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Motivation

1 Interactive theorem proving needs automation.

Use SAT solvers to decide formulas of propositional logic.

Use SMT solvers to decide SMT formulas.

Can we do this without increasing the trusted code base?

2 SAT and SMT solvers frequently contain bugs. How can we
verify their results?

Proofs (of unsatisfiability) can be checked independently.

Can we keep the proof checker small?
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LCF-Style Proof Checking

Theorems are implemented as an abstract data type. They can be
constructed only through a fixed set of functions provided by this
data type.

Each constructor function implements an axiom or inference rule of
the logic.

Advanced proof procedures must (ultimately) employ combinations
of primitive inferences.
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Propositional Logic

Propositional logic:

Boolean variables: p, q, . . .

Formulas: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Conjunctive normal form (CNF): a conjunction of clauses, where
each clause is a disjunction of literals (i.e., possibly negated
variables)

Abstraction from higher-order to propositional logic: replace
subterms by Boolean variables, e.g.,

(∀x .P x) ∨ ¬(∀x .P x) 7→ p ∨ ¬p

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Propositional Resolution

P ∪ {x} Q ∪ {¬x}
P ∪ Q

Theorem

Propositional resolution is sound and refutation complete.
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System Overview

Input
formula

Model

satisfiable?

SAT solver

yes no

Theorem

Proof trace

Counterexample

Proof
reconstruction

DIMACS CNF

Preprocessing

Theorem prover
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DIMACS CNF Format

DIMACS CNF is the standard input format for SAT solvers.

Example: (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨ x2) ∧ (¬x2 ∨ x3)

DIMACS CNF File

c This is just a comment line.
p cnf 3 4
-1 2 0
-2 -3 0
1 2 0
-2 3 0

Tjark Weber Integrating SAT and SMT Solvers with ITPs



Introduction
SAT Solvers

Satisfiability Modulo Theories
Conclusions

Propositional Logic, Resolution
System Overview
Proof Reconstruction
Representation of SAT Problems
Performance

zChaff Proof Format

No standard proof format for SAT solvers exists.

Example:

(3)¬x2 ∨ x3

(2) x1 ∨ x2 (0)¬x1 ∨ x2

(4) x2

x3

(1)¬x2 ∨ ¬x3

x1 ∨ x2 ¬x1 ∨ x2
x2

¬x3

⊥

zChaff Proof File

CL: 4 <= 2 0
VAR: 2 L: 0 V: 1 A: 4 Lits: 4
VAR: 3 L: 1 V: 0 A: 1 Lits: 5 7
CONF: 3 == 5 6
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Proof Reconstruction: Basics

The proof is a DAG. Each node represents an inference step and is
connected to its premises.

Nodes contain information parsed from the proof file (initially), or
the derived theorem (after reconstruction).

A designated root node derives False.

Depth-first (postorder) traversal determines the order of proof
reconstruction.

Tjark Weber Integrating SAT and SMT Solvers with ITPs



Introduction
SAT Solvers

Satisfiability Modulo Theories
Conclusions

Propositional Logic, Resolution
System Overview
Proof Reconstruction
Representation of SAT Problems
Performance

Representation of SAT Problems

Bad: use logical connectives ∧, ∨

Good: use sets of clauses and literals

1 The whole CNF problem is assumed: {
∧k

i=1 Ci} `
∧k

i=1 Ci .

2 Each clause is derived: {
∧k

i=1 Ci} ` C1, . . . , {
∧k

i=1 Ci} ` Ck .

3 Then a sequent representation is used:

{
∧k

i=1 Ci , p1, . . . , pn} ` False.

The problem is an array of clauses. Clauses are sets of literals.

