
(Presented at Proc. 1st European Across Grids Conference,

Universidad de Santiago de Compostela, Spain, Feb. 13-14, 2003.)

High-performance GRID Stream Database
Manager for Scientific Data

Milena Gateva Koparanova and Tore Risch

Department of Information Technology, Uppsala University,
SE-75105 Uppsala, Sweden,

Milena.Koparanova@it.uu.se, Tore.Risch@it.uu.se

Abstract. In this work we describe a high-performance stream-oriented
distributed database manager and query processor under development
that allows efficient execution of database queries to streamed data in-
volving numerical and other data. Very high performance is attained by
utilizing many object-relational main-memory database engines running
on PCs and connected through the GRID.

1 Introduction

We are developing a new kind of database manager utilizing the evolving GRID
infrastructure[5] for distributed computations on large data streams. The GRID
Stream Data Manager (GSDM) will have high performance and support for
customizable representation of streamed data in distributed data and compu-
tational servers. The target application area is space physics, in particular the
LOFAR/LOIS project [9–11], whose purpose is to develop a distributed software
space telescope and radar utilizing the GRID. LOFAR/LOIS will produce ex-
tremely large raw data streams by sensor networks receiving signals from space.
Various numerical selection and transformation algorithms are applied on these
streams before the data to be delivered to the client workstations for visualiza-
tion and other processing in form of streams called beams, with rates of several
gigabits per second [20].

Our approach to meet the demands of the LOFAR/LOIS (online) applica-
tions for very high performance and extensibility is to develop and utilize a dis-
tributed, main-memory, object-relational, and stream-oriented DBMS running



2

on clusters of computers. We are extending an existing main-memory object-
relational DBMS engine[16] with capabilities for processing distributed streams.

The remainder of the paper is organized as follows. In the next section we
consider the need for and consequences from the stream orientation for the de-
velopment of the system. Section 3 discusses the GSDM as a new type of appli-
cation for computational GRIDs. An overview of the GSDM system architecture
is presented in section 4, and we summarize in section 5.

2 Stream Database Manager

Regular database management systems(DBMSs) store tables of limited sizes
while stream database systems (SDBSs) also deal with on-line streams of unlim-
ited size. The raw data and beams generated by LOFAR/LOIS sensor networks
are typical example of streams. Data streams have characteristics that require
different handling from the DBMSs. A lot of research in stream data manage-
ment has been done recently [1–4, 8, 12, 13, 18] and the area offers a number of
open research questions. Several important characteristics of data streams make
them different than other data: they are infinite, once a data element has ar-
rived, it is processed and either archived or deleted, i.e. only a short history can
be stored in the database. It is also preferable to process data elements in the
order they arrive, since sorting, even of substreams of a limited size, is a blocking
operation.

The specifics of the data streams require to consider a data model that allows
streamed data representations and operations over streams to be easily specified.
An example of stream-oriented data model is SEQ [17] that is used as a base for
modeling of streams due to their sequence nature.

The infinite size imposes a limitation in the stream representation in form of
substreams of a limited size, called windows. Several operations that are specific
for streams must be introduced (e.g. resample and drop in [3]), while some
traditional ones need their semantics to be redefined in the context of stream
windows (e.g. join of windows and moving window aggregates [18]).

Since stream data elements are arriving over time, a natural technique for
querying such data are so called continuous queries(CQs) [19]. CQs are installed
once and run continuously over incoming data elements until they are stopped
explicitly. The presence of long-running CQs increases the importance of DBMS
adaptivity which motivates the work presented in [13]. Techniques as approxi-
mate query answering, data reduction and multi-query optimization also gain
greater importance and applicability in the context of stream data query pro-
cessing.

SDBS architectures are proposed in [2, 3]. A related area is distributed net-
works of sensors considered in [1, 12], where a large numbers of small sensors,
most likely power limited, generate relatively simple data at rates much slower
than in LOFAR/LOIS application. In our application area we have a limited
number of scientific data streams with very high generation rate. The expected



3

CQs will contain User-Defined Functions (UDF) over non-relational data repre-
sentations of stream windows.

Most of the SDBSs described in the literature have centralized query pro-
cessing and scheduling where a central node has more or less global information
about the system and makes optimization and scheduling decisions accordingly.
The need for efficient execution of a number of CQs on clusters of GSDMs puts
additional difficulties because of the distribution and parallelism. For example,
the system design must answer to questions as how to distribute the work among
the database nodes, what type of parallelism would give greater advantage for
scientific data streams with applied UDFs, how to coordinate the operations
from a single pipeline running on different nodes or even clusters. Therefore al-
gorithms for query optimization and scheduling have to be developed that take
into account the specifics of the distributed GRID environment.

3 A Computational GRIDs Application

We can consider the GSDM project as a new kind of application for compu-
tational GRIDs. Utilization of parallel and distributed GRID environment is
motivated by the following reasons: i)The volume of data produced is too large
to fit in a single main-memory, and therefore suggests data to be distributed
among clusters of main-memories. ii) The very high data flow rate requires very
high performance of insert, delete and data processing operations.

