
Validating QBF Invalidity in HOL4

Tjark Weber?

University of Cambridge
Computer Laboratory
tw333@cam.ac.uk

Abstract. The Quantified Boolean Formulae (QBF) solver Squolem can
generate certificates of invalidity, based on Q-resolution. We present in-
dependent checking of these certificates in the HOL4 theorem prover.
This enables HOL4 users to benefit from Squolem’s automation for QBF
problems, and provides high correctness assurances for Squolem’s results.
Detailed performance data shows that LCF-style certificate checking is
feasible even for large QBF instances. Our work prompted improvements
to HOL4’s inference kernel.

1 Introduction

Deciding the validity of Quantified Boolean Formulae (QBF) is an extension of
the well-known Boolean satisfiability problem (SAT). In addition to the usual
connectives of propositional logic, QBF may contain universal and existential
quantifiers over Boolean variables. As a simple example, consider the formula

∃x∀y ∃z. x ∧ (y ∨ z) ∧ (y ∨ ¬z). (1)

QBF have applications in adversarial planning and formal verification [1,2,3].
They are also interesting from a theoretical viewpoint: QBF is the canonical
PSPACE-complete problem [4]. Whether QBF is harder than SAT is an open
problem, but it is widely believed that Boolean quantifiers allow to give expo-
nentially more succinct encodings for certain problems than propositional logic
alone.

QBF solvers automatically decide validity of such formulae. (For closed QBF,
satisfiability is equivalent to validity, and unsatisfiability is equivalent to invalid-
ity.) In addition, certain QBF solvers can produce certificates for their answers
that can be checked independently [5]. Squolem is a state-of-the-art QBF solver
that generates Q-resolution [6] based certificates for invalid formulae [7].

In this paper, we present independent checking of Squolem’s certificates for
invalid QBF in the HOL4 [8] theorem prover. HOL4 is a popular interactive
theorem prover for higher-order logic [9]. It is based on a small LCF-style [10,11]
kernel that provides an abstract data type of theorems, equipped with a fixed
set of constructor functions (corresponding to the axiom schemata and inference
rules of higher-order logic). Derived rules (such as Q-resolution) that are not
? This work was supported by the British EPSRC under grant EP/F067909/1.



provided by this kernel must be implemented by composing existing rules. This
provides high correctness assurances: derived rules cannot produce inconsistent
theorems, as long as the theorem data type itself is implemented correctly. On
the other hand, it makes an efficient implementation of derived rules challenging.

The motivation for our work is twofold. First, interactive theorem provers
like Coq [12], HOL4, Isabelle [13] and PVS [14] can greatly benefit from the
reasoning power of automated tools. Consequently, researchers have on various
occasions integrated automated first-order provers [15,16,17], SAT solvers [18],
and more recently SMT solvers [19,20] with interactive provers. Our integration
of a QBF solver with HOL4 fills a small, but not insignificant gap in this long
line of research. It enables HOL4 users to benefit from Squolem’s automation for
QBF problems, and since the results are checked by HOL4’s inference kernel, no
trust needs to be put in the QBF solver.

Second, QBF solvers are complex software tools. Similar to state-of-the-
art SAT solvers, they typically employ various heuristics and optimizations to
achieve competitive performance [21,22]. Correctness is hard to establish, and
different QBF solvers frequently disagree on the status of individual benchmarks.
QBF-Eval competitions in previous years resolved disagreements by majority
vote [23]. This rather unsatisfactory approach confirms the importance of QBF
benchmark certification. HOL4’s inference kernel has been carefully scrutinized
by dozens of researchers for over two decades. By using HOL4 as an independent
checker, we obtain high correctness assurances for Squolem’s results.

We review related work in Section 2. Relevant background material is in-
troduced in Section 3. Section 4 presents our main contribution: an approach
to QBF certificate checking, and in particular an efficient implementation of
Q-resolution, in HOL4. Experimental results are given in Section 5. Section 6
concludes.

2 Related Work

To our knowledge, this paper is the first to consider the integration of a QBF
solver with an interactive theorem prover. Related work can be classified into two
distinct areas: (i) the integration of automated solvers with LCF-style theorem
provers, and (ii) certificate checking for QBF solvers.

Integrating automated solvers with interactive theorem provers, just like our
work, is typically motivated by a need for increased automation in the interactive
system. First attempts were already made in the early 90s [15]. Since then, a long
line of related research has developed. Integrations have been proposed for first-
order provers [16,17], for model checkers [24], computer algebra systems [25,26],
SAT solvers [18], and more recently for SMT solvers [19,20], to name just a few.
The approach presented in this paper especially draws on ideas from [18] for
efficient LCF-style propositional resolution (see Section 4).

Q-resolution based certificates for Squolem were proposed by Jussila et al. [7].
Other proof formats for QBF solvers have been suggested: e.g., BDD-based traces
for sKizzo [27], and inference logs for yQuaffle [28]. Narizzano et al. [5] give an



overview and compare different certificate formats. Squolem’s certificates show
competitive performance, and they are relatively simple. Thus, implementing a
checker is probably easier than for the other formats.

Unsurprisingly, stand-alone proof checkers for QBF are typically much more
efficient [5] than the LCF-style proof checker presented in this paper. From the
HOL4 point of view, however, a stand-alone checker would become part of the
trusted code base (i.e., bugs in the checker—or in the integration—could lead to
inconsistent theorems in HOL4). In contrast, the checker presented here cannot
draw an unsound inference: any attempt to do so will be prevented by HOL4’s
trusted inference kernel.

3 Background and Theory

We now introduce relevant definitions and notation in more detail. Our terminol-
ogy is entirely standard. The reader is expected to be familiar with propositional
logic.

