OO0 0 00O

. US005133075A
United States Patent [(111 Patent Number: 5,133,075
Risch (45) Date of Patent: Jul. 21, 1992
[54] METHOD OF MONITORING CHANGES IN 4,864,497 9/1989 Lowryetal.c......... 3647200
ATTRIBUTE VALUES OF OBJECT IN AN 4,918,593 4/1990G Huber 3647200
OBJECT-ORIENTED DATABASE 4,937,743 6/1990 Rassman et al. ... 364/401
4,961,139 10/1990 Hong et al. 3647200
[75] Inventor: Tore J. M. Risch, Menlo Park, Calif. 4,965,718 10/1990 George et al.cccconuven. 364/200
[73] Assignee: Hewlett-Packard Company, Palo Primary Examiner—Thomas C. Lee
Alto, Calif. Assistant Examiner—Mehmet Geckil
[21] Appl. No.: 286,556 [57] ABSTRACT
[22]) Filed: Dec. 19, 1988 A method of monitoring objects in an interactive ob-
(51) GOGF 7/20: GO6F 11730 ject-oriented database system. Any of a plurality of
]

US. Cl oo 395/800; 395/600; Client programs can request monitoring of attributes of
395/725; 364/DIG. 1; 364/DIG. 2; 3;64 /282.1. objects in the database. A record is kept of update trans-
364/276; 364/261; 364/251.7; 364/974.52 actions initiated by a client. When the client commits
364/974 the changes, any client which has requested monitoring

[58] Field of Search 364/200 MS File, 401, is notified of any change in the value of an attribute
364/900 MS File; 395/800, 725, 600 being monitored at the request of that client. The notifi-

cation interrupts the client and invokes a predesignated

(52}

[56] References Cited client procedure. Overhead is minimized by creating
U.S. PATENT DOCUMENTS partial view materialization paths and defining monitors
4.769,772 9/1988 DWYer ..o, 3647200 ahead of time and by localizing the monitoring.
4,805,099 2/1989 Huber
4,819,159 4/1989 Shipley et al.cooineenes 364/200 21 Claims, 7 Drawing Sheets
CHECK
MONITORS
BEGIN 301
302
AN
DETECT MONITORED 305
ATTRIBUTE FUNCTION /
UPDATE CALLS
PREPARE AND
303 SAVE CHANGE
2] NOTIFICATIONS

COMPUTE UPDATED
MONITORED ATTRIBUTE 306
VALUES) /
SEND CHANGE
NOTIFICATIONS TO
CALLING CLIENT'S
MONITOR SERVER

304

MONITORED VALUE

f 309

MONITOR SERVER
NO INVOKES
PREDESIGNATED
307 K PROCEDURE

CLEAR FUNCTION (30
CHANGE TABLE 4

MONITOR SERVER
PROCESSES ANY
WAITING
NOTIFICATIONS

http://www.freepatentsonline.com

5,133,075

Sheet 1 of 7

July 21, 1992

U.S. Patent

S Oid

900G

3Jav. S311L43d08d
HOLINOW 3J1vdadn

cos—" !

378v.L 3ON3IAN343d
NOILONNS 31vddn

706 —" !

371avyl 3NTVA
31NgLLY 31V3H0

eos— !

31av.l SS3¥Aav
IN3IO 31V3HO

AN} \ a

\q NIO3g v
L0gAHOLINOW 3NI33Q

vy ~oid

*10)4

M3IA 103rd0
31VRO 01 Q34IND3N

SV ASV1 Wd0d43d

vay !

SH1vd
NOILVZIIVIITLVI
M3AIA VILEVd
A3ZINILHO ANV 31V3HD

€0y !

M3IA 103r80
31v340 01 G34IN03d

m< mv_m/:. WH0 443d

% o o)
L0Y JIA F1LVRO

I "old

70L

IVl
3INIVA 3LNER-JILLY
0l G340LINOW 3d
Ol 31n8NMLLV AQV

eoL— !

Jiavi
SS3yAAv 1IN3ITO

Ol IN3ITO
oz_._.mchwm aav

Noe
z_owm
ONRIO LINOW
L0l ._.mec

http://www.freepatentsonline.com

U.S. Patent

NO

MONITOR SERVER
PROCESSES ANY
WAITING
NOTIFICATIONS

FIG_ 2

July 21, 1992 Sheet 2 of 7 5,133,075
GPDATE SESSION \ S~ 201
BEGIN
02 1 ¢
v 52 §
CREATE FUNCTION CALL
CHANGE TABLE CHECK
MONITORS
wi 203
PERFORM NEXT ———{— 208
UPDATE TASK COMMIT
204 Y
| SEND CHANGE
EXTENSIONAL NOTIFICATIONS /(209
FUNCTION UPDATE TO MONITORNG
CALL 7 CLEENT’S
- MONITOR SERVER
o 205 212 214
WAIT FOR
UPDATE FUNCTION CLIENT CLIENT CALL
CHANGE TABLE INTERRUP- OR UNTIL
CLIENT IS
JIBLE ? INTERRUPTIBLE
]
213
)
MONITOR SERVER
INVOKES
PREDESIGNATED
PROCEDURE
& (78

