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Abstract. In this paper we formally state and prove theorems charac-
terizing when a function can be constructively reformulated using the
recursion operators fold and unfold, i.e. given a function h, when can a
function g be constructed such that h = fold g or h = unfold g? These
results are refinements of the classical characterization of fold and unfold

given by Gibbons, Hutton and Altenkirch in [6]. The proofs presented
here have been formalized in Nuprl’s constructive type theory [5] and
thereby yield program transformations which map a function h (accom-
panied by the evidence that h satisfies the required conditions), to a
function g such that h = fold g or, as the case may be, h = unfold g.

1 Introduction

Under the proofs-as-programs interpretation, constructive proofs of theorems re-
lating programs yield “correct-by-construction”program transformations. In this
paper we formally prove constructive theorems characterizing when a function
can be formulated using the recursion operators fold and unfold, i.e. given a func-
tion h, when does there exist (constructively) a function g such that h = fold g
or h = unfold g? The proofs have been formalized in Nuprl’s constructive type
theory [5] and thereby yield program transformations which map a function h
– accompanied by the evidence that h satisfies the required conditions – to a
function g such that h = fold g or, as the case may be, h = unfold g.

The results presented here are refinements of the classical characterization
of fold / unfold given by Gibbons, Hutton and Altenkirch in [6]. As they remark,
their characterization is set theoretic and makes essential use of classical logic and
the Axiom of Choice. A constructive characterization of fold was given by Weber
in [15] and a counter-example showing that indeed, under the characterization
given in [6], there are constructive functions h that can be written in the form
fold g where g is necessarily incomputable. We extend those results here and
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present a constructive characterization for both fold and unfold. Following [6]
our results are presented in the context of a category-theoretic framework, also
formalized in Nuprl.

In the next section we describe the definitions of the Nuprl formalization of
category theory required later in the paper resisting elaboration. We do not state
or prove any theorems in this section. A description of the Nuprl formalization
of category theory can be found in [15]. In following sections we define catamor-
phisms and anamorphisms and, relying on their universal property, give formal
Nuprl definitions of fold and unfold. We present the statements of the theorems
which classically characterize fold and unfold from [6]. It turns out that one direc-
tion of the classical theorems is constructively provable. For the other direction,
we refine the conditions on the antecedents to obtain characterizations of fold

and unfold which hold constructively. The constructive content of the proof of
these theorems are the desired program transformations.

2 Category Theory in Nuprl

The Nuprl type theory and proof system have previously been described in this
conference [4], a recent and comprehensive reference for Nuprl’s constructive
type theory is available on-line [1]. In short, Nuprl draws heavily on Martin-Löf
type theory [12], which uses an open-ended sequence of universes U1, U2, U3, . . .
to stratify the concept of type.

The formal Nuprl definition of the type category (up through universe level
i) is shown in Fig. 1. This definition follows the standard definition, as found
in say [10]. In the definition: Obj is the type of objects in the category; A is the
type of arrows; dom and cod are the functions mapping arrows to their domains
and codomains; o is the type of the composition operator (which is constrained
to be defined only on arrows whose domains and codomains align properly and
is associative); and the final component of the product, id, specifies the function
which maps objects to arrows preserving the unit law.

Cat{i}
def

==

Obj:
�

i�
A:
�

i�
dom:(A � Obj)�
cod:(A � Obj)�
o:{o:(g:A � f:{f:A| cod f = dom g} �

{h:A| dom h = dom f � cod h = cod g}) |�
f,g,h:A. cod f = dom g � cod g = dom h �

(h o g) o f = h o (g o f)

}�
{id:(p:Obj � {f:A| dom f = p � cod f = p}) |�

f:A. (id(cod f)) o f = f � f o (id(dom f)) = f}

Fig. 1. Abstraction: category

For a category C we use selectors C_Obj, C_Arr, C_dom, C_cod, C_op and
C_id to refer to the components of C.
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The analog of the large category of sets in our type theoretic formulation
is the category of types whose universe level is bounded by some i ∈ N. The
arrows in this category are triples of the form 〈A, B, f〉 where A, B ∈ Ui and
f ∈ A → B. The category of types is defined in Fig. 2.

large_category{i}
def

==

<
�

i,

(A:
�

i
�

B:
�

i
�

(A � B)),�
f. f.1,�
f. f.2.1,�
g,f. <f.1, g.2.1, g.2.2 o f.2.2>,�
p. <p, p,

�
x.x>>

Fig. 2. Abstraction: large_category

The well-formedness goal is stated as: large_category{i} ∈ Cat{i’}, i.e.
it says that the category of types below universe level i inhabits the type category
at level i + 1.

