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Abstract

This paper describes the integration of a leading SAT solver with
Isabelle/HOL, a popular interactive theorem prover. The SAT solver
generates resolution-style proofs for (instances of) propositional tau-
tologies. These proofs are verified by the theorem prover. The pre-
sented approach significantly improves Isabelle’s performance on propo-
sitional problems, and furthermore exhibits counterexamples for un-
provable conjectures.

1 Introduction

Interactive theorem provers like PVS [19], HOL [10] or Isabelle [20] tradi-
tionally support rich specification logics. Proof search and automation for
these logics however is difficult, and proving a non-trivial theorem usually
requires manual guidance by an expert user. Automated theorem provers on
the other hand, while often designed for simpler logics, have become increas-
ingly powerful over the past few years. New algorithms, improved heuristics
and faster hardware allow interesting theorems to be proved with little or
no human interaction, sometimes within seconds.

By integrating automated provers with interactive systems, we can pre-
serve the richness of our specification logic and at the same time increase
the degree of automation [22]. This is an idea that goes back at least to
the early nineties [14]. However, to ensure that a potential bug in the au-
tomated prover does not render the whole system unsound, theorems in
Isabelle, like in other LCF-style [8] provers, can be derived only through a
set of core inference rules. Therefore it is not sufficient for the automated
prover to return whether a formula is provable, but it must also generate the
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actual proof, expressed (or expressable) in terms of the interactive system’s
inference rules.

Formal verification is an important application area of interactive the-
orem proving. Problems in verification can often be reduced to Boolean
satisfiability (SAT), and recent SAT solver advances have made this ap-
proach feasible in practice. Hence the performance of an interactive prover
on propositional problems may be of significant practical importance. In
this paper we describe the integration of zChaff [17], a leading SAT solver,
with the Isabelle/HOL [18] prover. We show that using zChaff to prove the-
orems of propositional logic dramatically improves Isabelle’s performance
on this class of formulas. Furthermore, while Isabelle’s previous decision
procedures simply fail on unprovable conjectures, zChaff is able to produce
concrete counterexamples.

The next section describes the integration of zChaff with Isabelle/HOL
in more detail. In Section 3 we evaluate the performance of our approach,
and report on experimental results. Related work is discussed in Section 4.
Section 5 concludes this paper with some final remarks and points out di-
rections for future research.

2 System Description

To prove a propositional tautology φ in the Isabelle/HOL system with the
help of zChaff, we proceed in several steps. First φ is negated, and the
negation is converted into an equivalent formula φ∗ in conjunctive normal
form. φ∗ is then written to a file in DIMACS CNF format [6], the input
format supported by zChaff (and many other SAT solvers). zChaff, when
run on this file, returns either “unsatisfiable”, or a satisfying assignment for
φ∗.

In the latter case, the satisfying assignment is displayed to the user. The
assignment constitutes a counterexample to the original conjecture. When
zChaff returns “unsatisfiable” however, things are more complicated. If we
have confidence in the SAT solver, we can simply trust its result and accept
φ as a theorem in Isabelle. The theorem is tagged with an “oracle” flag to
indicate that it was proved not through Isabelle’s own inference rules, but
by an external tool. In this scenario, a bug in zChaff could allow us to derive
inconsistent theorems in Isabelle/HOL.

The LCF-approach instead demands that we verify zChaff’s claim of
unsatisfiability within Isabelle/HOL. While this is not as simple as the val-
idation of a satisfying assignment, the increasing complexity of SAT solvers
has before raised the question of support for independent verification of their
results, and in 2003 zChaff has been extended by L. Zhang and S. Malik [27]
to generate resolution-style proofs that can be verified by an independent
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checker.1 Hence our main task boils down to using Isabelle/HOL as an
independent checker for the resolution proof found by zChaff.

zChaff stores this proof in a text file that is read in by Isabelle, and
the individual resolution steps are replayed in Isabelle/HOL. Section 2.1
describes the necessary preprocessing of the input formula, and details of
the proof reconstruction are explained in Section 2.2. The overall system
architecture is shown in Figure 1.

2.1 Preprocessing

Isabelle/HOL offers higher-order logic (on top of Isabelle’s meta logic),
whereas zChaff only supports formulas of propositional logic in conjunctive
normal form. Therefore the (negated) input formula φ must be preprocessed
before it can be passed to zChaff.