3.1 Quantified Boolean Formulae

We assume an infinite set of Boolean variables. A literal is a possibly negated
Boolean variable. We extend negation to literals and identify ¬¬v with v. A
clause is a disjunction of literals. A clause is trivial if it contains both a variable
and its negation. We say that a propositional formula is in conjunctive normal
form (CNF) if it is a conjunction of clauses.

Definition 1 (Quantified Boolean Formula). A Quantified Boolean For-
mula (QBF) is of the form

Q1x1 . . . Qnxn. φ,

where n ≥ 0, each xi is a Boolean variable, each Qi is either ∀ or ∃, and φ is a
propositional formula in CNF.

Q1x1 . . . Qnxn is called the quantifier prefix, and φ is called the matrix. With-
out loss of generality, we consider QBF in this prenex form only. Any formula
involving only propositional connectives and quantifiers over Boolean variables
can be transformed into prenex form through syntactic manipulations. (We have
not yet implemented such a transformation. Note that a HOL4 implementation,
aside from producing an equivalent QBF in prenex form, would also have to
produce a proof of the equivalence. Doing so efficiently can easily be a challenge
for large formulae, but is beyond the scope of this paper.)

We define an order < on variables such that xi < xj iff i < j, i.e., larger
variables are in the scope of smaller variables. x1 is called the outermost, xn the
innermost variable of the above QBF.

The QDIMACS format [29] is the standard input format of QBF solvers. It
provides a textual means of encoding QBF in prenex form. It is a backward-
compatible extension of the DIMACS format [30], the standard input format



of SAT solvers. We have implemented a translation from (the QBF subset of)
HOL4 terms into QDIMACS format, and a simple recursive-descent parser for
QDIMACS files that returns the corresponding QBF as a HOL4 term (see Sec-
tion 3.4).

The QDIMACS format imposes further restrictions: all variables xi must be
distinct, all variables must appear in the matrix, and the innermost quantifier
must be existential (i.e., Qn = ∃). Note that an innermost universal quantifier
can be eliminated by removing all occurrences of the bound variable from the
matrix: if a non-trivial clause v∨φ is true for all values of v, then φ must be true
(and likewise for a clause ¬v ∨ φ). This inference is called forall-reduction [6].
Applying it as often as possible (to eliminate all universal variables that are
larger than the largest existential variable), one obtains the forall-reduct of the
original clause.

We further require all variables that appear in the matrix to be bound by
some quantifier, i.e., we consider closed QBF only. This is to avoid confusion:
in the QDIMACS format, free variables have existential semantics (to retain
backward compatibility with the DIMACS format), while in HOL4, free variables
in theorems have universal semantics (to permit instantiation). Therefore, if a
QBF has free variables, we consider its existential closure instead.

The semantics of closed QBF is defined recursively, by expanding the outer-
most variable: [[∀x. φ]] = [[φ[x 7→ >] ∧ φ[x 7→ ⊥]]], and similarly [[∃x. φ]] =
[[φ[x 7→ >] ∨ φ[x 7→ ⊥]]]. (Here φ[x 7→ y] denotes substitution of y for all free
occurrences of x in φ.) A QBF is called invalid if its semantics is ⊥ (i.e., false).

3.2 Q-Resolution

QBF of interest typically contain several dozen or even hundreds of quantifiers.
A naive recursive computation of their semantics, which would be exponential
in the number of quantifiers, is not feasible. Therefore, Squolem takes a differ-
ent approach. To show that a QBF is invalid, Squolem proves that it entails
⊥. Squolem’s certificates of invalidity are based on a single inference rule that
is known as Q-resolution [6]. Q-resolution employs propositional resolution fol-
lowed by forall-reduction to eliminate universal quantifiers.

Let φ and ψ be two clauses. We say that φ and ψ can be resolved if some
variable v occurs positively in φ and negatively in ψ. (v is called the pivot
variable.) Propositional resolution then derives the clause φ′ ∨ ψ′, where φ′ is φ
with v removed, and ψ′ is ψ with ¬v removed. This clause is called the resolvent
of φ and ψ.

The resolvent of non-trivial clauses no longer contains the pivot variable.
If the pivot was existential, the resolvent’s largest variable may be universal,
thereby enabling forall-reductions.

Definition 2 (Q-resolution). Let φ and ψ be two clauses of a QBF that can
be resolved. Their resolvent’s forall-reduct is called the Q-resolvent of φ and ψ.



Q-resolution, just like resolution for propositional clauses, is sound and refu-
tation-complete for QBF in prenex form [6]. Thus, given any invalid QBF, we
can derive ⊥ by repeated application of Q-resolution to suitable clauses.

As a simple example, consider (1). This QBF is invalid. To derive ⊥ using
Q-resolution, we resolve y ∨ z with y ∨ ¬z to obtain y. This clause no longer
contains z, the QBF’s innermost variable. Thus forall-reduction removes y, which
is universally quantified, and we obtain the empty clause, i.e., ⊥.

3.3 Squolem’s Certificates of Invalidity

Squolem’s certificate format is described in detail in [31]. The format is ASCII-
based. Clauses and variables are referenced by positive integers. Negative values
stand for negated variables, i.e., integer negation denotes propositional negation.

Certificates of invalidity contain a log of Q-resolution inferences, concluded
by a final line that gives the identifier of the empty clause. For each Q-resolvent,
the log contains a line stating its assigned clause identifier, the literals that the
Q-resolvent contains, and the clauses that it was derived from. Original clauses
(from the QBF’s matrix) are numbered consecutively, starting from 1.

