
2 Power, Sum
2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.
consts

pow :: nat => nat => nat

Prove the well known equation xm·n = (xm)n:
theorem pow-mult: pow x (m ∗ n) = pow (pow x m) n

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult-ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.
consts

sum :: nat list => nat

Show that sum is compatible with rev. You may need a lemma.
theorem sum-rev: sum (rev ns) = sum ns

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).
consts

Sum :: (nat => nat) => nat => nat

Show the following equations for the pointwise summation of functions. De-
termine first what the expression whatever should be.
theorem Sum (%i. f i + g i) k = Sum f k + Sum g k
theorem Sum f (k + l) = Sum f k + Sum whatever l

What is the relationship between sum and Sum? Prove the following equa-
tion, suitably instantiated.
theorem Sum f k = sum whatever

Hint: familiarize yourself with the predefined functions map and [i..<j] on
lists in theory List.


