
Term paper: Randomized Algorithms and

Heuristics for Join Ordering

Jim Wilenius

Computing Science Division

Dept. of Information Technology

Uppsala University

Box 337, SE-75105 Uppsala, Sweden

jim.wilenius@it.uu.se

May 18, 2007

1 Introduction

In the relational database setting today, large queries containing many joins are
becoming increasingly common. In general the ordering of join-operations is
quite sensitive and can have a devastatingly negative effect on the efficiency of
the DBMS. Scheufele and Moerkotte proved that join-ordering is NP-complete
in the general case [4]. For smaller queries however, less than approximately 10
joins, the optimal join strategy can be found by means of dynamic programming.
However, the dynamic programming algorithm, proposed in [5], has a worst case
running time of O(2N ) (where N is the number of joins), thus for queries with
more than 10 joins, it becomes infeasible.

In the literature there are many alternative approaches to the join ordering
problem, Steinbrunn et al [6] present a good overview. Approaches such as
Iterative Improvement, Simulated Annealing, Genetic Algorithms, Two phase
optimization and the probabilistic QuickPick etc all provide efficient alternatives
although producing sub-optimal solutions to the join-ordering problem. In the
next section a presentation to each of these will be made.

2 Local Search Heuristics and Randomized Al-

gorithms

In order to provide acceptable join-orderings when dynamic programming is
unavailable, heuristics and randomized algorithms can be used. Some examples
are presented here.

1



2.1 The Join Ordering Problem

The join ordering problem can be viewed as two separate problems, on the one
hand we have the problem of how to perform the actual join, on the other we
have the problem of determining the order of performing the joins, it is the
latter that is of interest here.

The search space can be regarded such that any feasible solution is a point
in space, by searching we are trying to find the point associated with the
lowest cost. The search is conducted by applying some set of rules to move
from one state (point) to another in some approaches, and by random selec-
tion/generation in others.

2.2 Iterative Improvement (II)

The Iterative Improvement [7] is a variant of local search where the selection of
which neighbour state to visit is performed at random. Neighbours are defined
such that they can be reached by one move from the current state. In Iterative
Improvement, two different type of move were defined and are applied with
probability α and (1 − α) respectively. Given that the move results in a valid
state, the moves are:

• Swap: Choose two relations at random and perform a swap.

• 3Cycle: Choose three relations at random 〈a, b, c〉, rotate them to the right
〈c, a, b〉.

Let S and minS be states and cost(S) be the cost of state S. Let neighbours(S)
be the set of states reachable by one move from S: the Iterative Improvement
algorithm is described in figure 2.2.

1: function IterativeImprovement

2: while ¬stopping-condition do

3: S ← random state.
4: while ¬local-optimum do

5: S′
← random state in neighbours(S)

6: if cost(S′) < cost(S) then S ← S′

7: end while

8: if cost(S) < cost(minS) then minS ← S

9: end while

10: return minS.
11: end function

Figure 1: Iterative Improvement (II)

Since it would be inefficient to check all the neighbours, a Local optimum is
declared if in a large sample of the neighbourhood-set, no neighbour yields a bet-
ter solution. Iterative Improvement could equally well be termed Iterated Local

2



Search as it fits very well in the Local Search group of heuristics. Other random-
based heuristics mentioned in [7] such as Perturbation Walk (PW) and Quasi-
random Sampling (QS) also fit very well into the definition of Local Search.
QS selects new states completely at random which is the same as considering
all states as neighbours. In Perturbation Walk, moves are selected at random,
remembering the lowest cost state so far until a stopping criterion is met, this
is a classical description of a Local Search heuristic.

I have not been able to find anywhere in the literature anything about the
application of tabu-lists, this is a common technique that could potentially
increase the efficiency/quality of the local search methods used.

2.3 Simulated Annealing

Simulated Annealing is based on the annealing process of crystals where, sim-
ply stated, first heating and then slowly cooling a liquid will result in crystals.
It differs from the methods described so far in that it allows, with a certain
probability, a non-improving move to be made. This probability is proportional
to the Temperature of the system, which decreases over time. Ioannidis and
Wong [3] implement and evaluate a Simulated Annealing system for optimiza-
tion of recursive queries with satisfactory results. Other implementations can
be found in the literature [7, 2, 6], see section 3.

2.4 Two Phase Optimization (2PO)

The Two Phase Optimization [2] heuristic was developed for select-project-
join query optimization. It combines Iterated Improvement with Simulated
Annealing. As can be deduced from it’s name, 2PO consists of two phases, the
first one is to run Iterative Improvement for a short period of time and using
the resulting solution as the starting state for the Simulated Annealing. In the
SA pass, a low initial temperature is used, limiting the search somewhat. The
motivation for using the low temperature is that the cost function resembles a
cup with uneven bottom. According to Ioannidis and Kang [2], the Two Phase
Optimization outperforms the two original algorithms in both running time and
quality, this is later verified in experiments conducted by Steinbrunn et al ??.