For instance, mapping x, y ∨ z and y ∨ ¬z to clause identifiers 1, 2 and 3,
respectively, a certificate for (1) might look as follows:

QBCertificate
4 0 2 3 0
CONCLUDE INVALID 4

Thus, the empty clause (with identifier 4) is obtained by Q-resolving clauses 2
and 3. Note that forall-reduction is part of a Q-resolution inference. 0 is merely
used as a separator.

We have written a simple recursive-descent parser for this certificate format
that returns the encoded information as a value in Standard ML.

3.4 Higher-Order Logic

HOL4 is a popular LCF-style [10,11] theorem prover for polymorphic higher-
order logic [9]. It is based on Church’s simple type theory [32] extended with
Hindley-Milner style polymorphism [33]. Higher-order logic (HOL) contains a
type of Booleans, propositional connectives, and quantifiers over arbitrary types.
Hence, quantified propositional logic can straightforwardly be embedded into
HOL.

HOL4 implements a natural-deduction calculus. Theorems represent sequents
Γ ` φ, where Γ is a finite set of hypotheses, and φ is the sequent’s conclusion.
Instead of ∅ ` φ, we simply write ` φ. Internally, the set of hypotheses is given by
a red-black tree (for efficient search, insertion and deletion), with terms treated
modulo α-equivalence.

Like other LCF-style provers, HOL4 has a small inference kernel. Theorems
are implemented as an abstract data type, and new theorems can be constructed



only through a fixed set of functions provided by this data type. These functions
directly correspond to the axiom schemata and inference rules of higher-order
logic. Figure 1 shows the rules of HOL that we use to validate Squolem’s certifi-
cates.

Assume{φ} ` φ
Γ ` φ ∧ ψ

Conj1
Γ ` φ

Γ ` φ ∧ ψ
Conj2

Γ ` ψ

Γ ` φ ∨ ψ ∆1 ∪ {φ} ` θ ∆2 ∪ {ψ} ` θ
DisjCases

Γ ∪∆1 ∪∆2 ` θ

Γ ` φ =⇒ ⊥
NotIntro

Γ ` ¬φ
Γ ` ¬φ

NotElim
Γ ` φ =⇒ ⊥

Γ ` ψ
Disch

Γ \ {φ} ` φ =⇒ ψ

Γ ` φ =⇒ ψ ∆ ` φ
MP

Γ ∪∆ ` ψ

Γ ` φ
Instθ

Γ θ ` φ θ
Γ ` ∀x. φ

Spect
Γ ` φ[x 7→ t]

Γ ` ∃x. φ ∆ ∪ {φ[x 7→ v]} ` ψ
Choosev (v not free in Γ , ∆ or ψ)

Γ ∪∆ ` ψ

Fig. 1. Selected HOL inference rules

The LCF-style architecture greatly reduces the trusted code base. Proof pro-
cedures, although they may implement arbitrarily complex algorithms, cannot
produce unsound theorems, as long as the implementation of the theorem data
type is correct. HOL4 is written in Standard ML [34], a type-safe functional
language (with impure features, e.g., references) that has an advanced module
system. To benefit from HOL4’s LCF-style architecture, we must implement
proof reconstruction in this language.

On top of its LCF-style inference kernel, HOL4 offers various automated proof
procedures: e.g., a simplifier, which performs term rewriting, a decision procedure
for propositional logic, and various first-order provers. However, the performance
of these procedures is hard to control. To achieve optimal performance, we do
not employ them for certificate checking, but instead combine primitive inference
rules directly (see Section 4).

4 Checking Squolem’s Certificates in HOL4

4.1 Preliminaries

Given a QBF ϕ = Q1x1 . . . Qnxn. φ and a certificate of its invalidity, our goal
is to derive {ϕ} ` ⊥ as a HOL4 theorem. We start by assuming the QBF’s



matrix, φ, thereby obtaining {φ} ` φ. We then use a combination of forward and
backward reasoning: the former to transform the sequent’s conclusion into⊥, and
the latter to introduce quantifiers into the hypothesis, thereby transforming it
into ϕ. This enables a clear separation of propositional and quantifier reasoning.

Suppose that φ = C1∧· · ·∧Ck, where each Ci is a clause of the original QBF.
Repeatedly applying inference rules Conj1 and Conj2, we split {φ} ` φ into k
separate theorems {φ} ` C1, . . . , {φ} ` Ck. This eliminates all conjunctions from
the conclusion. Therefore, we do not have to use associativity or commutativity
of conjunction in order to resolve clauses. Note that this step does not consume
significant amounts of memory: although φ may be huge, existing Standard ML
implementations employ sharing and store φ in memory only once.

We use a similar idea to eliminate disjunctions. Suppose that Ci = li1 ∨ · · · ∨
limi

, where each lij is a literal. Following [18], we use a combination of Disj-

Cases, Disch and MP to transform {φ} ` Ci into {φ,¬li1, . . . ,¬limi
} ` ⊥. This

allows us to benefit from HOL4’s relatively efficient management of hypothe-
ses (which are stored in a red-black tree internally) when manipulating literals
during resolution, rather than having to use associativity and commutativity of
disjunction.

4.2 General Proof Structure

After transformation into this sequent form, each clause theorem is stored in a
dictionary (implemented by a red-black tree for logarithmic time access), indexed
by its numeric clause identifier. Along with each clause, we store the quantifier
prefix that is missing from the clause’s hypothesis. Since we started by assuming
the matrix, this is the entire prefix initially, i.e., Q1x1 . . . Qnxn. During certifi-
cate validation, we will successively introduce these quantifiers again, until we
arrive at the original QBF.