A miscellany of defined notions used later in the paper are displayed in Fig. 3.

C-composable(f,g)
def

== C_cod f = C_dom g

Mor[C](p,q)
def

== {f:C_Arr| C_dom f = p � C_cod f = q}

C-initial(p)
def

==
�
q:C_Obj. � !f:C_Arr. C_dom f = p � C_cod f = q

C-terminal(p)
def

==
�
q:C_Obj. � !f:C_Arr. C_dom f = q � C_cod f = p

Fig. 3. Abstractions: composable, morphism, initial and terminal

Functors are arrows between categories. A functor from C to D, where C
and D are categories, maps objects in C to objects in D and arrows in C to
arrows in D such that these maps preserve structure, i.e. they are compatible
with the categories’ domain and codomain operators, preserve identity elements
and respect composition of arrows. The formal definition is given in Fig. 4.

Functor{i}(C,D)
def

==

{C:Cat{i}}�
{D:Cat{i}}�
O:(C_Obj � D_Obj)�
{M:C_Arr � D_Arr|

(
�
f:C_Arr. D_dom (M f) = O (C_dom f)

� D_cod (M f) = O (C_cod f))

c � ((
�
f:C_Arr.

�
g:{g:C_Arr| C_dom g = C_cod f}

M (g C_op f) = (M g) D_op (M f))

� (
�
p:C_Obj. M (C_id p) = D_id (O p)))}

F_dom
def

==F.1

F_cod
def

==F.2.1

Fig. 4. Abstractions: functor, functor_dom and functor_cod
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Given a category C and a functor F : C → C, an algebra over F is a pair
〈A, f〉, where A is an object and f : FA → A is an arrow in C. The formal
definitions are given in Fig. 5.

Algebra(F)
def

==

p:F_dom_Obj
�

{f:F_dom_Arr| F_dom_dom f = F_O p � F_dom_cod f = p}

Hom(F)
def

==

A:Algebra(F)�
B:Algebra(F)�
{f:F_dom_Arr| (F_dom_dom f = A_obj) c � (F_dom_cod f = B_obj)

c � (f F_dom_op A_arr = B_arr F_dom_op (F_M f))}

algebra_category(F)
def

==<Algebra(F), Hom(F),
�
h.h_dom,

�
h.h_cod,�

h,g.h o_hom[F] g,
�
A.id_hom[F](A)>

Fig. 5. Abstractions: algebra, homomorphism and algebra_category

A coalgebra is a pair 〈A′, f ′〉, where A′ is an object and f ′ : A′ → FA′ is
an arrow in C. Thus, coalgebras are algebras over the dual category. The formal
definitions are given in Fig. 6.

Coalgebra(F)
def

==

p:F_dom_Obj
�

{f:F_dom_Arr| F_dom_dom f = p � F_dom_cod f = F_O p}

Cohom(F)
def

==

A:Coalgebra(F)�
B:Coalgebra(F)�
{f:F_dom_Arr| (F_dom_dom f = A_obj) c � (F_dom_cod f = B_obj)

c � ((F_M f) F_dom_op A_arr = B_arr F_dom_op f)}

coalgebra_category(F)
def

==<Coalgebra(F), Cohom(F),
�
h.h_dom,

�
h.h_cod,�

h,g.h o_cohom[F] g,
�
A.id_cohom[F](A)>

Fig. 6. Abstractions: coalgebra, cohomomorphism and coalgebra_category

3 Catamorphisms and Anamorphisms

Catamorphisms (‘folds’) and anamorphisms (‘unfolds’) can be formalized as cer-
tain arrows in the category of algebras and in the category of coalgebras, re-
spectively. Significantly, they serve as a basis for a transformational approach to
functional programming [3] and a wide variety of transformations, optimizations
and proof techniques are known for algorithms that are expressed as combina-
tions of folds and unfolds [14, 2, 8, 7, 9, 15].

