Multimedia (spatial) databases

Principles of Modern Database Systems
2007

Tore Risch
Dept. of information technology
Uppsala University
Sweden
New kinds of data

- Text, documents
- HTML, XML, XML-Schema documents
- bitmaps, raster images
- audio
- video
- maps
- time series
- vector data, geometrical models
Properties of multi-media data objects

- (very) large data items
- more or less complex internal structure
 • E.g. query by humming:
 - Need special data entry equipment (e.g. microphone)
 - Need special result presentation equipment (e.g. loudspeaker)
 • Can be stored as BLOBs
 • Alt. filenames in tables
 • Problem: How to index and query BLOB contents?
Multi-media query

• Query:
 select track from songs where
 contains(content,:mysong,0.9);
 - Need way to enter :mysong and to realize result.
 - Large results
 - Order as top-10 list
 - Similarity matching
 - Contains can be foreign function
 - Indexing desirable!
Multi-media indexing

- Different indexes sensitive to different predicates
 - Hashing: \(x = x_0 \)
 - B-tree: \(x_l < x < x_u \)
 - R-tree: \(x_l < x < x_u \) and \(y_l < y < y_u \)
 2D matching and up
- Proximity queries (nearness)
 - B-tree supports nearest(\(x_0 \))
 - R-tree supports nearest (\(\{x_0,y_0\} \)), overlaps(\(r_1, r_2 \))
 - SS-tree supports within dist(\(\{x_0,y_0\}, d \))
- High dimensionality not efficient (> 8)
Feature indexing

- Extract feature vector from object
 - For example color spectrum, sharpness, pitch
 - not(overlaps(f(x),f(y)))) => not(overlaps(x,y))
- Feature matches => object may match
- Use R-tree to store feature vectors
- Extract feature vector from compared object
- Search objects in database where feature vectors overlap
- Make careful test for each found object (e.g. detailed image analysis)
- May need to limit dimensionality of vector