1 Replace, Reverse and Delete

Define a function replace, such that replace $x y z s$ yields $z s$ with every occurrence of x replaced by y.
consts replace $::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow{ }^{\prime} a$ list $\Rightarrow{ }^{\prime} a$ list
Prove or disprove (by counterexample) the following theorems. You may have to prove some lemmas first.

```
theorem rev (replace \(x y z s)=\) replace \(x\) y (rev zs)
theorem replace \(x y\) (replace \(u v z s)=\) replace \(u v(\) replace \(x y z s)\)
theorem replace \(y z(\) replace \(x y z s)=\) replace \(x z z s\)
```

Define two functions for removing elements from a list: del1 x xs deletes the first occurrence (from the left) of x in $x s$, delall $x x s$ all of them.

```
consts del1 :: 'a > 'a list }=>\mathrm{ 'a list
    delall :: ' }a=>\mathrm{ 'a list }=>\mp@subsup{}{}{\prime}'a\mathrm{ list
```

Prove or disprove (by counterexample) the following theorems.
theorem del1 $x($ delall $x x s)=$ delall $x x s$
theorem delall x (delall x xs $)=$ delall x xs
theorem delall $x($ del1 x xs $)=$ delall x xs
theorem del1 $x($ del1 $y z s)=$ del1 $y($ del1 $x z s)$
theorem delall $x($ del1 $y z s)=$ del1 $y($ delall $x z s)$
theorem delall $x($ delall $y z s)=$ delall $y($ delall $x z s)$
theorem del1 y (replace x y xs) $=$ del1 x xs
theorem delall y (replace x y xs) $=$ delall x xs
theorem replace $x y($ delall $x z s)=$ delall $x z s$
theorem replace $x y($ delall $z z s)=$ delall $z($ replace $x y z s)$
theorem rev $($ del1 $x x s)=$ del1 $x($ rev xs $)$
theorem rev $($ delall $x x s)=$ delall $x($ rev $x s)$