Catamorphisms are homomorphisms from an initial algebra in the category of
algebras, anamorphisms are defined as cohomomorphisms to a terminal coalgebra
in the category of coalgebras.

An algebra 〈µF, in〉 is initial if and only if it is an initial object (see Fig. 3)
in the category of algebras; that is, for every algebra 〈A, f〉, there exists a unique
homomorphism h : 〈µF, in〉 → 〈A, f〉. A coalgebra 〈νF, out〉 is terminal if and
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only if it is a terminal object in the category of coalgebras; i.e., for every coal-
gebra 〈A, f〉, there exists a unique cohomomorphism h : 〈A, f〉 → 〈νF, out〉.

Definition 1 (fold) Suppose C is a category, F : C → C is a functor and
〈µF, in〉 is an initial algebra. Then for every algebra 〈A, f〉, fold f is defined
as the unique homomorphism from 〈µF, in〉 to 〈A, f 〉.

F (µF )

in

��

F (fold f)
// FA

f

��
µF

fold f

// A

Fig. 7. (fold f) · in = f · F (fold f)

We say an arrow h is a catamorphism if and only if it can be written as fold f
for some arrow f .

Definition 2 (unfold) Suppose C is a category, F : C → C is a functor and
〈νF, out〉 is a terminal coalgebra. Then for every coalgebra 〈A, f 〉, unfold f is
defined as the unique cohomomorphism from 〈A, f〉 to 〈νF, out〉.

A

f

��

unfold f
// νF

out

��

FA
F (unfold f)

// F (νF )

Fig. 8. F (unfold f) · f = out · (unfold f)

Figure 8 illustrates this situation. We say an arrow h is an anamorphism if and
only if it can be written as unfold f for some arrow f . These definitions imply
the following universal properties for fold and unfold [11].

Theorem 1 (Universal Property: fold). Let C be a category, F : C → C a
functor and 〈µF, in〉 an initial algebra. Furthermore, suppose that 〈A, f〉 is an
algebra and that h : µF → A. Then

h = fold f ⇐⇒ h · in = f · Fh.

Theorem 2 (Universal Property: unfold). Let C be a category, F : C → C
a functor and 〈νF, out〉 a terminal coalgebra. Furthermore, suppose that 〈A, f〉
is a coalgebra and that h : A → νF . Then

h = unfold f ⇐⇒ Fh · f = out · h.
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Based on their universal properties, formalize fold and unfold as relations
(shown in Fig. 9). The well-formedness theorems state that they inhabit P,
Nuprl’s type of propositions. We remark that h is unique when h = unfold f
or h = fold f .

h=fold[C,F,I](f)
def

==(F_dom_dom h = I_obj) c � (F_dom_cod h = f_obj)

c � (h F_dom_op I_arr = f_arr F_dom_op (F_M h))

h=unfold[C,F,T](f)
def

==(F_dom_dom h = f_obj) c � (F_dom_cod h = T_obj)

c � ((F_M h) F_dom_op f_arr = T_arr F_dom_op h)

Fig. 9. Abstractions: fold and unfold

4 When is an Arrow a Catamorphism or an

Anamorphism?

The universal properties for fold and unfold provide technically complete answers
to this question. An arrow h : µF → A is a catamorphism if and only if h · in =
f ·Fh for some arrow f : FA → A. However, usually only the arrow h is given—
how would we know if an arrow f exists such that the above equation holds?
And more importantly, how would we construct f from h? Dually, an arrow
h : A → νF is an anamorphism if and only if Fh · f = out · h for some arrow
f : A → FA. Again, to show that f exists or methods to construct it are not
given.

E. Meijer, M. Fokkinga, and R. Paterson [13] give the following results re-
garding left and right invertible arrows.

Definition 3 (Left and Right Invertible) Let C be a category and f an ar-
row in C.

