2 Power, Sum

2.1 Power

Define a primitive recursive function pow $x n$ that computes x^{n} on natural numbers.

```
consts
    pow :: nat => nat => nat
```

Prove the well known equation $x^{m \cdot n}=\left(x^{m}\right)^{n}$:
theorem pow-mult: pow $x(m * n)=$ pow $($ pow $x m) n$
Hint: prove a suitable lemma first. If you need to appeal to associativity and commutativity of multiplication: the corresponding simplification rules are named mult-ac.

2.2 Summation

Define a (primitive recursive) function sum $n s$ that sums a list of natural numbers: $\operatorname{sum}\left[n_{1}, \ldots, n_{k}\right]=n_{1}+\cdots+n_{k}$.

consts

sum :: nat list $=>$ nat
Show that sum is compatible with rev. You may need a lemma.
theorem sum-rev: sum (rev ns) $=$ sum ns
Define a function Sum $f k$ that sums f from 0 up to $k-1$: Sum $f k=$ $f 0+\cdots+f(k-1)$.
consts
Sum $::($ nat => nat $)=>$ nat $=>$ nat
Show the following equations for the pointwise summation of functions. Determine first what the expression whatever should be.
theorem Sum (\%i.fi+gi) $k=\operatorname{Sum} f k+\operatorname{Sum} g k$
theorem Sum $f(k+l)=\operatorname{Sum} f k+\operatorname{Sum}$ whatever l
What is the relationship between sum and Sum? Prove the following equation, suitably instantiated.
theorem Sum fk=sum whatever
Hint: familiarize yourself with the predefined functions map and $[i . .<j]$ on lists in theory List.