http://www.freepatentsonline.com

U.S. Patent July 21, 1992
CHECK
MONITORS
BEGIN 301
3021 l

Sheet 3 of 7 5,133,075

DETECT MONITORED
ATTRIBUTE FUNCTION

UPDATE CALLS

l f 305

303 ? l

COMPUTE UPDATED
MONITORED ATTRIBUTE
VALUES

PREPARE AND
SAVE CHANGE
NOTIFICATIONS

l / 306

SEND CHANGE
NOTIFICATIONS TO
CALLING CLIENT'S
MONITOR SERVER

l faog

MONITOR SERVER
INVOKES

PREDESIGNATED

CLEAR FUNCTION
CHANGE TABLE

PROCEDURE

l j 310

MONITOR SERVER
PROCESSES ANY
WAITING
NOTIFICATIONS

FIG_ 3

http://www.freepatentsonline.com

U.S. Patent

TIME

July 21,

UPDATE CLIENT

1992

REMOTE CLIENT

Sheet 4 of 7

5,133,075

DATABASE SYSTEM

T

T2

T3

T4

T5

T6

T7

T8

—» CREATE FUNCTION

BEGIN UPDATE
SESSION

ISSUE UPDATE
COMMANDS

REQUEST MONITORING

i

\J

l CONTINUE UPDATING

COMMIT

START USING ——
SYSTEM

REQUEST *
MONITORING

CONTINUE USING——
SYSTEM

TRANSACTION

CHANGE TABLE FOR
UPDATE CLIENT

PERFORM TASKS
AS COMMANDED

ADD UPDATE CLIENT
TO CLIENT ADDRESS
AND ATTRIBUTE
VALUE TABLES

UPBATE FUNCTION
CHANGE TABLE WHILE
PERFORMING TASKS

PERFORM TASKS
AS COMMANDED

ADD REMOTE CLIENT
TO CLIENT ADDRESS
AND ATTRIBUTE
VALUE TABLES

PERFORM TASKS
AS COMMANDED

IF MONITORED VALUE
WAS CHANGE,
NOTIFY UPDATE
CLIENT’'S MONITOR
SERVER

j

{

TO/FROM FIG_ 6B

FIG_ B6A

http://www.freepatentsonline.com

U.S. Patent July 21, 1992 Sheet S of 7 5,133,075

TO/FROM FIG_ 6A

T9 DO INVOKED
PR&E*DURE
T10 INVOKED o CLEAR FUNCTION
PROCEDURE CHANGE TABLE,
ENDS IF MONITORED VALUE
WAS CHANGED.NOTIFY
REMOTE CLIENT'S
MONITOR SERVER
" COMMIT DATA -]

s

1 DO INVOKED PROCEDURE

™

CHANGE TABLE
WHILE PERFORMING
TASKS

l RESUME UPDATING —e UPDATE FUNCTION

v
T12 INVOKED PROCEDURE ENDS

T3 RESUME USING —a PERFORM TASKS
SYSTEM AS COMMANDED

T14 END UPDATE —«» REMOVE UPDATE
EESSI(N CLIENT FROM CLIENT
- ADDRESS AND
ATTRIBUTE VALUE
TABLES, DELETE
FUNCTION CHANGE
TABLE FOR
UPDATE CLIENT

T15 END USING —e REMOVE REMOTE
SYSTEM CLIENT FROM CLIENT
ADDRESS AND
ATTRIBUTE VALUE
TABLES

FIG_ 6B

http://www.freepatentsonline.com

5,133,075

Sheet 6 of 7

July 21, 1992

U.S. Patent

lllllllllllll « L “Oid
|| s ¢ NOLLV.LSHOM |
|| [EER ERaEdEEe |
goL, ,960L
| D s [|
| JOVHOLS || AMOWINW _
_ [J* | _
b Saug Lan, |
_ | H0SS300d [+ 554
L _ WWEI |||||||| _
a.,0. .\§E €LL M Vs
e | NOLVASROM | \ (e || H3LNdWO0 WALNZO |
_ ”“n HH -._._..__" — _ uu“ asncassaans _
VOLL V60L 704 €0/
_ H ‘ ﬁ H ! | ﬁ _ N 5 _
_ JOVHOLS || AMOW3W | _ JOVHOLS || AMOW3NW _
|) T T _ “ | N _ T I
90L
_ . Lva, _ I N _ |
| _ _

e ewe m— e e m— e ammn e cewwn mmm—m e o— — — v —— — a— o S— — o— o— o—

http://www.freepatentsonline.com

Sheet 7 of 7 5,133,075

July 21, 1992

U.S. Patent

8¢ ©ld
o - ol o T
Tz NoLv LS RiOM! L NOILY LS>RI0M ! | HILNIWOD TVALNIO |
" LyL mmE" " V60L " _
. €EL _ €0L
| s7eYswooal” 11\ Gvena| # 1 | swvaeoud v
l6YL mw_w,“wm | F wmroE |, 4T X wEno ¥
| Nﬁl, so1ron 4! _ ?muﬂ I BLL o~
| 3>0AN I wanas | o " uanuzs
WVHB0Nd — GZL
_ Nao ! _ HOLINOW [| R _ HOLINOW
| anooas | (11 I 3x0AN SREY
_ Wvdeosd | |1 | Wvdeodd | || _ WVHO0Md
| NN L T mam) | N3O 4
€71 1S4l e
llﬁlllih llllll SRRy ezL 7
LEL W3LSAS
brd 62L " [A#MONaevav.iva AE
R f
| eer e
" _ ,
_ _ »

e mamm mm— Smees Gbma emmmn m— @ Gmes se— e —

http://www.freepatentsonline.com

5,133,075

1

METHOD OF MONITORING CHANGES IN
ATTRIBUTE VALUES OF OBJECT IN AN
OBJECT-ORIENTED DATABASE

BACKGROUND OF THE INVENTION

The present invention relates generally to database
systems, and more particularly to a method of monitor-
ing changes in values of attributes of objects in object-
oriented database systems.

In an object-oriented database system, an “object” is
a kind of entity. An object has certain “attributes”, or
characteristics, associated with it. A “view” of an ob-
ject is a set of some of the attributes associated with that
object. To *‘materialize” a certain view respecting a
given object means to provide the values of those attri-
butes which make up that view.