1.) We say f is left-invertible (in C) if and only if there exists an arrow g in C
such that g · f = id (dom(f)).

2.) We say f is right-invertible (in C) if and only if there exists an arrow g in
C such that f · g = id(cod(f)).

The corresponding Nuprl abstractions are shown in Fig. 10. Their well-
formedness theorems simply state that these abstractions are propositions.

left-invertible[C](f)
def

==

� g:{g:C_Arr| C-composable(f,g)} . g C_op f = C_id (C_dom f)

right-invertible[C](f)
def

==

� g:{g:C_Arr| C-composable(g,f)} . f C_op g = C_id (C_cod f)

Fig. 10. Abstractions: left_invertible and right_invertible

The following theorems provide tools to show when f exists.
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Theorem 3. If C is a category, F : C → C is a functor with an initial algebra
〈µF, in〉, and h : µF → A is a left-invertible arrow in C, then, for some arrow
f : FA → A, h = fold f .

Theorem 4. If C is a category, F : C → C is a functor with a terminal coalgebra
〈νF, out〉, and h : A → νF is a right-invertible arrow in C, then, for some arrow
f : A → FA, h = unfold f .

The Nuprl theorems formalizing these results are shown in Fig. 11. Proofs in
Nuprl are created in an interactive fashion. In each proof step, instances of (one
or more) proof rules are chosen by the user and applied to the current sequent.
Both theorems above are proved in about 70 steps each.

�
C:Cat{i}.

�
F:Functor{i}(C,C).�

I:{I:Algebra(F)| algebra_category(F)-initial(I)} .�
h:{h:F_dom_Arr| F_dom_dom h = I_obj} .

left-invertible[F_dom](h) � ( � f:Algebra(F). h=fold[C,F,I](f) )�
C:Cat{i}.

�
F:Functor{i}(C,C)�

T:{T:Coalgebra(F)| coalgebra_category(F)-terminal(T)}�
h:{h:F_dom_Arr| F_dom_cod h = T_obj}

right-invertible[F_dom](h) � � f:Coalgebra(F). h=unfold[C,F,T](f)

Fig. 11. Thms: left_invertible_implies_fold right_invertible_implies_unfold

Figure 12 shows the extract3 of the proof of right_invertible_implies_
unfold. We can clearly see the witness term in Nuprl notation: The witness term
is given by the coalgebra <F_dom_dom h, (F_M g) F_dom_op (T_arr F_dom_op

h)>. A similar extract results from the proof of the theorem left_invertible_

implies_fold.

�
C,F,T,h,p.

let <g,_> = p in

<<F_dom_dom h, (F_M g) F_dom_op (T_arr F_dom_op h)>, Ax, Ax, Ax>

Fig. 12. Simplified Extract of right_invertible_implies_unfold

5 Classically Characterizing fold and unfold

For the special case of the category SET , with sets as objects and functions
as arrows, J. Gibbons, G. Hutton, and T. Altenkirch [6] proved the following
theorems characterizing when an arrow is a catamorphism or an anamorphism.

Theorem 5 (Gibbons, Hutton, Altenkirch: fold). Let F : SET → SET
be a functor with an initial algebra 〈µF, in〉, A be a set, and h : µF → A. Then
(∃g : FA → A. h = fold g) ⇐⇒ ker (Fh) ⊆ ker (h · in).

3 The extract has been simplified by unfolding definitions, performing β-reductions
and α-renaming selected variables to make the code more readable.
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Here, ker f , the kernel of a function f : A → B, is defined as a binary relation
on A containing all pairs of elements in A that are mapped to the same element
in B. It is formalized in Fig. 13.

We remark here that this theorem of classical set theory is too strong in the
following sense: there exists a function h such that h is computable and such
that ker (Fh) ⊆ ker (h · in) but where g, which exists by Thm. 5, is necessarily
incomputable [15].

The following theorem characterizes the dual unfold.

