
Introduction to
NoSQL Databases

Tore Risch
Information Technology

Uppsala University
2013-03-05

Tore Risch
Uppsala University, Sweden

Evolution of
DBMS technology

1960 1970 1980 1990 2000

Files RDB Object Stores ORDBIMS
CODASYL

Databases
Web sources

Mediators

0011001..

Streaming data

DSMS

Distributed databases

UDBL

Cloud databases

2010

MapReduce

BIG table

NoSQL SQL NoSQL SQL+ SQL+
New
QL SQL-

NoSQL

HIVE

SQL-SQL

SQL/MapReduce

Tore Risch
Uppsala University, Sweden

UDBL
Kinds of
DBMS support

Query
(SQL)

No Query
(NoSQL)

Simple Data Complex data

File systems
(scalable)
Storage managers

Relational
DBMSs

Object Stores

Object-Relational
DBMSs

Tore Risch
Uppsala University, Sweden

UDBL
Classification of
Modern Database applications

Complex Queries
SQL, New QL

No Queries
NoSQL

Simple Data Complex data

Simple Queries
SQL-

Business operations
Business analytics
Personal db

Text, data logs
Simple computations
Web documents

CAD system
Complex computations
Web surfing

Multimedia search
Custom Datatypes
Data streams
Web analytics

E-business Web search

Tore Risch
Uppsala University, Sweden

UDBL
Kind of
Database support

Complex Queries
SQL, New QL

No Queries
NoSQL

Simple Data Complex data

Simple Queries
SQL-

File systems
Content Mgmt. Syst.

Object Stores
Google BigTable
Yahoo Hadoop
MongoDB,CouchDB

Google App Engine
(GQL)

Amazon SimpleDB
Microsoft Azure

Google search engine
Facebook HIVE

Relational
DBMS

Object-Relational DBMS
Data Stream Mgmt. Syst.
Virtuoso, Neo4J, Amos II

What is a NoSQL Database?
• A key/value store

Basic index manager, no complete query language
– E.g. Google BigTable, Amazon Dynamo

• A web document database
For web documents, not for small business transactions
– E.g. MongoDB, CouchDB

• A DBMS with a limited query language
Provides for high volume small business transactions
– Sometimes called cloud databases
– E.g. Google App Engine, Microsoft Azure, Amazon SimpleDB,

Facebook HIVE

What is a NoSQL Database?
• A DBMS where mapreduce is used instead of queries

Manual programs to iterate over entire data sets
– E.g. Hadoop, MongoDB, CouchDB, Dynamo

• A mapreduce engine with a limited query language on
top:
HIVE on top of Hadoop provides HIVEQL
– Provides non-procedural data analythics (select from groupby)

without detailed programming
– Executed in batch as paralle Hadoop jobs

• A DBMS with a new query language for new applications
– Streambase, Virtuoso, Neo4J, Amos II

• Other non-relational databases
– Including Object Stores

NoSQL Characteristics
• Highly distributed and parallel architectures

– Typically runs on data centers
– This is similar to parallel databases!

• Highly scalable systems by compromised consistency
– No 2-phase commit as in distributed databases
– Eventual consistency

• Or perhaps never consistency
• Similar options available in modern DBMSs too

– Puts burden on programmer to handle consistency!
• Race conditions
• Recovery
Customized implementation of transacations

– Mainly suitable for applications not needing consistency

NoSQL Characteristics
• New query languages for new applications

– SQL- for cloud databases
• Most simple web applications do not need full SQL
• Simple SQL permits high scalability
• Familiar model
• Full SQL too complex for new systems

– Graph query languages
• SPARQL for RDF

– RDF data model
– For searching linked data (http://linkeddata.org/)

– Stream query languages
• CQL

– Variant of SQL for streams
• SCSQL (UU)

– Functional parallel data stream query language

MapReduce
• Parallel batch processing using mapreduce

– Many NoSQL databases uses mapreduce for parallel batch
processing of data stored in data centers

– Highly scalable implementation of
• parallell batch processing
• of same (e.g. Java) program
• over large amounts of data stored in different files
• Based on a scalable file system (e.g. HDFS)

• The mapreduce function:
– Applies a (costly) user function mapper producing key/value

pairs in parallel on many nodes accessing files in a cluster
– Applies a user aggregate function on the key/value pairs

produced by the mapper
– Very similar to GROUP BY in SQL
– Read reference article on MapReduce

Mapreduce code
function map(String name, String document):
// name: document name, i.e. HDFS file contents
// document: document contents, parsed HDFS file tokens
// Can make own parser as preprocessor

for each word w in document:
emit (w, 1)

function reduce(String word, Iterator partialCounts):
// word: a word
// partialCounts: a list of aggregated partial counts

sum = 0;
for each pc in partialCounts:

sum += ParseInt(pc);
emit (word, sum)

Mapreduce manager
architecture

Mapreduce stages
• Input reader

– System component that reads files from scalable file system (e.g.
HDFS) and sends to map functions applied in parallell

• Map function
– Applied in parallel on many different files
– Parsers input file data from HDFS
– Does some (expensive) computation
– Emits key value pairs as result
– Result stored by MapReduce system as file

• Partion function (optional)
– Partitions output key/value pairs fro map function into groups of

key/value pairs to be reduced in parallel
– Usually hash partitioning

• Reduce function
– Iterates over set of key/value pairs to produced a reduced set of key

value pairs stored in the file system
– C.f. aggregate functions

Mapreduce

Data file

Data file

Data file

Data file

Data file

Data file

Map

Map

Map

Map

Map

Map

Reduce

Reduce

Partition

Partition

Partition

Partition

Partition

Partition

Output
Writer

Result
fileReduce

File I/O

Hive architecture

Wordcount in Hive

FROM (
MAP doctext USING 'python wc_mapper.py'

AS (word, cnt)
FROM docs
CLUSTER BY word
)
REDUCE word, cnt USING

'pythonwc_reduce.py';

Architecture
• Metastore: stores system catalog
• Driver: manages life cycle of HiveQL query, session handles

and session statistics
• Query compiler: Compiles HiveQL into a distributed execution

plan of map/reduce tasks
• Execution engines: The component executes the execution

plan in proper dependency order; interacts with Hadoop
• HiveServer: provides JDBC/ODBC drivers and other

interfaces for integrating other applications.
• Client API components: CLI, web interface, jdbc/odbc API
• Extensibility interface include SerDe (parse/print), User

Defined Functions and User Defined Aggregate Functions.

