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What is query processing?
• A given SQL query is translated by the query 

processor into a low level program called an 
execution plan

• An execution plan is a program in a functional 
language:
– The physical relational algebra, specialized for 

internal storage representation in the DBMS.
• The physical relational algebra extends the 

relational algebra with:
– Primitives to search through the internal storage 

structures of the DBMS



What is query optimization?
• SQL is a very high level language:

– The users specify what to search for – not how the search is 
actually done 

– The algorithms are chosen automatically by the DBMS
• For a given SQL query there may be very many possible 

execution plans 
• The cost of these execution plans very widely 

– The costs vary with orders of magnitude
• The task of the query optimizer is to choose the 

cheapest plan out of the possible ones
• The query optimizer is the most complex (and important) 

part of the query processor



Complexity of query optimization

• Very many possible execution plans for a 
given SQL query, e.g.:
– J joins can be permutated with different costs 

O(J!)
– In addition there are different join algorithms 

to choose from
• Query optimization combinatorical over # 

of operations |Q| in query. With ‘dynamic 
programming’ O(|Q|2) in best case



Why does query optimization pay 
off?

• Query optimization radically improves speed of 
executing query
– The complexity of a good plan may be O(log N), while a bad one 

is O(N2), where N is size of the database
– Query optimization enables scalability of declarative queries

• Since N is large the payoff is huge
– The size of the query |Q| << N

• Classical query optimization can handle up to ca 12 joins
• Good query optimizer critical for competitive DBMS!
• Query optimization is the key to the success of SQL



Query Processing Steps
SQL Query

PARSER (parsing and semantic checking as in any compiler)

Parse tree (~ tree structure representing relational calculus expression)

OPTIMIZER (very advanced)

Execution plan (physical relation algebra expression)

EXECUTOR (execution plan interpreter)

DBMS kernel
Data structures



Query Optimizer Steps

Tuple calculus

View expansion

Tuple calculus

Query transformations

Tuple calculus

Cost-based query optimization

Physical relational algebra



View expansion
• A view is a virtual table expressed through a 

single SQL statement, a named query
• Views are textually substituted (macro 

expanded) by view expansion
• View expansion makes query larger (and thus 

optimization slower)
• View expansion allows optimizer to look inside 

view definitions rather than regarding views as 
black boxes

• View expansion required in order to detect 
hidden indexes



View expansion
CREATE TABLE SUPPLIES(

STORE CHAR(10), 
ITEM CHAR(10), 
PRICE DECIMAL(10,2),
PRIMARY KEY(STORE, ITEM))

CREATE VIEW ICASUPPLIES AS
SELECT *
FROM SUPPLIES
WHERE STORE = ‘ICA’



View expansion
SELECT PRICE

FROM ICASUPPLIES S
WHERE S.ITEM = ‘Tomatoes’

Translated by the view expander into:
SELECT PRICE

FROM SUPPLIES S
WHERE S.ITEM = ‘Tomatoes’

AND S.STORE = ‘ICA’
Query optimizer will now discover index(es) on ITEM or 

STORE!
These indexes would NOT have been discovered if view 

was black box.



Cost-based query optimization

• Cost-based query optimization:
1. Generate all possible execution plans (heuristics to avoid some 

unlikely ones)
2. Estimate the cost of executing each of the generated plans using a 

cost model based on database statistics and properties of DBMS 
algorithms

3. Choose the cheapest one
• Optimization criteria

– # of disk blocks read (dominates), DB
– CPU usage, CP
– Communication costs for distributed data, CO
– Normally weighted average of different criteria:

W1 * DB + W2 * CP + W3 * CO
W1, W2, W3 system configured weights

• The costs are computed based on data statistics and cost model
for operators in physical relational algebra



Query execution plan (physical 
algebra)

• Query execution plan is functional program with 
evaluation primitives:

– Table scan operator
– Primary index access operators (index kind dependent)
– Index scan operators (index kind dependent)
– Various join algorithms
– Sort operator
– Duplicate elimination operator
– .....