Some attributes have values which are stored in the
database; these attributes are accessed by retrieving
them from storage. An “extensional” function is a pro-
cedure which is used for retrieving such values from
storage. Other attributes have values which are not
stored but rather are derived (by computation or the
like) as needed; an “intensional”” function is a procedure
which is used for deriving such values (and which has
no undesired side effects).

For example, an employer might have a database
system for keeping certain information about its em-
ployees. Each employee would be known to the data-
base system as an “‘object” of type EMPLOYEE. The
database might include values for each of the following
attributes of an EMPLOYEE object:

NAME

DATE OF BIRTH
HOME ADDRESS
MONTHLY SALARY
HIRE DATE

(In addition, the system gives each employee a unigue
identifier so that two employees having the same name
can easily be distinguished.)

As already noted, some attributes can be derived
from others. For example, every employee has an AGE,
but if the system knows an employee’s birthdate it can
easily compute that employee’s age. Therefore, to save
space and to preserve system integrity only the value of
the employee’s birthdate is stored in the database; the
employee’s age is computed whenever it is needed.

An employee named Bill Johnson might be repre-
sented by the following attribute values in the database:

NAME.: Bill Johnson

BIRTH DATE: 4-5-60

HOME ADDRESS: 123 Main Street, Palo Alto, CA 94303
MONTHLY SALARY: $2,500.00

HIRE DATE: 11-20-85

One “view” of an employee might consist only of the
employee’s name and address. Such a view might be
used, for example, to have the computer print an enve-
lope in which a notice to employees would be mailed.
To *“materialize” this view for a given employee it
would be necessary to call two extensional function-
s—"“Name” and ‘“Address”—which would return the

10

20

25

30

35

45

50

55

65

2
values of the attributes NAME and ADDRESS of the
designated employee.

Another view of an employee might consist of the
employee’s name, age, monthly salary and number of
years with the company. This view might be used, for
example, to calculate how much to credit to the em-
ployee’s retirement account. To materialize this view it
would be necessary to call two extensional function-
s—*Name” and “Monthly Salary”—and two inten-
sional functions—*“Age” and *“Number of Years with
Company.” The two intensional functions would return
the required values of the attributes AGE and NUM-
BER OF YEARS WITH COMPANY by performing
computations on other values returned by extensional
or other intensional functions and which ultimately are
derived from values which are stored in the database.

A typical computer system includes a central process-
ing unit, a main memory, storage media such as mag-
netic disks, a terminal which includes for example a
keyboard and a monitor screen, and a plurality of work-
stations. Each workstation comprises a terminal and
usually a local processing unit and memory as well.
Users at the various workstations use the computer to
perform a variety of tasks.

A ‘*client” of a database system is an applications
program which interacts with the database system.
Such a client program may be executed by the central
processor or by a local processing unit in a workstation.
A user may be running a plurality of client programs
simultaneously.

Occasions may arise when a client needs to be alerted
if certain values in the database are changed. In the
example of the employee database discussed above, at
one workstation a client program might be updating the
database with respect to various financial matters, in-
cluding the amount to deposit in each employee’s retire-
ment account for the previous month, while at a differ-
ent workstation (possibly hundreds of miles away) an-
other client program might be updating the database by
posting all the salary raises which were granted during
that month. The first client program must be alerted if
anything done by either program results in changes in
the values of financial data respecting one of the em-
ployees on whose retirement account the first client is
then working.

More generally, a notification that a monitored value
has changed may be needed for any of a number of
purposes. A client may wish to be alerted if an abnormal
condition occurs. The occurrence of a certain condition
or set of conditions may be a signal to start running a
certain application program. A graphic display may
need to be updated whenever there is a change in a
parameter being displayed. A client may need to recom-
pute certain other values which depend on the value
which has just changed (as in the above example of the
employee retirement account).

Monitoring imposes a heavy computational and in-
put/output overhead on a database system, especially if
the system is large and a number of values are being
monitored at the same time for several different clients.
Various methods have been proposed to minimize this
overhead. For example, in one such system an “alerter”
is called if specified boolean conditions are satisfied (O.
P. Buneman and E. K. Clemons, “Efficiently Monitor-
ing Relational Databases,” ACM Transactions on Data-
base Systems 4, 3, September 1979, pp 368-382). A “re-
trieve always” mechanism in another system causes
queries 1o be re-executed upon each update to specified

http://www.freepatentsonline.com

5,133,075

3

relations (M. Stonebraker, “Triggers and Inference in
Database Systems,” in M. Brodie and J. Mylopoulos
(eds.), On Knowledge Based Management Systems,
Springer-Verlag, 1986).

Systems of “triggers” have been proposed for rela-
tional database systems; such triggers typically invoke a
database procedure upon updates of user-specified base
relations (see, for example, M. Astrahan et al., “System
R: A Relational Approach to Database Management,”
ACM TRansactions on Database Systems, 1 (2), June
1976).

A technique which is somewhat similar to the trigger
system is the use of a “declarative integrity constraint,”
in which a proffered update to the database is rejected
if specified boolean conditions are not satisfied at com-
mit time (see, for example, M. Stonebraker, “Implemen-
tation of Integrity Constraints and Views by Query
Maodification,” Proc. ACM SIGMOD Conf., San Jose,
Calif., May 1975).