First connectives of the meta logic, namely meta implication (=⇒) and
meta equivalence (≡), are replaced by the corresponding HOL connectives
−→ and =. This is merely a technicality. Then the Boolean constants True
and False are eliminated from φ, as are implication, −→, and equivalence, =.
The only remaining connectives are conjunction, disjunction, and negation.
Finally φ is converted into negation normal form, and then into conjunctive
normal form (CNF). The naive conversion currently implemented may cause
an exponential blowup of the formula, but a Tseitin-style encoding [25] could
easily be used instead (introducing existentially quantified variables at the

1This is the very reason why we chose zChaff as the SAT solver to be integrated
with Isabelle/HOL. Extending other DPLL-based solvers with proof-generating capabili-
ties should be relatively simple [27], but despite some work in this direction [7], zChaff, to
our knowledge, is currently the only proof-generating SAT solver that is publicly available.
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HOL level, cf. [9]). Quantified subformulas of φ are treated as atomic.
Note that it is not sufficient to convert φ into an equivalent formula φ′ in

CNF. Rather, we have to prove this equivalence inside Isabelle/HOL. The
result is not a single formula, but a theorem of the form φ = φ′. Our main
workhorse for the construction of this theorem is a generic function thm of,
proposed by A. Chaieb and T. Nipkow [5]:

thm_of decomp t =

let

(ts, recomb) = decomp t

in recomb (map (thm_of decomp) ts)

It takes a decomposition function decomp of type α → α list×(β list → β)
and a problem t of type α, decomposes t into a list of subproblems ts

and a recombination function recomb, solves the subproblems recursively,
and uses recomb to combine the recursive solutions into an overall solution.
In our setting, t is a formula, decomp will look at its syntactic structure
(i.e. its outmost connectives), and β is the type of theorems. When t is
just a literal, we use reflexivity of = to derive t = t. Tautologies like
¬P = P ′ =⇒ ¬Q = Q′ =⇒ ¬(P ∧ Q) = P ′

∨ Q′ (which are easily provable
in Isabelle/HOL) are used to implement the recombination function. This
tautology, for example, corresponds to one of de Morgan’s laws, and is part of
the conversion into negation normal form. All of the conversions mentioned
above can then be handled with proper instantiations for decomp.

zChaff treats clauses as sets of literals, making implicit use of associativ-
ity, commutativity and idempotence of disjunction. Therefore some further
preprocessing is necessary, aside from conversion to CNF. Using associativ-
ity of conjunction and disjunction, we rewrite φ′ into an equivalent CNF
formula with unnecessary parentheses removed. In a second step, we re-
move duplicate literals, so that every clause contains each literal at most
once. Finally, using P ∨ ¬P = True, we remove every clause that contains
both a literal and its negation. Each preprocessing step yields an equiva-
lence theorem that was proved in Isabelle/HOL, and transitivity of = allows
us to combine these theorems into a single theorem φ = φ∗, where φ∗ is
the final result of our conversion. Unless φ∗ is already syntactically equal
to True or False, it is then written to a file in DIMACS CNF format, and
zChaff is invoked on this file.

2.2 Proof Reconstruction

When zChaff returns “unsatisfiable”, it also generates a resolution-style
proof of unsatisfiability and stores the proof in a text file [27]. This file
consists of three sections: clauses derived from the original problem by reso-
lution, the values of variables implied by these clauses, and a conflict clause,
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i.e. a derived clause in which all literals are false. The text file is parsed by
Isabelle, and the relevant information contained in it is used to reconstruct
the unsatisfiability proof in Isabelle/HOL. Proof reconstruction is based on
two simple functions: a function prove clause that uses resolution to derive
new theorems of the form φ∗

−→ c from existing theorems φ∗
−→ c1, . . . ,

φ∗
−→ cn (where c and c1, . . . , cn are single clauses), and another function

prove literal that proves φ∗
−→ l (where l is a single literal) from l’s

antecedent φ∗
−→ c. Here c must be a clause that contains l, and for all

other literals l′ in c a theorem of the form φ∗
−→ ¬l′ must be provable.

These functions correspond to the first and second section, respectively, of
the text file generated by zChaff.

prove_clause clause_id =

resolution (map prove_clause (resolvents_of clause_id))

prove_literal var_id =

let

th_ante = prove_clause (antecedent_of var_id)

var_ids = filter (fn i => i <> var_id)

(var_ids_in_clause th_ante)

in resolution (th_ante :: map prove_literal var_ids)

resolvents of and antecedent of are auxiliary functions that rely on
the information provided by zChaff to return the IDs of a clause’s resolvents
or a variable’s antecedent, respectively. var ids in clause, when applied
to a theorem of the form φ∗

−→ c, returns the IDs of variables occurring in
clause c.