• Normally pipelined execution 
– Streams of tuples produced as intermediate results
– Intermediate results can sometimes be materialized as 

temporary tables



Degrees of freedom for optimizer

• Query plan must be efficient and correct 
• Choice of physical operators, e.g.:

– Scan table sequentially
– Traverse index structure (e.g. B-tree, hash table)
– Choose order of joining tables
– Choose algorithms used for each join
– Adapt to available main memory
– Materialize intermediate results if favourable
– Eliminate duplicates in stream
– Sort intermediate results



Query Cost Model

• Basic costs parameters
– Cost of accessing disk block randomly
– Data transfer rate
– Clustering of data tuples on disk
– Sort order of data tuples on disk
– Cost of scanning disk segment containing tuples
– Cost models for different index access methods (tree structures -

hashing)
– Cost models for different join methods
– Cost of sorting intermediate results

• Total cost of an execution plan
– The total cost depends on how often primitive operations are invoked.
– The invocation frequency depends on size of intermediate results.
– Intermediate results are estimated by statistics computed over data 

stored in database.



Selectivity

• Selectivity important for estimating size of (intermediate) query result
• Example join of relations T1(ssn,name), T2(ssn,income):

select t2.income from T1 t1, T2 t2
where t1.name = “Kalle” and
t2.income > 95000 and

t1.pnr = t2.pnr
Assume index on T1.pnr, T2.pnr, T1.name, and T2.income!
If T2.income is more selective than T1.name then join on PNR(select(T2.INCOME>95000),(select 

T1.PNR=t2.PNR and T1.NAME=“Kalle”)),
otherwise join on PNR(select(T1.name=“Kalle”),select(T2.PNR=t1.PNR and T2.INCOME>95000))

• Selectivitity(P(t)) defined as percentage of tuples t that are selected by predicate P(t).
– Selectivity(t2.income>95000) depends on value distributions in column T2.income. 

• DBMS maintains this, e.g. number of rows in table, number of different values, highest and lowest value, even histogram. 
Regular statistics refresh can be done.

Assume: highest income=100000, lowest income=15000. 
Then selectivity(t2.income>95000) can be estimated to (100000-95000)/(100000-15000)=0.058

Assume: 100 rows in T1, but only 80 different T1.name
Then selectivity(t1.name=“Kalle”) can be estimated to 1/80=0.0125.

=> join(select(T1.name=“Kalle”),T2) cheapest
– Above calculations assume flat value distributions (classical)
– Modern DBMSs maintain histograms
– Some statisticts incrementally maintained (e.g. size of tables, indexed join selectivities)
– Update statistics for table command to update some statistics



Data statistics

• Statistics used to estimate size of intermediate results:
– Size of tables
– Number of different values in column
– Histogram of distributions of column values
– Model for estimating how selective a predicate is, its selectivity:

• E.g. selectivity of PNR=xxxx, AGE>xxx, etc.
– Model for estimating sizes of intermediate results from joins

• The models are often very rough
– Work rather well since models used only for comparing different 

execution strategies - not for getting the exact execution costs.
• Cost of maintaining data statistics

– Cheap: e.g size of relation, depth of B-tree.
– Expensive: e.g. distribution on non-indexed columns, histograms
– Occasional statistics updates when load is low

• Statistics not always up-to-date
– Wrong statistics -> sub-optimal but correct plans



Optimizing large queries

• Don’t optimize at all or partly, i.e. order of 
predicates significant (old Oracle, old MySQL)

• Optimize partly, i.e. up to ca 10 joins, leave rest 
unoptimized (new Oracle)

• Heuristic methods (e.g. greedy optimization)
• Randomized (Monte Carlo) methods 
• To speed up data access the user may 

sometimes manually break down very large 
queries into smaller optimizable queries
– This is often necessary for translating relational 

representations to complex object structures in 
application programs