Squolem’s certificates of invalidity encode a directed acyclic graph. The empty
clause is the root, and each node is connected to the premises from which it is
derived by Q-resolution. We perform a depth-first post-order traversal of this
graph, starting at the root node, and adding new clauses to the clause dictio-
nary as they are derived. This approach, which is also adopted from [18], has
two benefits. First, if there are Q-resolution inferences in the certificate that do
not contribute to the derivation of the final ⊥, these are never checked in HOL4.
Second, clauses must be derived in HOL4 only once, even if they are used several
times in the proof. Later, they are simply retrieved from the dictionary.

4.3 Q-Resolution

Every node of the proof graph corresponds to a Q-resolution inference, which we
have to perform in HOL4 (unless the node does not contribute to the derivation of
the final ⊥, see above). Q-resolution consists of propositional resolution followed
by forall-reduction.

Propositional resolution for clauses in sequent form can be implemented ef-
ficiently as a combination of primitive HOL inferences [18]:



Γ ∪ {¬v} ` ⊥
Disch

Γ ` ¬v =⇒ ⊥

∆ ∪ {v} ` ⊥
Disch

∆ ` v =⇒ ⊥
NotIntro

∆ ` ¬v
MP

Γ ∪∆ ` ⊥

The resolvent, Γ ∪∆ ` ⊥, is again a clause in sequent form.
It remains to deal with forall-reduction. Let {φ, l1, . . . , lm} ` ⊥ be the re-

solvent, and let xi be the largest variable that occurs in it. Since propositional
resolution has removed the (existential) pivot variable, xi may be universal. We
must perform forall-reduction if this is the case.

There are two aspects to this task. We successively transform the QBF’s
matrix, which initially is a hypothesis of each clause, into the original QBF. Thus,
we must introduce (existential and universal) quantifiers for variables larger
than xi, which no longer occur in the clause. Second, we must eliminate xi,
exploiting the fact that it is universal.

Suppose the missing quantifier prefix is Q1x1 . . . ∀xi . . . Qjxj , with j ≥ i. If
Qj = ∀, we derive

{φ, l1, . . . , lm} ` ⊥
Disch{l1, . . . , lm} ` φ =⇒ ⊥

Assume{∀xj . φ} ` ∀xj . φ
Specxj{∀xj . φ} ` φ

MP{∀xj . φ, l1, . . . , lm} ` ⊥

If Qj = ∃, then necessarily j > i, and we instead derive

Assume{∃xj . φ} ` ∃xj . φ {φ, l1, . . . , lm} ` ⊥
Choosexj{∃xj . φ, l1, . . . , lm} ` ⊥

The side condition of Choosexj (see Figure 1) is satisfied because xj does not
occur among l1, . . . , lm.

Repeating this step for all missing quantifiers up to Qixi, we arrive at
{Qixi . . . Qjxj . φ, l1, . . . , lm} ` ⊥. Note that Qi = ∀, hence our reasoning is
sound despite the fact that xi still occurs in the clause.

Now xi is bound in Qixi . . . Qjxj . φ, and occurs free only in one of the literals
l1, . . . , lm. We instantiate xi to ¬⊥ if it occurs positively, and to ⊥ if it occurs
negatively. In either case the literal becomes ¬⊥ and can be discharged.

We continue to forall-reduce the resulting clause to eliminate further universal
variables if possible.

A technicality arises from the interplay of propositional resolution and forall-
reduction. Forall-reduction introduces quantifiers (thereby shortening the prefix
of missing quantifiers). Therefore, the two clauses used in a resolution step may
have different quantifier prefixes around the matrix in their hypotheses: i.e.,
Qixi . . . Qnxn. φ vs. Qjxj . . . Qnxn. φ, with i < j. The resolvent will contain
both formulae as hypotheses. In our bookkeeping, we only keep track of the
longer prefix of missing quantifiers, i.e., Q1x1 . . . Qj−1xj−1, and ignore the other
hypothesis. Eventually, later forall-reduction steps in the proof will (again) in-
troduce quantifiers Qixi through Qj−1xj−1 into the resolvent. At this point both



hypotheses will become identical, and (since hypotheses are implemented by a
set) one copy will automatically be discarded by HOL4.

While this could lead to an accumulation of matrix hypotheses (each with a
different quantifier prefix) in a clause during certificate validation, clauses with
different quantifier prefixes are rarely resolved in practice. In the QBF certificates
used for evaluation (see Section 5), clauses derived by Squolem contain at most
two matrix hypotheses each.

4.4 Example

Consider (1) again. Let φ = x∧ (y∨z)∧ (y∨¬z) denote its matrix. We assume φ
to obtain {φ} ` φ. Using Conj1 and Conj2, we derive three separate theorems
{φ} ` x, {φ} ` y ∨ z, and {φ} ` y ∨ ¬z. Their respective sequent forms are
{φ,¬x} ` ⊥, {φ,¬y,¬z} ` ⊥, and {φ,¬y, z} ` ⊥ The missing quantifier prefix
for each theorem is ∃x ∀y ∃z.

Validating Squolem’s proof of invalidity (see Section 3.3), we now Q-resolve
the second and the third theorem. Propositional resolution yields {φ,¬y} ` ⊥.
The largest variable that occurs in this clause is y.

Since y is universal, we perform forall-reduction (as detailed in Section 4.3).
The innermost missing quantifier is ∃z. Thus, we first derive {∃z. φ, ¬y} ` ⊥.
The next missing quantifier is ∀y, so we derive {∀y∃z. φ, ¬y} ` ⊥. Now we
eliminate y by instantiating it to ⊥, thereby obtaining {∀y∃z. φ, ¬⊥} ` ⊥. Dis-
charging ¬⊥ yields {∀y∃z. φ} ` ⊥. The next missing quantifier is ∃x, and x does
not occur in the clause (except in φ). Hence, we finally arrive at {∃x∀y∃z. φ} ` ⊥.