Another technique, access-oriented programming, is
implemented in some object-oriented languages such as
“LOOPS”. A message to set values of instance variables
is intercepted by means of a user-provided trigger pro-
cedure which may in turn set or display some other
value (M. J. Stefik et al.,, “Integrating Access-Oriented
Programming Into a Multiparadigm Environment,”
IEEE Software 3, 10, January 1986, pp. 10-18). The
trigger procedures are dynamically added and removed
from running systems to avoid interfering with other
system logic (K. Osterbye, “Active Objects: An Access
Oriented Framework for Object-Oriented Languages,”
Journal of Object-Oriented Programming, Vol. 1, No. 2,
June/July 1988, pp. 6-10).

Finally, expert systems such as “SYNTEL” and
“OPS5” provide a method of monitoring virtual mem-
ory data retrieved from persistent data (R. Reboh and
T. Risch, “Syntel: Knowledge Programming Using
Functional Representations,” Proc. AAAI-86, Philadel-
phia, Pa., August 1986, pub. Morgan Kaufman, Los
Altos, Calif., 1986, pp. 1003-1007).

Each of these proposed methods offers certain bene-
fits, primarily in the context of the particular environ-
ment for which it was designed. However, there re-
mains a need for an efficient way to monitor objects in
an object-oriented database system which interacts co-
operatively with client programs.

SUMMARY OF THE INVENTION

The present invention provides a localized method of
monitoring an object in an interactive, object-oriented
database system in response to a request from a client
program and invoking an application procedure desig-
nated by the client if a change in a monitored attribute
value is detected. High-overhead tasks are performed at
times when monitoring is not taking place so as to mini-
mize any overhead imposed on the system during actual
monitoring.

A preferred embodiment of a method of monitoring
an object according to the invention includes the fol-
lowing steps: keeping a record of any client requests to
monitor an attribute of the object; keeping a record of

20

25

45

50

s5

60

any update transactions initiated by a client during an -

update session; and if that client requests that the trans-
action be committed, determining which monitored
attributes may have been affected, determining whether
the values of any of said attributes have changed, and,
for each value which has changed, notifying any client
which requested monitoring of that attribute.

65

4

Notifying a client preferably comprises interrupting
any task then being performed by the client and invok-
ing a predesignated client procedure. If the client is not
in an interruptible state, a record is kept of notifications
intended for that client until the client enters an inter-
ruptible state or requests notification.

Monitor requests are preferably localized with re-
spect to time, client, object and attribute to minimize the
overhead imposed on the system during database up-
dates.

Keeping the record of update transactions imposes
very little overhead on the database system because the
record is small and can be kept in main memory. The
record can be cleared after determining whether the
values of any attributes have changed. This determina-
tion may be made when updates are committed or any
time a client requests notification of any changes. In the
latter event, a record of the changes is preferably kept
for later notification of other clients for which attributes
are being monitored.

Certain high-overhead tasks can be performed before
an update session is commenced. One such task consists
of optimizing a partial view materialization path for
each attribute of a view of an object. This task is prefer-
ably carried out during creation of the view itself.
Later, if monitoring of the value of an attribute of that
view is requested, the optimized path for that attribute
is used, thereby imposing less overhead on the system
than would be imposed if the entire view had to be
materialized in order to monitor the value of that one
attribute.

Another task which is preferably taken care of ahead
of time is defining a monitor procedure for a given
attribute. This task includes, for example, creating
means for keeping the record of client requests for mon-
itoring of that attribute and creating means for keeping
a record of the value of the attribute being monitored.

Other aspects and advantages of the present inven-
tion will become apparent from the following detailed
description, taken in conjunction with the accompany-
ing drawings, illustrating by way of example the princi-
ples of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart illustrating a procedure for
keeping a record of monitor requests according to the
invention;

FIG. 2 is a flow chart illustrating a procedure for an
update session according to the invention;

FIG. 3 is a flow chart illustrating a “Check Monitors”
procedure which is called from the procedure shown in
FIG. 2;

FIG. 4 is a flow chart illustrating a view creation
procedure according to the invention;

FIG. 5 is a flow chart illustrating a monitor definition
procedure according to the invention;

FIG. 6A and 6B are a time line chart of a database
session including object monitoring according to the
method of the invention;

FIG. 7 is a block diagram of a computer system
which includes an object-oriented database system in-
cluding monitoring according to the invention; and

FIG. 8 is a block diagram of communication flow
among portions of the system shown in FIG. 7.

http://www.freepatentsonline.com

5,133,075

5

DESCRIPTION OF THE PREFERRED
EMBODIMENT

As shown in the drawings for purposes of illustration,
the invention is embodied in a novel method of monitor-
ing a database object and notifying a client program if a
change is detected. Various methods of monitoring data
in databases have been proposed, but there has been a
need for an efficient way to monitor an attribute of an
object in an interactive, object-oriented database sys-
tem.

A method of monitoring a database object according
to the invention includes keeping a record of any client
request to monitor an attribute of the object, keeping a
record of update transactions, and notifying the request-
ing client of any change in the value of the monitored
attribute by invoking a predetermined client procedure
when the update transactions are committed. The in-
vention thus provides an efficient means for client pro-
grams to initiate monitor requests and receive notifica-
tions of changes in monitored attributes of database
objects while imposing only minimal overhead on the
database system.

In a preferred embodiment, a method of monitoring
an object in a database in response to a request from any
of a plurality of client programs comprises keeping a
record of any client requests to monitor an attribute of
the object; during a database update session, keeping a
record of any database update transactions initiated by a
client; and, if a client which has initiated an update
transaction requests that the transaction be committed,
determining which monitored attributes may have been
affected by said transaction, determining whether the
values of any of said attributes have changed, and for
each value which has changed notifying any client
which requested monitoring of that attribute.

