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Interactive Formal Verification Motivation

Complexity Breeds Bugs

Modern hardware and software systems can be extremely complex.

Apple’s M2 Ultra: 134 billion transistors

Linux kernel: > 27 million lines of code

Complex systems almost inevitably contain bugs.
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Interactive Formal Verification Motivation

Rocket Science

On its first test flight in June 1996, the European Ariane 5 space rocket
(worth nearly US$ 400 million) exploded 37 seconds after launch because
of a malfunction in its control software.

The software was originally written for the Ariane 4 and could not cope
with the higher speed of the Ariane 5 rocket.
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Interactive Formal Verification Motivation

Reliability Matters

The annual cost of poor software quality in the US has been estimated at
2.4 trillion dollars.1

Software controls nuclear power plants, defense systems, aircraft, railway
signals and many other safety-critical systems.

Some systems are explicitly designed to prevent human intervention.

1
Consortium for Information & Software Quality (CISQ): The Cost of Poor Software Quality in the US: A 2022 Report
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Interactive Formal Verification Motivation

Testing?

Can’t we just test these systems until we are sure that they work correctly?

Exhaustive testing is infeasible for complex systems.

Critical systems (avionics, . . . ) are required to meet a standard of
10−9 failures per hour. Testing to such a standard is infeasible.

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

Edsger W. Dijkstra
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Interactive Formal Verification Interactive Theorem Proving

A Solution: Formal Verification

Prove (or disprove) the correctness of hardware and software systems
based on

a formal semantics,

with respect to a formal specification,

using formal (mathematical) methods.
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Interactive Formal Verification Interactive Theorem Proving

What is Interactive Theorem Proving?

Working in a logical formalism . . .

with precise definitions of concepts

and a formal deductive system

. . . supported by a proof assistant . . .

that checks the correctness of each step

. . . to construct hierarchies of definitions and proofs

libraries of formalized mathematics

specifications of components and properties
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Interactive Formal Verification Interactive Theorem Proving

Example: Reasoning About Finite Sequences

Source: Isabelle2023
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Interactive Formal Verification Interactive Theorem Proving

What is Interactive Theorem Proving Like?

Can prove hard theorems

Time consuming, occasionally frustrating, but also rewarding

Potentially addictive

Erodes trust in informal proofs
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Interactive Formal Verification Interactive Theorem Proving

Some Landmark Projects

L4.verified (G. Klein et al., 2009): functional correctness of the seL4
microkernel (about 8700 lines of C) — using Isabelle

CompCert (X. Leroy et al., 2009): a formally verified compiler for
(almost all of) the C language — using Coq

Flyspeck (T. Hales et al., 2014): a formal proof of the Kepler
conjecture — using Isabelle and HOL Light
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Interactive Formal Verification Proof Assistants

Proof Assistants

Proof assistants are software tools that assist with the development of
formal (machine-readable) specifications and proofs.

ACL2 Agda Coq HOL4

Isabelle Lean Mizar PVS

. . . and many others
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Interactive Formal Verification Proof Assistants

Proof Assistants by Logical Formalism

Based on higher-order logic

Isabelle, HOL (many versions), PVS

Based on constructive type theory

Coq, Twelf, Agda, Lean

Based on other formalisms

ACL2 (first-order logic with recursion), Mizar (set theory)
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Interactive Formal Verification Proof Assistants

Higher-Order Logic

First-order logic extended with quantification over functions and
predicates

No distinction between terms and formulas

Polymorphic types (e.g., α seq)

Functional programming: datatypes, recursive functions, . . .

“HOL = Functional programming + Logic” 2

2
Tobias Nipkow: Programming and Proving in Isabelle/HOL
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Interactive Formal Verification Proof Assistants

Key Features of Proof Assistants

Logical formalism (higher-order logic, type theory, etc.)

Operation and control

User interface / proof language

Automation

Libraries of formalized mathematics

Tools: library search, typesetting, code generation, . . .
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Reasoning About an Imperative Language

Source: Isabelle2023
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Interactive Formal Verification Reasoning About an Imperative Language

Commands

Concrete syntax:

com ::= SKIP

| vname ::= aexp
| com ;; com
| IF bexp THEN com ELSE com
| WHILE bexp DO com
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Interactive Formal Verification Reasoning About an Imperative Language

Commands

Abstract syntax:

datatype com = SKIP
| Assign vname aexp
| Seq com com
| If bexp com com
| While bexp com
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Interactive Formal Verification Reasoning About an Imperative Language

Com.thy

Com.thy
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Interactive Formal Verification Reasoning About an Imperative Language

Big-step Semantics

Concrete syntax:

(com, initial-state) ⇒ final-state

Intended meaning of (c , s) ⇒ t:

command c started in state s terminates in state t
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Interactive Formal Verification Reasoning About an Imperative Language

Big-step Semantics

Logically, the notation
(c , s) ⇒ t

is just infix syntax for
big step (c, s) t

where
big step :: com × state ⇒ state ⇒ bool

is an inductively defined predicate.
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Interactive Formal Verification Reasoning About an Imperative Language

Big Step.thy

Big Step.thy
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Interactive Formal Verification Reasoning About an Imperative Language

Reasoning About Programs and Languages

Having defined syntax and semantics of a programming language, we can
prove theorems about

the behaviour of individual programs,

properties of the semantics (e.g., determinism).
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Interactive Formal Verification Reasoning About an Imperative Language

Hoare Examples.thy

Hoare Examples.thy
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Conclusion
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Interactive Formal Verification Conclusion

Benefits of Interactive Formal Verification

Rigorous correctness proofs: the system works!

Certification: industry standards (e.g., Common Criteria) require
formal methods for higher assurance levels

Knowledge representation: formal specifications serve as precise
documentation of system requirements

Long-term maintenance: incremental system changes typically require
only incremental changes to proofs
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Interactive Formal Verification Conclusion

Current Research Challenges

Automation

Proof exchange
Auto-formalization

Formalization

Undergraduate material
Recent research results
Verified proof assistants

User interfaces

Management of large formal libraries
Proof languages
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Interactive Formal Verification Conclusion

Strengths and Weaknesses

Interactive theorem proving is more laborious than other formal
verification techniques . . .

. . . but it allows to reason about (almost) anything with extremely high
levels of assurance, and to prove hard theorems that are currently far
beyond the reach of any other technique.

“Beware of bugs in the above code; I have only proved it correct,
not tried it.”

Donald Knuth
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The LCF Architecture

A small kernel implements the logic. Only kernel functions can
generate new theorems.

All specification methods and automatic proof procedures generate
full proofs by invoking kernel functions.

Unsoundness is less likely with this architecture . . .

. . . but the implementation (of specification methods and automatic
proof procedures) is more complicated.
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