4.5 Variable Binding and Substitution

HOL4 comes with two different implementations of its inference kernel: one uses
de Bruijn indices (and explicit substitutions) to represent λ-terms [35], the other
(by M. Norrish) uses a name-carrying implementation [36]. These implementa-
tions differ in the performance (and even complexity) of primitive operations.
For instance, λ-abstracting over a variable takes constant time with the name-
carrying implementation, but with de Bruijn indices is linear in the size of the
abstraction’s body (because every occurrence of the newly bound variable in the
body must be replaced by an index). Moreover, since the abstraction’s body re-
mains unchanged in the name-carrying implementation, there is more potential
for memory sharing if the body is also used elsewhere, and hence a potentially
smaller memory footprint. Despite these differences, both kernels show similar
overall performance on the HOL4 library.

This is no longer true for QBF validation. In higher-order logic, ∀x. φ is
syntactic sugar for ∀(λx. φ), and likewise for ∃x. φ. Hence, the algorithm for Q-
resolution presented in Section 4.3 forms λ-abstractions (and takes them apart
again) when introducing quantifiers during forall-reduction. We will see in Sec-
tion 5 that Norrish’s name-carrying implementation, therefore, is significantly
faster for QBF validation than the kernel that uses de Bruijn indices internally.



During evaluation, we also observed that the name-carrying implementa-
tion spent significant time instantiating variables (to ⊥ or ¬⊥, before they are
discharged as part of forall-reduction). Capture-avoiding substitution in a name-
carrying implementation may have to rename bound variables away from the free
variables in the body of a λ-abstraction. It turned out that in order to collect
these free variables, the HOL4 implementation of substitution would unneces-
sarily descend into the body of a λ-abstraction even when the variable to be
instantiated was bound (in which case instantiation would not change the body
at all). We achieved an average speed-up of 2.6 (see Section 5) by improving the
implementation of capture-avoiding substitution to collect free variables only
when they are actually needed for renaming.

One might gain further improvements by using a modified term data struc-
ture. The kernel could compute the set of a term’s free variables when the term
is built, and store it in memory along with the term itself. This might allow for
an even more efficient implementation of capture-avoiding substitution.

5 Experimental Results

We have evaluated our implementation on the same set of 69 invalid QBF prob-
lems that was previously used (by the Squolem authors) to evaluate the per-
formance of Squolem’s certificate generation [7]. The set resulted from applying
Squolem to all 445 problems in the 2005 fixed instance and 2006 preliminary
QBF-Eval data sets. With a time limit of 600 seconds per problem, Squolem
solved 142 of these problems; 69 were determined to be invalid.

All experiments were conducted on a Linux system with an Intel Core2 Duo
T9300 processor at 2.4 GHz. Memory usage was restricted to 3 GB. HOL4 was
running on top of Poly/ML 5.3.

5.1 Run-Times

Table 1 shows our experimental results for the 69 invalid QBF problems. The
first column gives the name of the benchmark. The next three columns provide
information about the size of the benchmark, giving the number of alternating
quantifiers,1 variables, and clauses, respectively. Column four shows the run-time
of Squolem (with certificate generation enabled) to solve the benchmark. Column
five shows the number of Q-resolution steps in the resulting certificate. The last
three columns finally show the run-time of certificate validation in HOL4, using
the de Bruijn kernel, the name-carrying kernel, and our optimized variant of the
name-carrying kernel, respectively (see Section 4.5). All run-times are given in
seconds (rounded to the nearest tenth of a second). On one benchmark, the de
Bruijn kernel ran out of memory (indicated by an M).

1 Counting successive quantifiers of the same kind, as in ∀x∀y ∀z . . ., as one quantifier
only. The total number of quantifiers in each benchmark is typically identical to the
number of variables.



