows end-users to interact with the system through a
form-oriented interface generated through 4GL facilities of the system.

Iris has OSQL (Object SQL) interface which is SQL-like, but takes
advantage of the object-oriented and functional features of Iris to
simplify queries. Iris also has a graphic browser/editor which allows
users to view, browse, and edit Iris databases (both schema and data) in
X-Window environment.

In the following sections we comment on the advantages of the OSQL vs.
SQL, and Iris’s Graphic Browser/Editor. vs. the form-oriented interface
of the relational system.

4.1 OSQL Vs. SQL

We found two facilities of OSQL very useful: function composition and
derived functions. Function composition simplifies queries by
climinating joins in most queries. The following example illustrates the
substitution of join with function composition.

Assume different Engineering_Divisions are responsible for different
Parts. Also assume Parts have part_number, and Engineering_Divisions
have name. An SQL query to retrieve names of the
Engineering_Divisions who are responsible for a given part with
part_number myPart may be formulated as follows:

select name

from Part, Engineering_Divisions

where (Part.part_number = Engineering_Divisions.part_number)
and (part_number = myPart)

The equivalent OSQL query, assuming that myPart is the object
identifier of the desired part can be formulated as follows:

select name(Engineering_Divisions(myPart);

Derived functions provide an abstraction of frequently occurring queries.
Complex queries can be simplified by defining frequent subqueries as
derived functions. The following example illustrates this point:

Assume we need to find the names or addresses or phone_numbers of the
Manufacturers of IC ’s whose failure_rate are less that x. We can define
the selection of the manufacturer as a derived function and then use it to
retrieve different attributes of the manufacturer. The definition of the
function is shown below:

533

create function better_manufacturers (Integer x) -> Manufacturer as
select m
for cach IC i , Manufacturer m
where manufacturer (i) = m
and failure_rate (i) < x;

Having defined this function it can be used in other queries such as the
following, which retrieve the names and addresses of the manufacturers
of ICs with failure rate less than 5:

select name (better_manufacturer (5));

select address (better_manufacturer (5));

42 Object-Oriented Graphic Browser Vs. Form-Oriented Interface

The end-user interface of the current implementation is based on a
relational 4GL. It consists of a set of forms which are displayed one at a
time. The typical sequence of interactions with the system is as follows:
a form is displayed, the user makes a sclection, another form is
displayed and the previous form disappears. After a few steps a form is
on the screen, but it is not readily obvious how we got there. In other
words the context of information which is on display is not available.
Another problem is that the interaction with the system always starts
from a fixed initial step and it usually takes several steps to get to the
desired information.

The graphic browser of Iris displays the type hierarchy of the schema.
Users can select any type they want with the first selection by mouse
click. Depending on what object type has been selected a menu of
meaningful operations appears which allows users to select an operation
which is guaranteed to be meaningful when applied to that object. Users
can browse both schema and data by selecting an object and then
selecting an operation from the menu of the valid operations on that
object. At any point during interaction, the user has the context of the
data that is being consulted. Normally it takes fewer interactions to get
to the desired information because hierarchy of all the types in the
schema is available to user throughout the interaction with the system.

5. Monitors

The application system keeps track of manufactured products and parts
and their producing departments. The database contains data about
failures of parts and departments which are responsible for servicing
those parts. When parts fail, engineers update the current failure rate of
failing parts.

It would be desirable to to be able to monitor the failure rates of parts.
For example, a service department may want to know if a failure rate of
some part for which the department is responsible gets too high. We call
such a program a failure rate monitor .

The failure rate monitor is an example of a new kind of database
applications where the user is informed when critical situations occur
over the global state of a database. Iris has been extended with the
capability to handle such database monitors. We demonstrated the use
of database monitors in the context of the our CIM application system.

Note that database monitors actively notify the user when interesting
situations arise. To achieve the same result in a conventional DBMS the
user would have to regularly query the database for every situation that is
of interest.

A short description of the database schema, failure rate monitor from
end-user point of view, and the implementation of the failure rate
monitor follow.

5.1 Database Schema

The database schema used in the implementation of the failure rate
monitor is shown below. As before, to simplify the discussion we use a
small subset of the application system schema.