Different kinds of parallelism can be utilized to achieve high performance.
For very heavy computational operations data partitioning parallelism must be
considered, while for cheaper operations a pipelined form of parallelism might
be useful. The fragmentation strategies for data parallelism are well investigated
for relational databases. Research has been done on data fragmentation prob-
lems in Object-Relational DBMSs that discusses how to achieve efficient parallel
execution of UDFs while preserving their semantics [7, 15].

Several projects as Globus [6] and Nordugrid [14] provide tools for building
computational GRID infrastructure. We consider computational GRIDs as more
appropriate for our GSDM than a regular parallel computer because of dynamics
and scalability. Computational GRIDs are a natural extension of parallel com-
puters allowing not only greater processing power, but also ability for dynamic
resource allocation and incorporation of new nodes when necessary. For instance,
if a new CQ with high cost UDFs is installed on the GSDM, this may require
staging and starting the database manager on new nodes and scheduling of some
query operations on them. The dynamics can also be important characteristic
in an environment where different number of data streams are used over time
or the source streams have varying incoming rates. The efficient utilization of
computing resources requires ability to dynamically incorporate new nodes to
the system, and to free them for other users when not needed any more.

Several problems and research questions arise from utilization of the com-
putational GRIDs for an application such a database management system. Re-
source management of the multiprocessors and clusters of workstations is per-



4

formed typically by a batch system, that takes care of the job scheduling, queue
placement and prioritizing. Most of the applications requiring computational
power run as batch jobs. The GSDM can be considered as a persistent job with
dynamic resource requirements (increasing and decreasing over time) and inter-
active user interface. The DB managers and users must be provided with ability
to install and stop different CQs during a user session without need to restart
the system when a parameter has changed. Therefore, extensions of the job man-
agement systems of computers connected through the GRID are needed, such
that interactive database query jobs are to be permitted. Working in a GRID
environment requires also to consider issues as security and accessibility. For
example, if a central scheduler is used for scheduling of the CQs, it must be
accessible from all participating nodes, which limits its possible locations and
creates a potential bottleneck. The GRID infrastructure should provide a new
service by which database servers running on different clusters can communicate
with very high performance.

4 GSDM System Overview

Figure 1 illustrates a scenario of applications interacting with GSDM through
the GSDM service manager. It is a relatively light-weight server that receives
GSDM commands and, depending on their kinds, starts or calls other GSDM
servers. The GSDM commands can, e.g., be registration of CQs or information
about the active CQs running currently in the system.

GSDM Server2

GSDM Server1

GSDM Server3

GSDM Query

Coordinator1

Application Application

Data Beam1 Data Beam 2

GSDM Query

Coordinator2

GRID

(Continuous) GDM queries

Plug-ins

CQ1 CQ2

GSDM Service 
Manager

Fig. 1. GRID Stream Data Manager Scenario



5

In the figure there are two applications that have registered to the GSDM
two different continuous queries, CQ1 and CQ2. The queries specify joining and
filtering of data from two different data streams, in the example called Data
Beam 1 and 2. The GSDM service manager starts a GSDM query coordinator
node and delegates the service of the received continuous query to this node. The
query coordinator delivers the results of the CQ as a stream to the application by
receiving data streams from other GSDM nodes or source streams. For a given
CQ the query compiler of the query coordinator will construct a distributed
execution plan accessing other GSDM servers or source streams. In the example,
the GSDM query coordinator 1 has created an execution plan for CQ1 where the
coordinator joins data streams from Data Beam 1 and 2 through the intermediate
GSDM servers 1 and 2. Analogously the query coordinator 2 joins streams from
the sources through GSDM servers 1 and 3. GSDM server 1 produces substreams
used in both queries by joining data streams from server 2 and 3. A CQ can
include regular set operators extended with user-defined application-dependent
algorithms for stream filtering and fusion that are implemented as plug-ins and
installed on GSDM nodes.

In the scenario it is assumed that the source streams can deliver data directly
to the cluster nodes running GSDM servers 2 and 3. This requires, e.g., the GRID
infrastructure to provide a method to access the IP address of individual nodes
inside a cluster, which is not always possible presently but is a desired service.
The ability to deliver stream data directly to nodes inside a cluster is necessary in
our case since the target LOIS/LOFAR applications produce very large streams
that cannot be managed through a single node.

Figure 2 shows the architecture of a single GSDM node. An application
communicates with a GSDM node acting as query coordinator through the ap-
plication API. It provides primitives to register CQs and to deliver CQ results
to the application. The continuous query manager registers and processes con-
tinuous queries. It produces optimized distributed CQ execution plans. The CQs
specification is based on regular database queries and the system internally uses
a regular database query processor for their optimization.

When a distributed CQ execution plan is produced the resource manager
of the GSDM node is called. It is a software module that interfaces the GSDM
service manager and other GSDM servers in order to decide where the individual
operations in the query plan are to be executed. The GSDM service manager
needs to be contacted, e.g., in order to find out whether there are some other
similar CQs whose execution plans can be utilized by the new plan. The resource
manager can start new GSDM servers when necessary. In order to allocate new
computer resources the resource manager module of a GSDM node needs to
cooperate with the resource manager of the cluster.