Resolution between two clauses c1 and c2 is always performed with
the first literal in c1 that occurs with opposite polarity in c2. Note that
resolution must internally use associativity and commutativity of disjunc-
tion to reorder clauses, and idempotence to ensure that the resulting clause
contains each literal at most once.

Proof reconstruction proceeds in three steps. First the conflict clause is
proved by a call to prove clause. Then prove literal is called for every
literal in the conflict clause, to show that the literal must be false. Finally
resolving the conflict clause with these negated literals yields the theorem
φ∗

−→ False.
For efficiency reasons, the actual implementation is slightly different from

what is shown above. Some clauses that were derived by zChaff may be used
many times during the proof, while others are perhaps not used at all. The-
orems that were proved once are therefore stored in two arrays (one for
clauses, one for literals), and simply looked up – rather than reproved –
should they be needed again. Hence our implementation is not purely func-
tional.
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2.3 A Simple Example

In this section we illustrate the proof reconstruction using a small example.
Consider the following input formula

φ ≡ (¬v1 ∨ v2) ∧ (¬v2 ∨ ¬v3) ∧ (v1 ∨ v2) ∧ (¬v2 ∨ v3).

Since φ is already in conjunctive normal form, preprocessing simply yields
the theorem φ = φ. The corresponding DIMACS CNF file, aside from its
header, contains one line for each clause in φ:

-1 2 0

-2 -3 0

1 2 0

-2 3 0

zChaff easily detects that this problem is unsatisfiable, and creates a text
file with the following data:

CL: 4 <= 2 0

VAR: 2 L: 0 V: 1 A: 4 Lits: 4

VAR: 3 L: 1 V: 0 A: 1 Lits: 5 7

CONF: 3 == 5 6

This tells Isabelle that first a new clause (with ID 4) is derived by resolv-
ing clause 2, v1∨ v2, with clause 0, ¬v1∨ v2. The first variable that occurs
both positively and negatively in clause 2 and clause 0 is v1; this variable is
eliminated by resolution.

Now the value of variable 2 (VAR: 2) can be deduced from clause 4 (A:
4). v2 must be true (V: 1). Clause 4 contains only one literal (Lits: 4),
namely v2 (since 4 ÷ 2 = 2), occuring positively (since 4 mod 2 = 0). This
decision is made at level 0 (L: 0), before any decision at higher levels.

Likewise, the value of variable 3 can then be deduced from clause 1,
¬v2 ∨ ¬v3. v3 must be false (V: 0).

Finally clause 3 is our conflict clause. It contains two literals, ¬v2 (since
5 ÷ 2 = 2, 5 mod 2 = 1) and v3 (since 6 ÷ 2 = 3, 6 mod 2 = 0). But we
already know that both literals must be false, so this clause is not satisfiable.

Note that information concerning the level of decisions, the actual value
of variables, or the literals that occur in a clause is redundant in the sense
that it is not needed by Isabelle to validate zChaff’s proof. This information
can always be reconstructed from the original problem.

Also note that the actual proof reconstruction in Isabelle proceeds back-
wards, starting from the conflict clause. This has the advantage that res-
olution steps that are recorded by zChaff, but not needed to show un-
satisfiability are not replayed in Isabelle. In our example, first clause 3
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is proved (which is trivial, since it is one of the original clauses). Then
prove literal 2 is called, immediately leading to a call of prove clause 4.
Clause 4 is proved by resolving clause 2 with clause 0. Now prove literal 3

is called, and since clause 1, the antecedent of variable 3, also contains vari-
able 2, this leads to another call of prove literal 2. Finally a contradic-
tion can be derived by resolving the conflict clause, clause 3, with the results
of prove literal 2 and prove literal 3.

3 Evaluation

Isabelle/HOL offers three major automatic proof procedures: auto, which
performs simplification and splitting of a goal, blast [21], a tableau-based
prover, and fast, which searches for a proof using standard Isabelle infer-
ence. Details can be found in [18]. We compared the performance of our
approach to that of Isabelle’s existing proof procedures on all 42 problems
contained in version 2.6.0 of the TPTP library [24] that have a representa-
tion in propositional logic. The problems were negated, so that unsatisfiable
problems became provable. All benchmarks were run on a machine with a
3 GHz Intel Xeon CPU and 1 GB of main memory.