Squolem Q-res. de Bruijn name- optimized
Benchmark name Quant. Vars. Clauses (s) steps (s) carrying (s) name-c. (s)
Adder2-2-c 7 249 291 8.9 445 6.4 0.6 0.3
adder-2-unsat 3 66 110 13.6 3632 3.3 1.6 0.5
comp.blif 0.10 0.20 0 0 inp exact 7 310 831 6.0 2612 3.0 0.3 0.1
comp.blif 0.10 1.00 0 0 inp exact 3 306 842 1.9 3317 1.0 0.1 0.1
flipflop-3-c 3 164 203 0.0 15 0.0 0.0 0.0
flipflop-4-c 3 866 1158 20.5 12 1.4 0.0 0.0
k d4 p-12 33 755 2234 0.4 276 44.2 1.5 0.6
k d4 p-16 41 995 2966 0.6 348 95.5 2.7 1.0
k d4 p-20 49 1235 3698 0.8 420 173.1 4.3 1.7
k d4 p-21 51 1295 3881 0.8 438 197.4 4.7 2.0
k d4 p-4 17 275 770 0.1 132 2.8 0.2 0.1
k d4 p-8 25 515 1502 0.3 204 15.0 0.7 0.3
k dum p-12 27 517 1352 0.1 302 17.6 0.8 0.3
k dum p-16 35 685 1782 0.1 334 35.1 1.3 0.6
k dum p-20 43 853 2212 0.1 366 61.9 1.9 0.8
k dum p-21 45 893 2311 0.1 366 68.1 2.1 0.9
k dum p-4 15 556 215 0.1 231 2.2 0.2 0.1
k dum p-8 19 349 922 0.1 266 6.9 0.4 0.2
k grz p-12 17 534 1961 479.2 303 19.1 1.1 0.3
k grz p-4 17 318 953 0.1 283 5.3 0.4 0.2
k grz p-8 17 419 1406 0.6 286 10.5 0.7 0.2
k lin p-4 7 241 840 0.0 28 1.1 0.1 0.0
k lin p-8 7 439 1916 242.8 32 4.7 0.2 0.1
k path p-12 27 805 2238 0.3 306 40.3 1.4 0.5
k path p-16 35 1081 3014 0.4 406 91.9 2.6 1.0
k path p-20 43 1357 3790 0.5 506 173.4 4.4 1.9
k path p-21 45 1429 3996 0.6 531 200.2 4.9 2.1
k path p-4 11 253 686 0.1 106 1.7 0.1 0.1
k path p-8 19 529 1462 0.2 206 12.2 0.5 0.2
k poly p-12 79 1005 2268 0.4 1072 137.5 3.5 2.0
k poly p-16 103 1329 3000 1.6 1375 303.9 6.6 3.8
k poly p-20 127 1653 3732 1.8 1711 577.9 11.1 6.6
k poly p-21 131 1707 3854 0.9 1771 635.6 12.0 7.1
k poly p-4 31 357 804 0.1 377 7.0 0.3 0.2
k poly p-8 55 681 1536 0.2 724 44.1 1.5 0.7
k t4p p-12 37 979 3040 1.5 394 91.9 2.7 1.0
k t4p p-16 45 1529 3936 2.1 474 180.7 4.5 1.8
k t4p p-20 53 1539 4832 2.5 554 318.3 6.9 2.7
k t4p p-21 55 1609 5056 2.6 574 360.7 7.5 3.0
k t4p p-4 21 419 1248 0.5 234 9.3 0.5 0.2
k t4p p-8 29 699 2144 1.0 314 37.1 1.4 0.5
s27 d3 u 3 117 254 33.2 309 0.2 0.2 0.0
sat05-561-qd 1 24 61 0.0 158 0.0 0.0 0.0
TOILET2.1.iv.3 3 28 70 0.0 20 0.0 0.0 0.0
toilet a 08 01.2 3 60 2205 1.0 6 1.7 0.8 0.1
toilet a 08 01.4 3 112 2429 1.1 44 3.6 1.4 0.2
toilet a 08 05.2 3 140 2833 124.9 1855 5.7 7.4 4.9
toilet a 10 01.2 3 74 10455 33.7 6 17.8 8.0 1.0
toilet a 10 01.3 3 106 10604 35.1 16 24.7 8.5 1.1
toilet a 10 01.4 3 138 10753 36.3 44 36.5 13.7 1.6
toilet c 08 01.2 3 55 229 0.0 6 0.1 0.0 0.0
toilet c 08 01.4 3 107 453 0.1 44 0.2 0.0 0.0
toilet c 08 05.2 3 135 857 122.4 1855 0.6 0.7 0.7
toilet c 10 01.2 3 68 325 0.0 6 0.1 0.0 0.0
toilet c 10 01.4 3 132 623 0.2 44 0.3 0.1 0.0
tree-exa2-10 20 20 12 0.0 18 0.0 0.0 0.0
tree-exa2-15 30 30 17 0.0 28 0.0 0.0 0.0
tree-exa2-20 40 40 22 0.0 38 0.0 0.0 0.0
tree-exa2-25 50 50 27 0.0 48 0.0 0.0 0.0
tree-exa2-30 60 60 32 0.0 58 0.1 0.0 0.0
tree-exa2-35 70 70 37 0.0 68 0.1 0.1 0.0
tree-exa2-40 80 80 42 0.0 78 0.1 0.1 0.1
tree-exa2-45 90 90 47 0.0 88 0.2 0.1 0.1
tree-exa2-50 100 100 52 0.0 98 0.3 0.2 0.1
vonNeumann-ripple-carry-5-c 3 24562 35189 220.3 33 M 1.8 1.5
z4ml.blif 0.10 0.20 0 0 inp exact 5 65 193 1.8 996 0.2 0.0 0.0
z4ml.blif 0.10 0.20 0 0 out exact 3 61 185 1.2 1536 1.3 0.3 0.1
z4ml.blif 0.10 1.00 0 0 inp exact 3 65 198 0.1 588 0.1 0.0 0.0
z4ml.blif 0.10 1.00 0 0 out exact 3 63 194 0.6 1588 1.2 0.2 0.1

Table 1. Experimental results



0 20 40 60 80 100

other

resolve

elim

bind∀

bind∃

Fig. 2. de Bruijn

0 20 40 60 80 100

other

resolve

elim

bind∀

bind∃

Fig. 3. Name-carrying

0 20 40 60 80 100

other

resolve

elim

bind∀

bind∃

Fig. 4. Optimized

Average run-times are 60.2 seconds for the de Bruijn kernel (not includ-
ing benchmark vonNeumann-ripple-carry-5-c), 2.1 seconds for the name-carrying
kernel, and 0.8 seconds for our optimized variant of the name-carrying kernel.
This amounts to speed-up factors of 28.7 (de Bruijn vs. name-carrying) and 2.6
(name-carrying vs. optimized), respectively, for a total speed-up factor of 75.3
(de Bruijn vs. optimized).

