2 Power, Sum

2.1 Power

Define a primitive recursive function $pow \ x \ n$ that computes x^n on natural numbers.

consts

```
pow :: nat => nat => nat
```

Prove the well known equation $x^{m \cdot n} = (x^m)^n$:

```
theorem pow-mult: pow \ x \ (m * n) = pow \ (pow \ x \ m) \ n
```

Hint: prove a suitable lemma first. If you need to appeal to associativity and commutativity of multiplication: the corresponding simplification rules are named *mult-ac*.

2.2 Summation

Define a (primitive recursive) function $sum\ ns$ that sums a list of natural numbers: $sum[n_1, \ldots, n_k] = n_1 + \cdots + n_k$.

consts

```
sum :: nat \ list => nat
```

Show that sum is compatible with rev. You may need a lemma.

```
theorem sum-rev: sum (rev ns) = sum ns
```

Define a function $Sum\ f\ k$ that sums f from 0 up to k-1: $Sum\ f\ k=f\ 0+\cdots+f(k-1)$.

consts

```
Sum :: (nat => nat) => nat => nat
```

Show the following equations for the pointwise summation of functions. Determine first what the expression *whatever* should be.

```
theorem Sum (%i. fi + gi) k = Sum fk + Sum gk
theorem Sum f(k + l) = Sum fk + Sum whatever l
```

What is the relationship between *sum* and *Sum*? Prove the following equation, suitably instantiated.

```
theorem Sum f k = sum whatever
```

Hint: familiarize yourself with the predefined functions map and [i...< j] on lists in theory List.