19 of these 42 problems are rather easy, and were solved in less than a
second each by both the existing procedures and the SAT solver approach.
Table 1 shows the times in seconds required to solve the remaining 23 prob-
lems. An x indicates that the procedure ran out of memory or failed to
terminate within an hour.

Proof reconstruction in Isabelle/HOL is currently several orders of mag-
nitude slower than proof verification with an external checker [27] written
in C++. While there may still be potential for optimization in the Is-
abelle/HOL implementation, profiling indicates that this difference must
mainly be attributed to the data structures and functions provided by Is-
abelle’s LCF-style kernel, which are not geared towards clausal reasoning.

The SAT solver approach dramatically outperforms the automatic proof
procedures that were previously available in Isabelle/HOL. The other pro-
cedures combined solved only 8 of the harder problems. Running times
between the different procedures vary wildly, and they all fail to terminate
for the 7 satisfiable (i.e. unprovable) problems. In contrast, the SAT solver
approach solves all problems, takes less than two seconds on all but two
problems, and provides actual counterexamples for the unprovable prob-
lems. Furthermore, the rightmost column of Table 1 already shows the total
(combined) time for the invocation of zChaff and the following proof recon-
struction in Isabelle/HOL. zChaff alone terminates after a usually negligible
fraction of this time, at which point a definite answer can already be dis-
played to the user – a feature that is particularly useful in our interactive
setting.
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Problem Status auto blast fast zChaff

MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4

Table 1: Running times (in seconds) for TPTP problems

4 Related Work

Michael Gordon has implemented HolSatLib [9], a library which is now part
of the HOL 4 theorem prover. This library provides functions to convert
HOL 4 terms into CNF, and to analyze them using a SAT solver. In the case
of unsatisfiability however, the user only has the option to trust the external
solver. No proof reconstruction takes place, “since there is no efficient way
to check for unsatisfiability using pure Hol98 theorem proving” [9]. A bug
in the SAT solver could ultimately lead to an inconsistency in HOL 4.

Perhaps closer related to our work is the integration of automated first-
order provers, recently further explored by Joe Hurd [12, 13] and Jia Meng [15,
16]. Proofs found by the automated system are either verified by the inter-
active prover immediately [12], or translated into a proof script that can
be executed later [16]. The main focus of their work however is on the
necessary translation from the interactive prover’s specification language to
first-order logic. In contrast our approach is so far restricted to instances of
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propositional tautologies, but it avoids difficult translation issues, and uses
a SAT solver, rather than a first-order prover.

A custom-built SAT solver has been integrated with the CVC Lite sys-
tem [3] by Clark Barrett et al. [4]. While this solver produces proofs that
can be checked independently, our work shows that it is possible to integrate
an existing, highly efficient solver with an LCF-style prover: the information
provided by recent versions of zChaff is sufficient to produce a proof object
in a theorem prover, no custom-built solver is necessary.

Other applications of SAT solvers in the context of theorem proving
include SAT-based decision procedures (e.g. [2, 23]), as well as SAT-based
model generation techniques (e.g. [1, 26]). These applications again require
involved translations, and a correctly implemented SAT solver is usually
taken for granted.

5 Conclusions and Future Work

Our results show that the zChaff-based tactic is clearly superior to Isabelle’s
built-in tactics for propositional formulas. With the help of zChaff, many
formulas that were previously out of the scope of Isabelle’s built-in tac-
tics can now be proved – or refuted – automatically, often within seconds.
Isabelle’s applicability as a tool for formal verification, where large proposi-
tional problems occur in practice, has thereby improved considerably.

However, Isabelle’s performance is still not sufficient for problems with
thousands of clauses, like some of those found in the SATLIB library [11].
Their sheer size currently does not permit an efficient treatment in Is-
abelle/HOL. Further work is necessary to investigate if this issue can be
resolved by relatively minor optimizations to Isabelle’s kernel, or if an exten-
sion of the LCF-style kernel with optimized data structures and algorithms
for propositional logic is more promising.

The approach presented in this paper has applications beyond proposi-
tional reasoning. The decision problem for (fragments of) richer logics can
be reduced to SAT [2, 23]. Consequently, proof reconstruction for propo-
sitional logic can serve as a foundation for proof reconstruction for other
logics. Based on our work, one only needs a proof-generating implementa-
tion of the reduction to integrate the whole SAT-based decision procedure
with an LCF-style theorem prover.

Acknowledgments The author would like to thank Sharad Malik and Zhaohui
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