Theorem 6 (Gibbons, Hutton, Altenkirch: unfold). Let F : SET → SET
be a functor with a terminal coalgebra 〈νF, out〉, A be a set, and h : A → νF .
Then (∃g : A → FA. h = unfold g) ⇐⇒ img(out · h) ⊆ img(Fh).

The image of a function f : A → B, img f , is the dual notion to the kernel
of f (see Fig. 13).

ker[A,B] f
def

=={aa:A
�

A| f aa.1 = f aa.2}

img[A,B] f
def

=={b:B| � a:A. b = f a}

Fig. 13. Abstractions: kernel and image

6 A Constructive Characterization of fold and unfold

Translating the statements of Thms. 5 and 6 so that the category SET is replaced
by the large category of types result in theorems that are constructively provable
in the (⇒) direction [15]. However, the (⇐) direction contains the computation-
ally interesting parts of these theorems; it claims existence for the function g we
are interested in.

6.1 Characterizing fold

Analyzing the proof of Thm. 5 led us to identify additional constraints that
in fact allow a constructive proof of a modified version of the (⇐) direction.
Before we state these conditions, we must address an issue that is not raised by
differences between classical and constructive mathematics, but by the inherent
differences between set theory and type theory.

Thus far, while considering the constructive interpretation of the classical
results we have interpreted types mutatis mutandis as sets. Up to this point this
informal practice has proved harmless, but at this point our näıve identification
of sets and types fails. Consider the analogue of the empty set, i.e. types having
no inhabitants. Equality on types in Nuprl is not extensional as it is for sets.
Hence, unlike set theory, where every set containing no elements is identified
with ∅, there is no canonical representative for the empty type; e.g. neither
Void nor {x : Z| x < x} are inhabited and yet they are distinguished as types.
The identification of empty sets with the empty set is a crucial step in the (⇐)
direction of the classical proof.
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Here is the statement of the refined theorem (still in terms of the category
SET ) corresponding to the (⇐) part of Thm. 5.

Theorem 7. Let F : SET → SET be a functor with an initial algebra 〈µF, in〉,
and let A be a set such that we can decide whether A is empty, and h : µF → A.
Furthermore, suppose that for every b ∈ FA we can decide whether b = (Fh)(a)
for some a ∈ F (µF ). Then (∃g : FA → A.h = fold g) ⇐= ker(Fh) ⊆ ker(h · in).

Figure 14 shows a type-theoretic formalization of this theorem in Nuprl.
Dec(P) is used to abbreviate P ∨ ¬P. The proof depends on two lemmata,
namely that the inclusion of kernels implies the existence of postfactors, and
that the existence of a function h : µF → A implies the existence of a function
g : FA → A. We say g : B → C is a postfactor of f : A → B for h : A → C if
and only if h = g · f . We will use the notation A → B 6= ∅ to mean that there is
a function inhabiting A → B.

We state and prove the former lemma first.

�
F:Functor{i’}(large_category{i},large_category{i}).�
I:{I:Algebra(F)| algebra_category(F)-initial(I)} .�
A:large_category{i}_Obj.

�
h:Mor[large_category{i}](I_obj,A).

Dec(A) � (
�
b:F_O A. Dec( � a:F_O I_obj. b = (F_M h).2.2 a)) �

(( � g:Algebra(F). h=fold[large_category{i},F,I](g) )�
ker[F_O I_obj,large_category{i}_cod (F_M h)] (F_M h).2.2	

ker[F_O I_obj,large_category{i}_cod (h F_dom_op I_arr)]

(h F_dom_op I_arr).2.2)

Fig. 14. Theorem: kernel_inclusion_implies_fold

Lemma 1. Let f : A → B and h : A → C. Furthermore, suppose we can decide
whether C is empty, and for every b ∈ B we can decide whether b = f(a) for
some a ∈ A. Then (∃g : B → C. h = g · f) ⇐= (ker f ⊆ kerh ∧ B → C 6= ∅).

Proof. Assume ker f ⊆ kerh and B → C 6= ∅.
If C = ∅, then B = ∅ since B → C 6= ∅, and A = ∅ since f : A → B.

Therefore f = h = id(∅), and if we choose g = id(∅), clearly g : B → C and
h = g · f .