The record of client requests is preferably kept by
means of a “Request Monitoring™ procedure as illus-
trated in FIG. 1. The procedure is begun (block 101) by
receipt of a request from a client to monitor a certain
attribute. The request is entered in a “Client Address”
table (block 102) and an *“Attribute Value™ table (block
103), and the procedure thereupon ends (block 104).
The structure of these tables will be discussed in more
detail in a subsequent paragraph.

The record of database update transactions is prefera-
bly kept by creating and updating a “Function Change”
table during an “Update Session™ procedure as illus-
trated in FIG. 2. The procedure is begun (block 201) by
a client initiating an update session. The system creates
the Function Change table (block 202) and then pro-
ceeds with an update task as directed by the client
(block 203). If the task included an extensional function
update call (block 204), the function which was called is
entered in the Function Change table (block 2085); if not,
no entry is made in the table. The client decides
whether to commit any updates made thus far (block
206), and if the client requests that such updates be
committed a “Check Monitors” procedure is called
(block 207).

Determining which monitored attributes may have
been affected and whether the values of any of those
attributes have changed is preferably accomplished by
means of the Check Monitors procedure as illustrated in
FIG. 3. As described above, the procedure is initiated
(block 301) by a procedure call generated during an
update session (the procedure may also be called di-
rectly by a client as will be discussed in more detail in a

—

0

5

20

25

45

50

55

65

6

subsequent paragraph). Any update function call which
might have resulted in a change to a monitored attribute
value is detected (block 302) by reference to the Func-
tion Change table and to a “Function Dependence”
table (to be described hereafter). An updated value for
each such attribute is computed (block 303). Whether
there has been any change in such an attribute value is
determined (block 304) by reference to the Attribute
Value table. If a monitored attribute value has changed,
a change notification is prepared and saved (block 305)
and sent to the client which called the procedure (block
306); because the procedure was called by a commit
request made by an update client, the update client is
the one which receives the notification. The Function
Change table is cleared (block 307) and the procedure
ends (block 308).

Referring again to FIG. 2, after the Check Monitors
procedure is concluded the updated data is committed
to the database (block 208). (“Committing” means stor-
ing the updated data in the database and deleting any
superseded data.) Then the saved change notification is
sent to any other client which had requested monitoring
of the changed attribute value (block 209). If there is
another update task to perform (block 210), such task is
performed (block 203) and the above-described steps
are repeated. When there are no more update tasks to
perform, the update session ends (block 211).

It will be noted that a loop is defined by blocks 203,
204, 205, 206 and 210. In the absence of a commit deci-
sion (block 206), each update task results in one pass
through the loop. Except for updating the Function
Change table, the loop imposes no overhead which
would not be imposed in the absence of the monitor
procedure. As already noted, the Function Change
table is small and resides in main memory and therefore
the requirement to update it imposes very little over-
head; moreover, even this small amount of overhead is
skipped (block 204) unless the update task being per-
formed includes an extensional function update call.
Thus, the overhead imposed during an update session is
kept to a minimum.

Notifying a client preferably comprises interrupting
any task then being performed by the client and invok-
ing a predesignated client procedure, for example by
sending the notification to a portion of the client pro-
gram referred to as a “monitor server”. If the client
being notified is the one which called the Check Moni-
tors procedure (usually this will be the client which
requests that updates be committed), this is done when
a change in the monitored attribute value is detected
(block 309 of FIG. 3).

If the client being notified is not the client which
called the Check Monitor procedure, a determination is
made, for example by that client’s monitor server,
whether the client is in an interruptible state (block 212
of FIG. 2). If the client is in an interruptible state, the
monitor server invokes the predesignated procedure
(block 213). If the client is not in an interruptible state,
the monitor server waits (block 214) and keeps a record
of the notification either until the client enters an inter-
ruptible state at which time the monitor server inter-
rupts the client or until the client requests notification.

When a client’s monitor server interrupts a client, in
addition to invoking the predesignated procedure the
monitor server also processes any waiting notifications
(block 215 in FIG. 2 and block 310 in FIG. 3).

Preferably, a partial view materialization path for a
given attribute is created in advance of any request to

http://www.freepatentsonline.com

5,133,075

7
monitor that attribute. This is done during a “Create
View" procedure as depicted in FIG. 4. The Create
View procedure is a relatively high-overhead task
which is ordinarily performed during creation of the
database or if necessary at other times, preferably when
the system is not otherwise busy.

The Create View procedure is begun (block 401) by
a user who instructs the system to create a view of an
object. Various tasks are performed (block 402) by the
system in creating such a view; the nature of these tasks
is known to those skilled in the art and will not be fur-
ther discussed herein. In addition to said tasks, the sys-
tem creates and optimizes a partial view materialization
path for each attribute of the view (block 403). After
completing any other tasks associated with creating the
view (block 404) the procedure ends (block 405).

The partial path for a given attribute constitutes a
minimum number of steps needed to access only that
one attribute without materializing the entire view.
Later, if a request is made to monitor one of these attri-
butes, this partial path is used to access the attribute. In
the absence of such a path, it would be necessary to
materialize the entire view just to access the one attri-
bute being monitored, a step which would impose more
overhead on the system than is imposed by using the
partial path.

Preferably a monitor is defined for a given attribute in
advance of any request to monitor that attribute. This is
done by means of a “Define Monitor” procedure as
illustrated in FIG. 5. As was the Create View proce-
dure, the Define Monitor procedure is a relatively high-
overhead task which is preferably carried out when the
system is not otherwise busy.

The Define Monitor procedure is begun (block 501)
by a user who tells the system which attribute is to be
monitored. As discussed above, every attribute is ac-
cessed by a function (either an extensional function or
an intensional function), and the monitor procedure
which is defined for a given attribute is defined in terms
of the function which accesses that attribute (this func-
tion is hereafter referred to as “the monitored func-
tion™).