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Propositional Resolution, LCF-Style

With the sequent representation, resolution is fast:

{
∧k

i=1 Ci , p1, . . . , pn} ` False, {
∧k

i=1 Ci , q1, . . . , qm} ` False

1 impI: {
∧k

i=1 Ci , p1, . . . , pn} \ {x} ` x ⇒ False

2 impI: {
∧k

i=1 Ci , q1, . . . , qm} \ {¬x} ` ¬x ⇒ False

3 inst: ` (x ⇒ False)⇒ (¬x ⇒ False)⇒ False

4 mp: {
∧k

i=1 Ci , p1, . . . , pn} \ {x} ` (¬x ⇒ False)⇒ False

5 mp: {
∧k

i=1 Ci , p1, . . . , pn, q1, . . . , qm} \ {x ,¬x} ` False

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Performance

Evaluation on SATLIB problems:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

c7552mul.miter 11282 69529 242509 45 24
6pipe 15800 394739 310813 137 55
6pipe 6 ooo 17064 545612 782903 265 156
7pipe 23910 751118 497019 440 169

Evaluation on pigeonhole instances:

Problem Variables Clauses Resolutions zChaff (s) Isabelle (s)

pigeon-9 90 415 73472 1 2
pigeon-10 110 561 215718 6 4
pigeon-11 132 738 601745 24 12
pigeon-12 156 949 3186775 247 68

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Satisfiability Modulo Theories

Goal: To decide the satisfiability of (quantifier-free) first-order
formulas with respect to combinations of (decidable) background
theories.

ϕ ::= A | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

Applications:

Formal verification

Scheduling

Compiler optimization

. . .

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Example

Theories:

I: theory of integers
ΣI = {≤, +, −, 0, 1}
L: theory of lists
ΣL = {=, hd, tl, nil, cons}
E : theory of equality
Σ: free function and predicate symbols

Problem: Is

x ≤ y ∧ y ≤ x + hd (cons 0 nil) ∧ P (f x − f y) ∧ ¬P 0

satisfiable in I ∪ L ∪ E?

Tjark Weber Integrating SAT and SMT Solvers with ITPs



Introduction
SAT Solvers

Satisfiability Modulo Theories
Conclusions

Overview
Translation from Higher-Order Logic
Proof Reconstruction
Implementation, Optimizations
Experimental Results

Algorithms

SMT solvers typically use a combination of SAT solving and
theory-specific decision procedures.

DPLL: standard decision procedure for SAT (based on
splitting and unit propagation)

Nelson-Oppen: a decision procedure for the union of decidable
theories (using variable abstraction and equality propagation)

DPLL(T): tight integration of a theory-specific decision
procedure with the DPLL algorithm

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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SMT-LIB Format

SMT-LIB is the standard input format for SMT solvers.

LISP-like syntax

Based on first-order logic

Modular: different “theories” and “logics”

Version 2.0 is due real soon now

http://goedel.cs.uiowa.edu/smtlib/

Greatly helped to unify the field!

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Translation from Higher-Order Logic

SMT-LIB Yices SMT-LIB Yices

int, real X X let (X) X
nat, bool, → X λ-terms X
prop. logic X X tuples X
equality X X records X
FOL X X data types X
HOL X bit vectors X X
arithmetic X X

Abstraction is used to deal with unsupported terms/types.

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Z3’s Proof Format

Term language: many-sorted first-order logic

bool, int, real

+, −, ·, ∨, ∧, ¬, >, ⊥, ∀, ∃, distinct, select, store

Proofs: natural deduction

34 axioms and inference rules, from simple (e.g., mp) to
complex (e.g., rewrite, th-lemma)

Contain: inference rule used, pointers to premises, conclusion

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Z3 Proof File (Example)

...
#57 := (iff #15 #34)
#58 := [rewrite]: #57
#61 := [monotonicity #58]: #60
...

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Proof Reconstruction: Basics

The proof is a DAG. Each node represents an inference step and is
connected to its premises.

Nodes contain information parsed from the proof file (initially), or
the derived theorem (after reconstruction).

A designated root node derives False.

Depth-first (postorder) traversal determines the order of proof
reconstruction.

Same as for SAT!