If C 6= ∅, let c be an arbitrary element in C. Let choice : {b ∈ B | ∃a ∈
A. b = f(a)} → A be a function with f(choice(b)) = b for all b ∈ {b ∈ B | ∃a ∈
A. b = f(a)}. 4 For b ∈ B define g(b) ∈ C as follows: If b = f(a) for some a ∈ A,
then g(b) = h(choice(b)). Otherwise, g(b) = c.

Now let a ∈ A. Since f(choice(f(a))) = f(a) by definition of choice , we have
(choice(f(a)), a) ∈ ker f ⊆ kerh. Hence g(f(a)) = h(choice(f(a))) = h(a), and
therefore h = g · f . �

4 To prove that such a function choice exists, we use the Axiom of Choice which is
provable in constructive type theory [12] and is a theorem in the Nuprl standard
library.
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�
A,B,C:

�
i.
�
f:A � B.

�
h:A � C.

Dec(C) � (
�
b:B. Dec( � a:A. b = f a)) �

(( � g:B � C. h = g o f)
�

ker[A,B]f
	

ker[A,C]h � B � C)

Fig. 15. Theorem: kernel_inclusion_implies_postfactor

To give a constructive proof that the inclusion of kernels implies the existence
of postfactors, we made two additional assumptions compared to the statement
of this lemma in [6]: i.) that we can decide whether the codomain of h is empty,
and ii.) that we can decide whether an element in the codomain of f is in
the image of f . The Nuprl theorem kernel_inclusion_implies_postfactor is
shown in Figure 15. The formal proof is about 43 steps long.

Figure 16 shows a “lifted” version of the lemma for arrows in the category of
types. Despite the use of the original lemma in the proof of the lifted version,
the proof is about 71 steps long.

�
A,B,C:large_category{i}_Obj.

�
f:Mor[large_category{i}](A,B).�

h:Mor[large_category{i}](A,C).

Dec(C) � (
�
b:B. Dec( � a:A. b = f.2.2 a)) �

(( � g:Mor[large_category{i}](B,C). h = g large_category{i}_op f)�
ker[A,B]f.2.2

	
ker[A,C]h.2.2 � Mor[large_category{i}](B,C))

Fig. 16. Theorem: kernel_inclusion_implies_postfactor_cat

The second lemma required for the proof of Thm. 7 is stated below.

Lemma 2. If F : SET → SET is a functor with an initial algebra 〈µF, in〉, and
A is a set such that we can decide whether A is empty, then

µF → A 6= ∅ =⇒ FA → A 6= ∅.

Proof. If A 6= ∅, then trivially FA → A 6= ∅.
If A = ∅, then the embedding g : A ↪→ µF is a function from A to µF . Thus

Fg : FA → F (µF ) by the properties of functors. Hence h · in · Fg : FA → A.
Therefore FA → A 6= ∅ in either case. �

F (µF )

in

��

FA

f

��

Fg

uu Q
UZ_d

i

µF
h

// A

g

vv Q
UZ_d

i
m

Fig. 17. µF → A 6= ∅ =⇒ FA → A 6= ∅.

Figure 17 illustrates the situation: Given a function h : µF → A, we can find
a function f : FA → A. The functions g : A → µF and Fg : FA → F (µF )
are needed only in the case A = ∅. If A 6= ∅, they may not exist—but we can
construct a function f : FA → A directly then. Note that the lemma is not true
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for arbitrary categories. The proof of the lemma given above is different from the
proof that was given in [6],5 but the theorem hom_fun_implies_algebra_fun

(which is shown in Figure 18) is proved along the same lines. The formal proof
is about 49 steps long.

�
F:Functor{i’}(large_category{i},large_category{i}).�
I:{I:Algebra(F)| algebra_category(F)-initial(I)} .�
A:large_category{i}_Obj. Dec(A) �
Mor[large_category{i}](I_obj,A) � Mor[large_category{i}](F_O A,A)

Fig. 18. Theorem: hom_fun_implies_algebra_fun

We are now ready to prove Theorem 7.