2.5 Genetic Algorithms

Genetic Algorithms are based on Darwin’s principles of survival of the fittest. By
coding solutions as genomes and chromosomes and treating them as individuals
in a population, individuals with good fitness (good solutions) procreate with
an increased probability. By evolution-simulation better and better individuals
are evolved.

Bennett and Ioannidis [1] applied genetic algorithms to query optimization.
Compared to the System-R dynamic programming implementation in [5], they
show good results for large queries, (N = 16 was the largest query tried).

3



Steinbrunn et. al [6] implement two different Genetic algorithms, one for left-
deep trees and one for busy trees, see section 3 for a summary of their findings.

2.6 QuickPick

Waas and Pellenkoft [8] present a probabilistic bottom-up join order selec-
tion algorithm they named QuickPick. A normalized cost classification, the
λ-Classification, is used to classify good or bad plans. From a large test set
(106 plans) they conclude that the shape of the distribution of normalized costs
resembles a gamma distribution. A λ of less than 0.1 is considered a good plan.

Based on the favourable proportion of good to bad solutions, QuickPick
works by building query plans bottom-up, adding randomly chosen edges and
simultaneously calculating the partial cost as construction continues. If the
partial cost of the current plan exceeds the cost of the best plan, it is discarded
and a new permutation is generated. The procedure is repeated until a stopping
criterion is met.

Their experiments evaluate QuickPick compared to Iterative Improvement
and Uniform Selection. QuickPick very quickly finds good plans (λ < 0.1),
after about 500 time steps, and its best plan (λ near 0.03) after 1228 steps.
Uniform Selection finds an equally good plan after 4400 steps whereas Iterative
Improvement didn’t find a solution with λ < 0.15 even after 5000 steps.

3 Discussion

Swami and Gupta [7] (1988), produce results showing that Iterative Improve-
ment is superior to Simulated Annealing for non-recursive large join queries.
Later, Ioannidis and Kang [2] (1990) show the opposite, that SA is almost
always better than II for project-select-join queries. A more thorough investi-
gation made by Steinbrunn et. al. in [6] confirm that SA outperforms II but
they also give a more nuanced view. For left-deep trees they compare a Genetic
Algorithm (GA), Simulated Annealing (SAH from [7]) and Iterative Improve-
ment (IIH from [7]). They show that SAH is superior to IIH and that the GA
is better than SAH .

For bushy-trees they compare the 2PO, SA and II (SA and II referred to as
SAIO and IIIO taken from [2]) with GA (bushyGA). They conclude that for
quality the 2PO is best but that SAIO and IIIO are close (SAIO better than
IIIO most of the time).

A comparison in time was also made where they conclude that the bushyGA
is the fastest followed by the GA, SAH and 2PO; the IIIO and SAIO come last.
The bushyGA solves 30-relation queries in about 50% of the time it takes the
second place methods (GA, SAH and 2PO).

4



References

[1] Kristin Bennett, Michael C. Ferris, and Yannis E. Ioannidis. A genetic algo-
rithm for database query optimization. In Rick Belew and Lashon Booker,
editors, Proceedings of the Fourth International Conference on Genetic Al-

gorithms, pages 400–407, San Mateo, CA, 1991. Morgan Kaufman.

[2] Y. E. Ioannidis and Younkyung Kang. Randomized algorithms for opti-
mizing large join queries. In SIGMOD ’90: Proceedings of the 1990 ACM

SIGMOD international conference on Management of data, pages 312–321,
New York, NY, USA, 1990. ACM Press.

[3] Yannis E. Ioannidis and Eugene Wong. Query optimization by simulated
annealing. In SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD in-

ternational conference on Management of data, pages 9–22, New York, NY,
USA, 1987. ACM Press.

[4] Wolfgang Scheufele and Guido Moerkotte. On the complexity of generating
optimal plans with cross products. In ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages 238–248, 1997.

[5] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-
mond A. Lorie, and Thomas G. Price. Access path selection in a relational
database management system. In SIGMOD Conference, pages 23–34, 1979.

[6] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and
randomized optimization for the join ordering problem. The VLDB Journal,
6(3):191–208, 1997.

[7] Arun N. Swami and Anoop Gupta. Optimization of large join queries. In
SIGMOD Conference, pages 8–17, 1988.

[8] Florian Waas and J. Pellenkoft. Probabilistic bottom-up join order selection
— breaking the curse of NP-completeness. In 157, page 15. Centrum voor
Wiskunde en Informatica (CWI), ISSN 1386-3681, 30 1999.

5