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Proof Reconstruction: Assumptions, Skolemization

Z3’s proofs may contain local (cf. hypothesis) and global
(cf. asserted) assumptions:

Assume: {ϕ} ` ϕ
At the very end, we check that all local assumptions have
been discharged.

Skolem functions (introduced by sk) are given hypothetical
definitions in terms of Hilbert’s choice operator.

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Rapid Prototyping

About one third of Z3’s proof rules perform propositional
reasoning. → TautProve

About one third of Z3’s proof rules perform relatively simple
first-order reasoning. → Metis

Slow!

Speedups of several orders of magnitude can be achieved through
specialized implementations that perform the required inferences
directly.

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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Optimizations: Propositional and First-Order Reasoning I

Nested conjunctions: equivalence of
∧n

i=1 ϕi and
∧n

i=1 ϕπ(i) can be
established in O(n log n) using conjunction elimination and
introduction only (no associativity/commutativity theorems!)

1 Assume:
∧n

i=1 ϕi `
∧n

i=1 ϕi

2 Repeated conjE:
∧n

i=1 ϕi ` ϕ1, . . . ,
∧n

i=1 ϕi ` ϕn

3 Store these theorems in a red-black tree, indexed by their
conclusion.

4 Repeated conjI:
∧n

i=1 ϕi `
∧n

i=1 ϕπ(i)

Tjark Weber Integrating SAT and SMT Solvers with ITPs
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i=1 ϕπ(i)
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Optimizations: Propositional and First-Order Reasoning II

Nested disjunctions: dual to nested conjunctions, but trickier

Unit resolution:
Γ`

W
i∈I ϕi 〈Γi`¬ϕi 〉i∈J

Γ∪
S

i∈J Γi`
W

i∈I\J ϕi
similar to nested disjunctions

Quantifier instantiations: determined by first-order term matching
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Optimizations: Theory-Specific Reasoning

Proforma theorems: more than 230 proforma theorems allow about
76% of all terms given to rewrite to be proved by instantiation

Theorem caching: theorems proved by rewrite and th-lemma are
cached (indexed by a term net) for later re-use

Generalization: terms passed to HOL4’s arithmetic decision
procedures are generalized first (for faster preprocessing)
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Implementation Techniques (Overview)

Primitive inference, proforma theorem: asserted, commutativity,
hypothesis, iff-false, iff-true, mp, mp∼, refl, symm, trans

Combination of primitive inferences/instantiations: and-elim,
def-axiom, elim-unused, lemma, monotonicity, nnf-neg,
nnf-pos, not-or-elim, pull-quant, quant-inst, quant-intro, sk,
unit-resolution

Automated proof procedure: —

Combination of the above: rewrite, th-lemma
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Experimental Results

Logic Solved (Z3) Reconstructed Failed Factor

# Time # Time #T #Z

AUFLIA 100 0.180 s 100 0.407 s 0 0 2.3
AUFLIRA 100 0.051 s 97 0.038 s 0 3 0.7
QF UF 96 2.992 s 74 16.618 s 1 21 5.6
QF UFLIA 99 0.534 s 92 5.889 s 7 0 11.0
QF UFLRA 100 0.189 s 100 1.673 s 0 0 8.9
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Total Run-Times

Isabelle/HOL (Böhme, SMT ’09) vs. HOL4 (average speedup: 12.4)
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Run-Times: Individual Problems

AUFLIA AUFLIRA QF UF

QF UFLIA QF UFLRA
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Profiling: AUFLIA
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Conclusions

LCF-style proof checking for SAT and SMT is feasible.

In LCF-style theorem provers, specialized implementations can
be much faster than automated generic proof procedures.

Z3’s proof format is reasonably easy to check. Only rewrite
and th-lemma are overly complex.
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Future Work

A standard proof format for SAT solvers

A standard proof format for SMT solvers

Proof reconstruction for bit vectors

Parallel proof checking

Proof compression
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Questions?

Thank you for your attention.
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