Proof.

ker(Fh) ⊆ ker(h · in)

⇐⇒ { Lemma 2, h : µF → A }

ker(Fh) ⊆ ker(h · in) ∧ FA → A 6= ∅

=⇒ { Lemma 1 }

∃g : FA → A. h · in = g · Fh

⇐⇒ { universal property }

∃g : FA → A. h = fold g.

�

Clearly we can decide whether an element in FA is in the image of Fh
when Fh is surjective (onto). We will show that Fh is surjective if h is. There-
fore every surjective function that satisfies the condition of kernel inclusion is
a catamorphism if we can decide whether its codomain A is empty.6 We could
relatively easily prove this as a corollary to Theorem 7. Closer inspection of the
proof of Theorem 7 however shows that when h is surjective, we do not need the
additional assumption that we can decide whether A is empty.

Theorem 8. Suppose F : SET → SET is a functor with an initial algebra
〈µF, in〉, and h : µF → A is surjective. Then

(∃g : FA → A. h = fold g) ⇐= ker(Fh) ⊆ ker(h · in).

We first prove that a function is surjective if and only if it is right-invertible
in SET .

Lemma 3. Suppose f : A → B. Then

f is surjective ⇐⇒ f is right-invertible in SET .

5 The differences between our proofs can be attributed to the empty type issue men-
tioned earlier, but also because we avoided the form of contrapositive used there,
(¬p ⇒ ¬q) ⇒ (q ⇒ p), which is not constructively valid

6 Note that every injective (one-to-one) function is a catamorphism by Theorem 3.
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Proof. For the (⇒) direction, suppose f is surjective. Then there exists a function
g : B → A such that f(g(b)) = b for all b ∈ B (by the Axiom of Choice). Hence
f · g = id(B), so f is right-invertible.

For the (⇐) direction, suppose f is right-invertible in SET . Then f ·g = id(B)
for some function g : B → A. Now let b ∈ B. Then f(g(b)) = (f · g)(b) =
(id (B))(b) = b. Therefore f is surjective. �

Figure 19 shows a formalization of the lemma in Nuprl. The formal proof
is about 33 steps long and makes use of the ax_choice lemma from the Nuprl
standard library.

�
A,B:
�

i.
�
f:A � B.

Surj(A;B;f)
� � right-invertible[large_category{i}](<A, B, f>)

Fig. 19. Theorem: surjective_iff_right_invertible

We also state and prove a lifted version of the lemma for arrows in the cate-
gory of types. This lifted version is shown in Figure 20. Lifting the lemma requires
about 11 proof steps using the lemma surjective_iff_right_invertible.

�
f:large_category{i}_Arr

Surj(large_category{i}_dom f;large_category{i}_cod f;f.2.2)� � right-invertible[large_category{i}](f)

Fig. 20. Theorem surjective_iff_right_invertible_cat

We now prove a lemma similar to Lemma 1, but for surjective functions.

Lemma 4. Suppose f : A → B is surjective, and suppose h : A → C. Then

(∃g : B → C. h = g · f) ⇐= kerf ⊆ kerh.

Proof. Assume ker f ⊆ kerh.
Let choice : B → A be a function with f(choice(b)) = b for all b ∈ B (such

a function choice exists by the Axiom of Choice since f is surjective). Define
g : B → C by g(b) = h(choice(b)) for every b ∈ B.

Now h = g · f by construction of g: Let a ∈ A. Since f(choice(f(a))) = f(a)
by definition of choice , (choice(f(a)), a) ∈ kerf ⊆ kerh. Therefore g(f(a)) =
h(choice(f(a))) = h(a). �

Figure 21 shows a formalization of this lemma in Nuprl. The formal proof re-
quires about 14 steps. It is similar to the proof of kernel_inclusion_implies_
postfactor, but slightly simpler—just like the informal proof.

�
A,B,C:

�
i.
�
f:A � B.