Once the execution plan is created the GSDM node needs to communicate
with other GSDM servers and data sources through the wrapper interfaces. In the
scenario the system has to interface mainly stream data sources, but also regular
relational databases can be accessed through a relational data source wrapper.
In the figure the Global Sky Model is a relational database storing the most



6

visible sky objects. Each kind of stream data source needs a source wrapper
that accesses the source, builds windows of streamed data, controls the data
flow, etc. The wrapper is instantiated for each accessed data stream of its kind.
A particular wrapper interfaces inter-GSDM streams. The plug-ins contain user
defined filtering and fusion algorithms implemented as conventional programs
and dynamically uploaded into the GSDM servers needing them.

API Inter-GSDM

GSDM

Query Processor GSDM

Node

Data

Sources
Beam 1 Beam 2

Global Sky Model

Data Warehouse

Stream
Source
Wrapper

Relational
Data Source

Wrapper

Stream
Source
Wrapper

Continuous Query Manager

Plug-ins

Application

GSDM

Stream

Inter-
GSDM

Wrapper

Resource

Manager

Fig. 2. GSDM System Architecture

5 Summary

We described the GSDM project - a GRID-enabled, main-memory, object-relational
and stream DBMS. Main-memory, distribution, and query processing provide
high performance, while object-relational functionality provides extensibility ca-
pabilities. We utilize extensibility of an existing main-memory object-relational
DBMS engine to add stream orientation and customized data representations of
scientific data to achieve flexible and high-performance processing of scientific
streams. A prototype of the GSDM system is under development at Uppsala
Database Lab and we outlined its distributed architecture.



7

References

1. P. Bonnet, J. Gehrke, P. Seshadri: Towards Sensor Database Systems. In Proc. of
the 2nd Intl. Conf. on Mobile Data Management, Hong Kong (2001)

2. B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom: Models and Issues in
Data Stream Systems. ACM PODS (2002) 1-16

3. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-
braker, N. Tatbul and S. Zdonik: Monitoring streams - a New Class of Data Man-
agement Applications. In Proc. of the 28th VLDB Conference (2002) 469-477

4. J. Chen, D.J. DeWitt, F. Tian, Y. Wang: NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. SIGMOD Conference 2000 (2000) 379-390

5. I. Foster, C. Kesselman (eds.): The Grid: Blueprint for a new Computing Infras-
tructure. Morgan-Kaufmann (1999)

6. The Globus Project. http://www.globus.org

7. M. Jaedicke, B. Mitschang: On Parallel Processing of Aggregate and Scalar Func-
tions in Object-Relational DBMS. ACM SIGMOD Conference, Seattle, USA, (1998)

8. L. Liu, C. Pu, and W. Tang: Continual Queries for Internet Scale Event-Driven
Information Delivery. IEEE Trans. on Knowledge and Data Engineering, 11(14)
(1999) 610-628

9. LOFAR: Low Frequency Array. http://www.lofar.org

10. LOIS - A LOFAR Outrigger in Scandinavia. http://www.physics.irfu.se/LOIS
11. Bo Thide (ed.): First LOFAR/LOIS Workshop, Sweden, June 17-19 (2001)

http://www.physics.irfu.se/LOIS/Workshops/Vaxjo010617-19/index.shtml

12. S. Madden, M.J. Franklin: Fjording the Stream: An Architecture for Queries Over
Streaming Sensor Data. ICDE 2002 (2002) 555-566

13. S. Madden, M.A. Shah, J.M. Hellerstein, V. Raman: Continuously Adaptive Con-
tinuous Queries over Streams. SIGMOD Conference 2002 (2002) 49-60

14. NORDUGRID: Nordic Testbed for Wide Area Computing and Data Handling.
http://www.nordugrid.org/

15. K.W. Ng and R. Muntz: Parallelizing User-Defined Functions in Distributed
Object-Relational DBMS. IDEAS 1999 (1999) 442-445

16. T. Risch, V. Josifovski: Distributed Data Integration by Object-Oriented Mediator
Servers. Concurrency and Computation: Practice and Experience J., 13(11), John
Wiley & Sons (2001)

17. P. Seshadri, M. Livny and R. Ramakrishnan: SEQ: A Model for Sequence
Databases. In Proc. of the 11th ICDE Conference (1995) 232-239

18. P. Seshadri, M. Livny and R. Ramakrishnan: The Design and Implementation of a
Sequence Database System. In Proc. of the 22nd VLDB Conference (1996) 99-110

19. D. Terry, D. Goldberg, D. Nichols, and B. Oki: Continuous Queries over Append-
Only Databases. In Proc. of the 1992 ACM SIGMOD Intl. Conf. on Management
of Data (1992) 321-330

20. C.M. De Vos, K. van der Schaaf, and J. Bregman: Cluster Computers and Grid
Processing in the First Radio-Telescope of a New Generation. In Proc. of the First
IEEE/ACM International Symposium on Cluster Computing and the Grid- CC-
Grid’2001 (2001)