The Define Monitor procedure preferably includes
creating means for keeping the record of client requests.
More particularly, a Client Address table is created
(block 502) for the monitored function. This table in-
cludes positions for recording a client’s identification, a
client’s address (for example, a workstation location)
and a name of a procedure designated by the client.

Later, when a client requests monitoring of an attri-
bute, the client’s identification, address, and procedure
designation are entered in the Client Address table for
the function which accesses that attribute. The informa-
tion in the table tells the system which client procedure
to invoke upon detecting a change in the monitored
attribute and where to send the notification that the
procedure is to be invoked.

The Define Monitor procedure preferably includes
creating means for keeping a record of the value of the
attribute being monitored. More particularly, an Attri-
bute Value table is created (block 503) for the moni-
tored function. This table includes positions for record-
ing the value of the attribute accessed by the function.

Later, when monitoring is begun, the then-current
value of that attribute is calculated and entered in the
table. Comparison of that value with the of the moni-
tored attribute after an update tells the system whether

20

25

45

55

65

8
the monitored value was in fact changed as a result of
the update.

A single Function Dependence table is used to corre-
late extensional functions with intensional functions. As
previously indicated, an intensional function accesses an
attribute value by computation or the like based on
other attribute values. A change in one of these other
values may result in a change in the value accessed by
that intensional function. Accordingly, if an attribute
which is accessed by an intensional function is being
monitored, any change in any of the values which are
used in accessing the monitored attribute must be de-
tected in order to determine whether the monitored
value has changed. The Function Dependence table
provides this correlation.

Accordingly, during monitor definition, if the func-
tion which accesses the attribute to be monitored is an
intensional function, that function is listed in the Func-
tion Dependence table together with each extensional
function which could change any of the values which
are utilized by that intensional function in accessing the
monitored attribute. Later, when Check Monitors is
called, the extensional function update calls as listed in
the Function Change table are compared with the lis-
tings in the Function Dependence table. In this way, the
system detects update function calls which may have
resulted in changes to monitored attributes (block 302).

Finally, the Define Monitor procedure preferably
includes updating a “Monitor Properties” table (block
505). This table is a housekeeping table which tells the
system where to find the Client Address and Attribute
Value tables associated with each monitored function.
After performing this step, the Define Monitor proce-
dure ends (block 506).

The invention as described provides for notification
to be sent to each client monitoring a given attribute
when a client which is updating the data base decides to
commit any changes. Some clients may need to check
for changes at other times. Accordingly, any client
which is monitoring an attribute may call the Check
Monitors procedure at any time and receive notifica-
tions respecting changes to attributes being monitored
by that client. It will be apparent that any such changes
will be changes which have not yet been committed to
the database; accordingly, notification of such changes
is not sent to any client other than the one which called
the Check Monitors procedure. However, a record of
such changes is kept (block 305) for later notification of
other clients and the Function Change table is cleared
(block 307). If there are no further changes in the moni-
tored value, then the notifications are sent to the other
clients at commit time (as indicated by blocks 209 and
215 in FIG. 2 and 310 in FIG. 3). If there are further
changes, then such changes will be detected at commit
time and appropriate notifications will be sent. Thus,
clients other than the client which invokes the Check
Monitor procedure are assured that changed data have
been committed to the database at the time the clients
are notified of the changes.

A typical sequence of events during a database up-
date session which includes monitoring according to the
invention is depicted in time chart form in FIGS. 6A
and 6B. The term “update client” refers to a client pro-
gram which initiates an update session; the term “re-
mote client” refers to some other client which requests
monitoring of an attribute during the time the update
client is updating the database.

http://www.freepatentsonline.com

5,133,075

9

At time T1 the update client begins the update ses-
sion. The database system creates a Function Change
table to keep a record of any extensional function up-
date calls initiated as a result of updates performed by
the update client (see block 202 of FIG. 2).

At time T2 the update client begins issuing update
commands and the system responds by performing tasks
as commanded. At time T3, which may be the same as
time T2 or any time thereafter, the update client re-
quests that a certain attribute be monitored; the system
adds the update client to the Client Address and Attri-
bute Value tables (see the Request Monitoring proce-

dure of FIG. 1). Thereafter, beginning at time T4 the '

update client continues updating and the system updates
the Function Change table (see block 205 of FIG. 2)
while it performs the tasks as commanded.

At time TS5 the remote client begins using the system.
If the remote client were to initiate an update session,
another Function Change table would be created, but
for purposes of the session depicted in FIGS. 6A and 6B
it is assumed that the remote client is doing something
else with the database system and therefore no Function
Change table is created for that client. The system per-
forms tasks as commanded by the remote client.

At time T6, which could be any time after TS, the
remote client requests monitoring of the same attribute
as the update client is monitoring; the system thereupon
adds the remote client to the Client Address and Attri-
bute Value tables. Thereafter (at time T7) the remote
client continues using the system and the system per-
forms tasks as commanded.

At time T8 the update client decides to commit what-
ever updates it has initiated. In response, the system
checks for changes in monitored attribute values using
the method of the invention as already described. If a
change in the value of the attribute being monitored for
the update client is detected, the update client’s monitor
server is notified. The monitor server interrupts the
client (time T9) and invokes a procedure which the
update client had designated earlier at time T3, when it
first requested monitoring. The invoked procedure ends
at time T10 and the system continues by clearing the
Function Change table, notifying the remote client’s
monitor server, and committing the data.

The remote client is interrupted by its monitor server
(time T11) and performs its predesignated procedure.
Meanwhile, the update client resumes updating and the
system again updates the Function Change table while
performing tasks commanded by the update client. At
time T12 the remote client finishes its procedure and at
time T13 it too resumes using the system.