/* Entities as Iris types */
create type Department(
Number Charstring,
Name Charstring);
create type Product(
Number Integer,
Name Charstring);
create type Failure(
FailureRate Real);
create type Part(
Number Charstring unique,
Name Charstring);
/* Relationships */

create function FailureProduct(Failure) -> Product;
create function ResponsibleDepartment(Part) -> Department;
create function PartFailure(Part) -> Failure;

In the failure rate monitor we display the failing parts, products, and
failure rate for a given responsible department whose failure rates are
larger than a given threshold. This information can be retrieved by the
following derived Iris function:

/* Significant failed parts and products for responsible department */
create function FailureReport(Department d, Integer th) ->
<Charstring prn, Charstring pan, Integer ta> as
select prn, pan, ta
for each Failure f, Part pa, Product pr,
Charstring prn, Charstring pan, Integer ta where

ResponsibleEntity(pa) = d and

PartFailure(pa) = f and

FailureRate(f) = ta and

th < ta and

FailureProduct(f) = pr and

prn = Name(pr) and

pan = Name(pa);

We developed an application program to track critical failures relevant
to a given department. The appearance of the program in an interactive
window-based environment is illustrated in figure 6.

The failure rate monitor can inform the user about the parts which fail
more than a certain threshold. The program allows users to enter
department name, and parts which are serviced by those departments.
The user also enters the critical failure rate threshold. Different users
can enter different thresholds, depending on their responsibilities. The
failure rate monitoring starts when the user clicks on ’Monitor ON’. The
user can turn off monitoring at any time by clicking on "Monitor OFF.

5.2 Database Monitors

The database monitor feature used to implement our failure rate
monitor was first described in [RISC89] The main idea behind this
feature is as follows.

Assume that we have a multi-user Object Oriented DBMS, such as Iris,
where we also have a declarative query language, such as OSQL. The
database is continuously and concurrently updated by transactions.

At any point in time the database has a global state, Si. Transactions are
functions, T(S7) -> Sj, that transform the database state from one state,
Si into another state, Sj . A monitoring program, such as the failure rate
monitor, is interested in tracking when the database gets into interesting
states, ic. when the database satisfies certain conditions. When the
database moves into such a state, the database monitoring program is
informed about the state changes.

534

In our database monitor feature, interesting database states are
described by the result of any monitored database query. For example, in
the failure rate monitor we are interested in monitoring the result of a
query that retrieves the failing parts of a given department and a failure
rate threshold, as defined by the derived function FailureReport. The
failure rate monitor should get notified whenever the value of
FailureReport is changed. Notice that FailureReport returns the empty
set when there is no parts which fail beyond the threshold. In general
one can always define the monitored query so that it returns some
particular value.

We also need some mechanism to inform the application program that a
state change has occurred for a monitored query. Therefore, the
programmer does not only specify which query to monitor, but also a
ttacking procedure. A tracking procedure is an application program
procedure that is called by the DBMS when a state change has occurred
in the monitored query. Thus the tracking procedure is part of the
application program and it is written in the programming language of the
application program (e.g. C). The DBMS does not send any data to the
tracking procedure when a state change has occurred. However, the
tracking procedure can freely access the database to retrieve the current
value of the monitored query.

Database monitors need to be dynamic, i.c. they are active only while a
particular application program requires them to. The system provides
primitives for fast activation and deactivation of database monitors.

5.3 Implementation of Application

With the database monitor feature of Iris the implementation of failure
rate monitor becomes very simple. Basically we assign program variables
to the input fields Service Department and Failure Rate Threshold The
database monitor tracks the FailureReport query for the current service
department and failure rate threshold. The tracking procedure retrieves
the failure rate query and displays its result in the window. Finally, the
"Monitor ON’ button activates the monitor and then changes its label to
’Monitor OFF’; another click deactivates the monitor.

The program was implemented using the X window system, version 11.
The code is approximately 400 lines of C, of which about 80 lines are
interface code to Iris and the rest is X user interface code. The failure
rate reporting program has 164 lines of code.