For comparison, we have also measured run-times of QBV [7], a stand-alone
checker for Squolem’s certificates that was developed by the authors of Squolem.
QBV validates each of the 69 certificates in less than 0.1 seconds. LCF-style
validation in HOL4, using the optimized name-carrying kernel, is one to two
orders of magnitude slower. However, for users of HOL4, another comparison
might be more relevant: LCF-style validation (using the optimized name-carrying
kernel) on average is a factor of 24.5 faster than proof search with Squolem, and
at most 8 times slower on individual benchmarks.

5.2 Profiling

To gain deeper insight into these results, we present profiling data for the
de Bruijn kernel (Figure 2), the name-carrying kernel (Figure 3), and our opti-
mized variant of the name-carrying kernel (Figure 4).

For each kernel, we show the shares of total run-time (dark bars) and relative
number of function calls (light bars) for the following functions: binding of exis-
tential quantifiers during forall-reduction (bind∃), binding of universal quantifiers
during forall-reduction (bind∀), elimination of universal variables during forall-
reduction (elim), and propositional resolution (resolve) as part of Q-resolution.
Additionally, time spent on other aspects of certificate validation, e.g., file pars-
ing and conversion of clauses into sequent form, is shown as well (other). The
relative number of function calls (light bars) is the same for each kernel.

We observe that the de Bruijn kernel (Figure 2) spends more than 90% of
validation time on the introduction of existential quantifiers. This is in line with
the relative frequency of bind∃. The name-carrying implementation (Figure 3),
however, performs the same operation much more quickly (for the reasons dis-
cussed in Section 4.5), reducing its run-time share to less than 20%. On the other
hand, time spent on variable elimination (elim) has increased disproportionally,
to over 60%. Our optimization of capture-avoiding substitution (see Section 4.5)
reduces this time to a negligible fraction again (Figure 4), while the remaining
operations take proportionally higher time shares.



6 Conclusions

We have presented LCF-style checking for certificates of QBF invalidity (gen-
erated by the QBF solver Squolem) in HOL4. In particular, we have presented
an efficient implementation of Q-resolution on top of HOL4’s inference kernel
for higher-order logic. Detailed performance data shows that LCF-style certifi-
cate checking is feasible even for large invalid QBF instances: all 69 benchmark
certificates were checked successfully. However, performance very much depends
on implementation details of the underlying inference kernel. We have improved
HOL4’s implementation of capture-avoiding substitution, thereby achieving a
speed-up of 75.3 over an implementation based on de Bruijn indices. Our imple-
mentation is freely available from the HOL4 repository [36].

Our work has two main applications. First, it enables HOL4 users to benefit
from Squolem’s automation for QBF problems. These can now be passed from
the HOL4 system to Squolem, which will automatically decide their validity.
For invalid QBF problems, Squolem’s certificate will then be used to derive the
QBF’s negation as a theorem in HOL4. Second, our work provides high correct-
ness assurances for Squolem’s results. Due to HOL4’s LCF-style architecture,
our proof checker cannot draw unsound inferences (provided HOL4’s kernel is
correct). Thus, the approach can be used for QBF benchmark certification.

In this paper, we have only considered certificates of invalidity. In principle,
one can establish validity of a QBF instance by showing that the negation is
invalid. However, this approach is rarely feasible in practice [7]. Squolem can
generate certificates of validity directly, based on Skolem functions. LCF-style
checking for certificates of validity remains future work.

One could also extend our work to other QBF solvers, which use different
certificate formats (see [23] for an overview), and to other interactive theorem
provers, e.g., Isabelle or Coq. Because seemingly minor differences in kernel data
structures can have significant impact, it is not clear if similar performance can
be achieved in these systems.

An alternative approach that might yield better performance than the LCF-
style implementation presented in this paper is the use of reflection [37], i.e.,
implementing and proving correct a checker for Squolem’s certificates in the
prover’s logic, and then executing the verified checker without producing proofs.
While this approach still provides relatively high correctness assurances, obtain-
ing a theorem in HOL4 would require enhancing the inference kernel with a
reflection rule that allows to trust the result of such a verified computation.

Acknowledgments

The author would like to thank Christoph Wintersteiger for answering various
questions about Squolem.



References

1. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Proceedings of TACAS. Volume 1579 of Lecture Notes in Computer
Science., Springer (1999) 193–207

2. Gopalakrishnan, G., Yang, Y., Sivaraj, H.: QB or not QB: An efficient execution
verification tool for memory orderings. In: Computer Aided Verification. Volume
3114 of Lecture Notes in Computer Science., Springer (2004) 47–49

3. Hanna, Z., Dershowitz, N., Katz, J.: Bounded model checking with QBF. In: Eight
International Conference on Theory and Applications of Satifiability Testing (SAT
2005). Volume 3569 of Lecture Notes in Computer Science., Springer Verlag (2005)

4. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Proc. 5th Annual ACM Symp. on Theory of Computing. (1973) 1–9

5. Narizzano, M., Peschiera, C., Pulina, L., Tacchella, A.: Evaluating and certifying
QBFs: A comparison of state-of-the-art tools. AI Communications 22(4) (2009)
191–210

6. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified boolean formu-
las. Information and Computation 117(1) (1995) 12–18

7. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: Theory and Applications of Satisfi-
ability Testing – SAT 2007. Volume 4501 of Lecture Notes in Computer Science.,
Springer (2007) 201–214

8. Slind, K., Norrish, M.: A brief overview of HOL4. [38] 28–32
9. Gordon, M.J.C., Pitts, A.M.: The HOL logic and system. In: Towards Verified

Systems. Volume 2 of Real-Time Safety Critical Systems Series. Elsevier (1994)
49–70

10. Gordon, M., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of
Computation. Volume 78 of Lecture Notes in Computer Science. Springer (1979)