If there were another change in the value of the moni-
tored attribute, the clients would again be interrupted.
However, for purposes of the example it is assumed that
there are no further changes and that the update client
ends the update session at time T14, The system deletes
the Function Change table for that client and removes
the client from the Client Address and Attribute Value
tables.

At time T15 the remote client ends its use of the
system and it too is removed from the tables.

The example as depicted in FIGS. 6A and 6B is in-
tended only to be illustrative of a relatively simple set of
transactions. It will be apparent that a plurality of cli-
ents might be using the system at any given time and
that various ones of the clients might update the data-
base or request monitoring during various overlapping
intervals of time. The various steps of the method as

20

25

30

35

40

45

50

55

65

10

described and illustrated may occur many times during
an update session as various monitor requests are re-
ceived and various changed data are committed to the
database.

An example of a computer system on which the
method of the ipvention can be implemented is shown in
FIG. 7. The system includes a central computer 701
having a central processor 702, a main memory 703,
storage such as a magnetic disk drive 704, and a terminal
705, all interconnected by a bus 706. A plurality of
workstations 707A and 707B, having respectively a
local processor 708A and B, a memory 709A and B,
storage 710A and B, and a terminal 711A and B, all
interconnected by a bus 712A and B, are connected to
the central computer 701 by a communications link 713.
The communications link 713 may be a dedicated wire
system, a telephone connection, a microwave system, or
most any means by which the central computer 701 and
the workstations 707A and B can communicate with
each other.

An example of how communications might pass
among client programs and the database system is
shown in FIG. 8. For purposes of discussion all soft-
ware and data are depicted as residing in main memory,
but it will be apparent that in a real system some of the
software and data are actually resident in mass storage
and are called into main memory as needed. Also, cer-
tain communication channels are depicted as physical
lines of communication but may actually exist in some
other form such as instructions which pass information
back and forth among different computer programs or
parts of a program.

The memory 703 of the main computer 701 contains
the database system (software and data) 715, a client
program 717, a monitor server 719, and other programs
721. The client program 717 can issue commands to the
database through a communication channel 723. The
monitor server 719 can interrupt the client program and
invoke a predesignated procedure through a communi-
cation channel 725. The monitor server 719 receives
notifications from the database 715 through a communi-
cation channel 727.

The memory 709A of the workstation T07A contains
a client program 729, a monitor server 731, and other
programs 733. The client program 729 can issue com-
mands to the database through a communication chan-
nel 735. The monitor server 731 can interrupt the client
program and invoke a predesignated procedure through
a communication channel 737. The monitor server 731
receives notifications from the database 715 through a
communication channel 739.

The memory 709B of the workstation 707B contains
two client programs 741 and 743, a monitor server 745,
and other programs 747. The client programs 741 and
743 can issue commands to the database through the
communication channel 735. The monitor server 745
can interrupt either or both of the client programs 741
and 743 and invoke predesignated procedures through a
communication channel 749. The monitor server 745
receives notifications from the database 715 through the
communication channel 739.

In the system as illustrated in FIGS. 7 and 8, one or
more of the client programs may be running at any
given time and, as discussed in connection with the time
chart of FIGS. 6A and 6B, may issue commands to the
database at various times. When monitored attribute
values change the database issues notifications to
whichever clients have requested notification of such

http://www.freepatentsonline.com

5,133,075

11

changes, and the respective monitor servers thereupon
interrupt their respective clients and invoke whichever
procedures have been predesignated by those clients.
Any given workstation, or the central computer, may
have zero, one or many client programs active at any
given time.

High efficiency is achieved by the method of the
invention in part by minimizing system overhead as
described and in part by localizing any monitoring
which is being done. From the preceding discussion it
will be apparent that the monitoring can be localized as
to time, client, object and attribute as desired.

Thus, for example, a client program can start and stop
a monitor so that monitoring does not take place except
during a time when the client actually requires the mon-
itoring. A procedure for stopping a monitor has been
illustrated in FIG. 6 as being utilized when a client ends
a session, but it will be apparent that such a procedure,
which requires only that the client be deleted from the
Client Address and Attribute Value tables, could be
performed upon request of a client at any time even if
the client continues to use the database system.

Localizing the monitoring as to client is inherent in
the method of the invention in that monitoring only
takes place when requested by a client. In addition, if a
client becomes inactive without instructing the system
to cease monitoring, monitoring can nevertheless be
stopped, for example by periodic checks run by system
to find out which clients are active and which have
ceased to be active.

The monitoring can be localized as to object by moni-
toring only attributes of specified (focused) objects
rather than monitoring all objects of a given type. Fi-
nally, as already discussed the monitoring is localized as
to attribute by monitoring only desired attributes, not
all attributes of a given object.

From the foregoing it will be apparent that the inven-
tion provides an efficient method of monitoring objects
in an interactive object-oriented database system. Client
programs participate actively in the monitoring by issu-
ing monitor requests and by interacting with the data-
base when notified that a monitored attribute value has
changed. In this manner even a large number of client
programs accessing a very large database can receive
prompt, efficient service.

Although certain specific embodiments of the inven-
tion have been described and illustrated, the invention is
not to be limited to the specific forms or arrangements
of parts so described and illustrated, and various modifi-
cations and changes can be made without departing
from the scope and spirit of the invention. Within the
scope of the appended claims, therefore, the invention
may be practiced otherwise than as specifically de-
scribed and illustrated.