6. Summary and Concluding Remarks

Based on the results and observations made in this project, it is clear that
object-oriented DBMS such as Iris provides better information modeling
facilities than relational DBMS do. We illustrated the following
advantages of OODBMS Iris with respect to information modeling and
in section 3 and with respect to interface in section 4:

1. The schema is easier to understand because it is structured,
contains more of the semantic of the data, and is intuitive.

Generalization imposes structure, user-defined types and
operations capture more semantics, and simple mapping from
application entities to user-defined types make it more intuitive.

2. The schema is smaller because of inheritance and object identifier.

Inheritance allows common attributes to be factorized and stated
once. System defined object identifiers allow compound keys,
which can potentially become large, to be replaced by a fixed size,
smaller, and uniform system defined object identifiers.

3. The object-oriented graphics interface is easier to use than form-
oriented character-based interface. The object-oriented graphics
interface of Iris allows users to get to the desired information with
fewer actions (mouse clicks and menu selections). Moreover, it
preserves the context of information on the display.

Another very important observation that we made in the course of our
project is that an object-oriented DBMS such as Iris enhances logical
independence (independence of applications from database
implementation) of applications. This is mostly because of the
encapsulation of data, and the abstraction of implementation from use
through functions.

One of the problems that we encountered was the lack of methodologies
and tools to support application development using OODBMS.

Two questions remain:

1. How does the size of the database of an application implemented
by a relational DBMS compare with the size of the same
;quiication implemented using an object-oriented DBMS such as
ris?

2. How does the performance of the relational implementation
compares to the performance of object-oriented implementation of
the same application?

We are planning to address these questions by conducting a benchmark.

The plan is to unload the contents of some of the existing relations,
reformat them, and then load them into Iris schema. Once the Iris
schema is populated we will run queries which achieve the same task in
both relational and object-oriented implementations. We will then
compare and contrast the two performances.

We will also compare the sizes of the relational and object-oriented
databases with the same information contents.

References:

[CHEN76] Chen, P.P,, "The Entity-Relationship Model: Toward a
Unified View of Data,” ACM TODS, 1976.

[CODD70] Codd, E.F., "A Relational Model of Data for Large Shared
Data Banks," CACM, June 1970.

[DATES5] Date, C.J. "An Introduction to Database Systems,"
Addison Wesley, 198S5.

[FISH88] Fishman et. al., "Overview of The Iris DBMS,", Database
Technology Department, Hewlett-Packard Laboratories,
June 1, 1988.

[GOLDS83] Goldberg A., Robson, D. "SmallTalk-80 The Language
and its Implementation,” Addison Wesley, 1983.

[RISC88] Risch, T. "Database Monitors," Proceedings of VLDB
1989.

[SHIP81] Shipman, D. "The Functional Data Model and the Data
Language DAPLEX," ACM TODS, 1981.

[SMIT77] Smith, JM. and Smith D.C.P.,, "Database Abstractions:
Aggregation and Generalization,” ACM TODS, June 1977.

[TSIC82] Tsichritzis, D.C., Lochovsky, F.H., "Data Models,"
Prentice-Hall, 1982.

535

Var_sgl

Digital Memory Fixed
part_number part_number part_number part_number
generic_type generic_type resistance resistance
package power power

technology technology ! }

logic_size access_time temp_coef taper

bit_count density voltsge_max shaft |

input_count memory_type stability bushing Part

part_number
manufacturer
Figure 1 drawing
Subcategory Relations in the Relational Schema
(o} Resistor
generic_type resistance
power
technology tolerance
Digital Memory Fixed Var_sgl
logic_size access_time temp_cocf taper
bit_count density voltage_max shaft_type
input_count memory_type stability bushing
Figure 2

Part Category Hierarchy in the Iris Schema

object_desc

oup_desc

Figure 3
Partial Entity-Relationship Schema

536

HP Entity: 12345 \

Max Failure Rate: 5%

Monitor ON

Part Failures:

Screws rate 10%
Pliers rate 7%

K Hammers rate 6% /

Figure 4 Figurc 6
Partial Iris Schema User Interface for Failure Rate Monitoring

| Student ll o n Cowse

Figure 5
Converting Many-to_Many Relationships to One-to_Many Relationships

537