11. Gordon, M.: From LCF to HOL: a short history. In: Proof, language, and interac-
tion: essays in honour of Robin Milner. MIT Press (2000) 169–185

12. Bertot, Y.: A short presentation of Coq. [38] 12–16
13. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. [38] 33–38
14. Owre, S., Shankar, N.: A brief overview of PVS. [38] 22–27
15. Kumar, R., Kropf, T., Schneider, K.: Integrating a first-order automatic prover in

the HOL environment. In Archer, M., Joyce, J.J., Levitt, K.N., Windley, P.J., eds.:
Proceedings of the 1991 International Workshop on the HOL Theorem Proving
System and its Applications, IEEE Computer Society (1992) 170–176

16. Hurd, J.: An LCF-style interface between HOL and first-order logic. In Voronkov,
A., ed.: Proceedings of the 18th International Conference on Automated Deduc-
tion (CADE-18). Volume 2392 of Lecture Notes in Artificial Intelligence., Springer
(2002) 134–138

17. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses.
Journal of Automated Reasoning 40(1) (2008) 35–60

18. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL the-
orem provers. Journal of Applied Logic 7(1) (March 2009) 26–40

19. Ge, Y., Barrett, C.: Proof translation and SMT-LIB benchmark certification:
A preliminary report. In: 6th International Workshop on Satisfiability Modulo
Theories (SMT ’08). (2008)

20. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3 (2010) To appear
at the International Conference on Interactive Theorem Proving (ITP-10).



21. Letz, R.: Lemma and model caching in decision procedures for quantified boolean
formulas. In: Automated Reasoning with Analytic Tableaux and Related Methods.
Volume 2381 of Lecture Notes in Computer Science., Springer (2002) 5–15

22. Pulina, L., Tacchella, A.: Learning to integrate deduction and search in reasoning
about quantified boolean formulas. In Ghilardi, S., Sebastiani, R., eds.: FroCos.
Volume 5749 of Lecture Notes in Computer Science., Springer (2009) 350–365

23. Narizzano, M., Pulina, L., Tacchella, A.: Report of the third QBF solvers evalua-
tion. JSAT 2(1–4) (2006) 145–164

24. Amjad, H.: Combining model checking and theorem proving. Technical Report
UCAM-CL-TR-601, University of Cambridge Computer Laboratory (2004) Ph. D.
Thesis.

25. Ballarin, C.: Computer algebra and theorem proving. Technical Report UCAM-
CL-TR-473, University of Cambridge Computer Laboratory (1999) Ph. D. Thesis.

26. Boldo, S., Filliâtre, J.C., Melquiond, G.: Combining Coq and Gappa for certifying
floating-point programs. In Carette, J., Dixon, L., Coen, C.S., Watt, S.M., eds.:
Intelligent Computer Mathematics, 16th Symposium, Calculemus 2009, 8th Inter-
national Conference, MKM 2009, Proceedings. Volume 5625 of Lecture Notes in
Computer Science., Springer (2009) 59–74

27. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In Nieuwenhuis, R.,
ed.: Automated Deduction - CADE-20, 20th International Conference on Auto-
mated Deduction, Tallinn, Estonia, July 22-27, 2005, Proceedings. Volume 3632 of
Lecture Notes in Computer Science., Springer (2005) 369–376

28. Yu, Y., Malik, S.: Validating the result of a quantified boolean formula (QBF)
solver: theory and practice. In Tang, T., ed.: Proceedings of the 2005 Conference on
Asia South Pacific Design Automation, ASP-DAC 2005, Shanghai, China, January
18-21, 2005, ACM Press (2005) 1047–1051

29. : QDIMACS standard version 1.1 (2005) Released on December 21, 2005. Retrieved
January 22, 2010 from http://www.qbflib.org/qdimacs.html.

30. : DIMACS satisfiability suggested format (1993) Retrieved January 22, 2010 from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc.

31. Kroening, D., Wintersteiger, C.M.: A file format for QBF certificates (2007)
Retrieved September 20, 2009 from http://www.verify.ethz.ch/qbv/download/

qbcformat.pdf.
32. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic

5 (1940) 56–68
33. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL.

(1982) 207–212
34. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML –

Revised. MIT Press (1997)
35. Barras, B.: Programming and computing in HOL. In Aagaard, M., Harrison,

J., eds.: TPHOLs. Volume 1869 of Lecture Notes in Computer Science., Springer
(2000) 17–37

36. HOL4 contributors: HOL4 Kananaskis 5 source code (2010) Retrieved January 22,
2010 from http://hol.sourceforge.net/.

37. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI Cambridge (1995) Retrieved April 8, 2010 from
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz.

38. Mohamed, O.A., Muñoz, C., Tahar, S., eds.: Theorem Proving in Higher Order
Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada, August
18-21, 2008. Proceedings. Volume 5170 of Lecture Notes in Computer Science.,
Springer (2008)

http://www.qbflib.org/qdimacs.html
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc
http://www.verify.ethz.ch/qbv/download/qbcformat.pdf
http://www.verify.ethz.ch/qbv/download/qbcformat.pdf
http://hol.sourceforge.net/
http://www.cl.cam.ac.uk/~jrh13/papers/reflect.dvi.gz

	Validating QBF Invalidity in HOL4
	Tjark Weber
	Introduction
	Related Work
	Background and Theory
	Quantified Boolean Formulae
	Q-Resolution
	Squolem's Certificates of Invalidity
	Higher-Order Logic

	Checking Squolem's Certificates in HOL4
	Preliminaries
	General Proof Structure
	Q-Resolution
	Example
	Variable Binding and Substitution

	Experimental Results
	Run-Times
	Profiling

	Conclusions