I claim:

1. In a computer database system, a method of moni-
toring an object in a database in response to a request
from any of a plurality of client programs, the method
comprising the following steps carried out by the sys-
tem:

keeping a record of any request from a client to moni-

tor an attribute of the object, the attribute depend-
ing on another attribute;

keeping a record indicating interdependence relation-

ships among the attributes;

keeping a record of the value of each attribute being

monitored by accessing said interdependence rela-
tionship record;

—
wn

20

25

30

45

50

55

65

12

during a database update session, keeping a record of
any database update transactions initiated by a
client; and

if a client which has initiated an update transaction

request that said update transaction be stored in

the database:

determining which monitored attributes may have
been affected by said transaction;

determining whether the values of any of said attri-
butes have changed by computing updated val-
ues form said attributes and comparing the up-
dated values with the values in the attribute
value record; and

for each value which has changed, notifying any
client which had requested monitoring of that
attribute.

2. A method according to claim 1 wherein notifying
a client comprises interrupting any task then being per-
formed by the client and invoking a predesignated cli-
ent procedure.

3. A method according to claim 1 wherein notifying
a client comprises:

if the client is in an interruptible state, interrupting

any task then being performed by the client and
invoking a predesignated client procedure; and

if the client is not in an interruptible state:

keeping a record of the notification until the client
enters an interruptible state; and

when the client enters an interruptible state, inter-
rupting any task then being performed by the
client and invoking a predesignated client proce-
dure.

4. A method according to claim 1 wherein notifying
a client comprises:

if the client is in an interruptible state, interrupting

any task then being performed by the client and
invoking a predesignated client procedure; and

if the client is not in an interruptible state, keeping a

record of the notification until the client requests
notification and then invoking said predesignated
client procedure.

S. A method according to claim 1 and further com-
prising optimizing a partial view materialization path
for a given attribute in advance of any request to moni-
tor that attribute.

6. A method according to claim 1 and further com-
prising defining a monitor procedure for a given attri-
bute in advance of any request to monitor that attribute.

7. A method according to claim 6 wherein defining a
monitor procedure comprises creating means for keep-
ing the record of any request from a client.

8. A method according to claim 6 wherein defining a
monitor procedure comprises creating means for keep-
ing a record of the value of the attribute being moni-
tored.

9. A method according to claim 1 and further com-
prising clearing the record of update transactions after
determining whether any attribute values have
changed.

10. In a computer database system, a method of moni-
toring an object in a database in response to a request
from any of a plurality of client programs, the method
comprising the following steps carried out by the sys-
tem;

keeping a record of any request from a client to moni-

tor an attribute of the object, the attribute depend-
ing on another attribute;

http://www.freepatentsonline.com

5,133,075

13

keeping a record indicating interdependence relation-

ships among the attributes;

keeping a record of the value of each attribute being

monitored by accessing said interdependence rela-
tionship record;

during a database update session, keeping a record of

any database update transactions initiated by a
client; and

if a client request notification of any changes which

have occurred in an attribute then being monitored

for that client:

determining which monitored attributes may have
been affected during said database update ses-
sion;

determining whether the values of any of said attri-
butes have changed by computing updated val-
ues for said attributes an comparing the updated
values with the values in the attribute value re-
cord; and

notifying the client which requested notification of
each value which has changed.

11. A method according to claim 10 and further com-
prising keeping a record of the changes for later notifi-
cation of any other clients for which attributes are then
being monitored.

12. A method according to claim 10 wherein notify-
ing the client which requested notification comprises
interrupting any task then being performed by the client
and invoking a predesignated client procedure.

13. A method according to claim 10 and further com-
prising optimizing a partial view materialization path
for a given attribute in advance of any request to moni-
tor that attribute.

14. A method according to claim 10 and further com-
prising defining a monitor procedure for a given attri-
bute in advance of any request to monitor that attribute.

15. A method according to claim 14 wherein defining
a monitor procedure comprises creating means for
keeping the record of any request from a client.

16. A method according to claim 14 wherein defining
a monitor procedure comprises creating means for
keeping a record of the value of the attribute being
monitored.

17. A method according to claim 10 and further com-
prising clearing the record of update transactions after
determining whether any attribute values have
changed.

18. In a computer database system, a method of moni-
toring an object in a database in response to a request
from any of a plurality of client programs, the method

15

20

30

40

45

50

55

65

14
comprising the following steps carried out by the sys-
tem;

keeping a record of any request form a client to moni-

tor an attribute of the object, the attribute depend-
ing on another attribute;

keeping a record indicating interdependence relation-

ships among the attributes;

keeping a record of the value of each attribute being

monitored by accessing said interdependence rela-
tionship record;

during a database update session, keeping a record of

any database update transactions initiated by a
client;

if a client which has initiated an update transaction

request that said update transaction be stored in the

database:

determining which monitored attributes may have
been affected by said update transaction;

determining whether the values of any of said attri-
butes have changed by computing updated val-
ues for said attributes and comparing the updated
values with the values in the attribute value re-
cord; and

for each value which has changed, notifying any
client which requested monitoring of that attri-
bute; and

if a client request notification of any changes which

have occurred in an attribute then being monitored

for that client:

determining which monitored attributes may have
been affected during said database update ses-
sion;

determining whether the values of any of said attri-
butes have changed by computing updated val-
ues for said attributes and comparing the updated
values with the values in the attribute value re-
cord; and

notifying the client which requested notification of
each value which has changed.

19. A method according to claim 18 wherein the last
step further comprises keeping a record of the changes
for later notification of any other clients for which
attributes are then being monitored.

20. A method according to claim 18 wherein notify-
ing a client comprises interrupting any task then being
performed by the client and invoking a predesignated
client procedure.

21. A method according to claim 18 and further com-
prising clearing the record of update transactions after
determining whether any attribute values have
changed.

* . t *

http://www.freepatentsonline.com

