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What is a NoSQL Database?
• A key/value store 

Basic index manager, no complete query language
– E.g. Google BigTable,  Amazon Dynamo

• A web document database
For web documents, not for small business transactions
– E.g. MongoDB, CouchDB

• A DBMS with a limited query language
Provides for high volume small business transactions
– Sometimes called cloud databases
– E.g. Google App Engine, Microsoft Azure, Amazon SimpleDB, 

Facebook HIVE



What is a NoSQL Database?
• A DBMS where mapreduce is used instead of queries

Manual programs to iterate over entire data sets
– E.g. Hadoop, MongoDB, CouchDB, Dynamo

• A mapreduce engine with a limited query language on 
top:
HIVE on top of Hadoop provides HIVEQL
– Provides non-procedural data analythics (select from groupby) 

without detailed programming
– Executed in batch as paralle Hadoop jobs

• A DBMS with a new query language for new applications
– Streambase, Virtuoso, Neo4J, Amos II

• Other  non-relational databases
– Including Object Stores



NoSQL Characteristics
• Highly distributed and parallel architectures

– Typically runs on data centers
– This is similar to parallel databases!

• Highly scalable systems by compromised consistency
– No 2-phase commit as in distributed databases
– Eventual consistency

• Or perhaps never consistency
• Similar options available in modern DBMSs too

– Puts burden on programmer to handle consistency! 
• Race conditions
• Recovery
Customized implementation of transacations

– Mainly suitable for applications not needing consistency



NoSQL Characteristics
• New query languages for new applications

– SQL- for cloud databases
• Most simple web applications do not need full SQL
• Simple SQL permits high scalability
• Familiar model
• Full SQL too complex for new systems

– Graph query languages
• SPARQL for RDF

– RDF data model
– For searching linked data (http://linkeddata.org/)

– Stream query languages
• CQL

– Variant of SQL for streams 
• SCSQL (UU)

– Functional parallel data stream query language



MapReduce
• Parallel batch processing using mapreduce

– Many NoSQL databases uses mapreduce for parallel batch 
processing of data stored in data centers

– Highly scalable implementation of
• parallell batch processing 
• of same (e.g. Java) program 
• over large amounts of data stored in different files
• Based on a scalable file system (e.g. HDFS)

• The mapreduce function:
– Applies a (costly) user function mapper producing key/value 

pairs in parallel on many nodes accessing files in a cluster
– Applies a user aggregate function on the key/value pairs 

produced by the mapper
– Very similar to GROUP BY in SQL
– Read reference article on MapReduce



Mapreduce code
function map(String name, String document): 
// name: document name, i.e. HDFS file contents 
// document: document contents, parsed HDFS file tokens
// Can make own parser as preprocessor

for each word w in document: 
emit (w, 1)

function reduce(String word, Iterator partialCounts): 
// word: a word
// partialCounts: a list of aggregated partial counts

sum = 0;
for each pc in partialCounts: 

sum += ParseInt(pc);
emit (word, sum)



Mapreduce manager 
architecture



Mapreduce stages
• Input reader

– System component that reads files from scalable file system (e.g. 
HDFS) and sends to map functions applied in parallell

• Map function
– Applied in parallel on many different files
– Parsers input file data from HDFS
– Does some (expensive) computation
– Emits key value pairs as result
– Result stored by MapReduce system as file

• Partion function (optional)
– Partitions output key/value pairs fro map function into groups of 

key/value pairs to be reduced in parallel
– Usually hash partitioning

• Reduce function
– Iterates over set of key/value pairs to produced a reduced set of key 

value pairs stored in the file system
– C.f. aggregate functions
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Hive architecture 



Wordcount in Hive

FROM (
MAP doctext USING 'python wc_mapper.py' 

AS (word, cnt)
FROM docs
CLUSTER BY word
) 
REDUCE word, cnt USING 

'pythonwc_reduce.py';



Architecture
• Metastore: stores system catalog
• Driver: manages life cycle of HiveQL query, session handles 

and session statistics
• Query compiler: Compiles HiveQL into a distributed execution 

plan of map/reduce tasks
• Execution engines: The component executes the execution 

plan in proper dependency order; interacts with Hadoop
• HiveServer: provides JDBC/ODBC drivers and other 

interfaces for integrating other applications.
• Client API components: CLI, web interface, jdbc/odbc API
• Extensibility interface include SerDe (parse/print), User 

Defined Functions and User Defined Aggregate Functions.