�
h:A � C. Surj(A;B;f) �

(( � g:B � C. h = g o f)
�

ker[A,B] f
	

ker[A,C] h)

Fig. 21. Theorem: kernel_inclusion_implies_postfactor_surjective

As for the kernel_inclusion_implies_postfactor lemma above, we prove
a lifted version of this lemma for arrows in the category of types. The lifted
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version is shown in Figure 22. Its proof is similar to the proof of the lifted
lemma for functions with a decidable image (see Figure 16) and requires about
47 steps.
�
A,B,C:large_category{i}_Obj.

�
f:Mor[large_category{i}](A,B).�

h:Mor[large_category{i}](A,C). Surj(A;B;f.2.2) �
(( � g:Mor[large_category{i}](B,C). h = g large_category{i}_op f)�

ker[A,B] f.2.2
	

ker[A,C] h.2.2)

Fig. 22. Theorem: kernel_inclusion_implies_postfactor_surjective_cat

Using the two Lemmata 3 and 4, we can now prove Theorem 8.

Proof. We first show that Fh : F (µF ) → FA is surjective. Since h is surjective,
h is right-invertible by Lemma 3. Let g : A → µF be a function with h·g = id(A).
Then

Fh · Fg

= { functors }

F (h · g)

= { assumption }

F (id(A))

= { functors }

id(FA).

Hence Fh is right-invertible, and therefore surjective (again by Lemma 3). Now

ker(Fh) ⊆ ker(h · in)

=⇒ { Lemma 4 }

∃g : FA → A. h · in = g · Fh

⇐⇒ { universal property }

∃g : FA → A. h = fold g

completing the proof. �

See Figure 23 for a statement of this theorem in Nuprl. We use the lemma
kernel_inclusion_implies_postfactor_surjective_cat to prove the exis-
tence of g, and surjective_iff_right_invertible_cat to prove that Fh is
surjective. Altogether the formal proof requires about 145 steps.

We now have two simple conditions for when a constructive function h that
satisfies the condition of kernel inclusion is a catamorphism: h is a catamorphism
if the image of Fh is decidable and we can decide whether the codomain of h is
empty, and h is a catamorphism if h is surjective.

6.2 A small example

Embedded in the constructive proof of Thm. 7 is an algorithm to compute a
function g such that h = fold g. As an example, we want to apply this algorithm

13



�
F:Functor{i’}(large_category{i},large_category{i}).�
I:{I:Algebra(F)| algebra_category(F)-initial(I)} .�
A:large_category{i}_Obj.

�
h:Mor[large_category{i}](I_obj,A).

Surj(I_obj;A;h.2.2) �
(( � g:Algebra(F). h=fold[large_category{i},F,I](g) )�

ker[F_O I_obj,large_category{i}_cod (F_M h)] (F_M h).2.2	
ker[F_O I_obj,large_category{i}_cod (h F_dom_op I_arr)]

(h F_dom_op I_arr).2.2)

Fig. 23. Theorem: kernel_inclusion_implies_fold_surjective

to the function all, defined by all p L = and (map p L). Here L is a list over
some type T , and p : T → B. This function computes whether all elements in
L satisfy the predicate p. To do so however, the implementation first iterates
over L to compute an intermediate list of boolean values, and then it iterates
over the list of booleans to compute their conjunction. Writing all directly as
a catamorphism would eliminate the need for an intermediate list.

Before we can prove that all can be written as a catamorphism, we have to
show that List(T ) is the object of an initial algebra. Consider the functor LT :
SET → SET , defined by LT (A) = 1+(T ×A) and LT (f) = id (1)+(id (T )×f).
Formally verifying that this is in fact a functor takes about 54 proof steps in
Nuprl. This functor has an initial algebra (µLT , in) = (List(T ),nil + cons). To
verify initiality, we have to show that for every other algebra (A, f) there exists
a unique homomorphism h from (List(T ),nil + cons) to (A, f). Since h is a
homomorphism, h([]) = f(inl ·) and h(u :: v) = f(inr (u, h(v))) for all u ∈ T ,
v ∈ List(T ). Both that h is a homomorphism and that h is unique can then be
proved by structural induction on lists. The formal proof is quite technical, and
complicated by our inevitable formalization of algebras, homomorphisms and
arrows in the category of types as tuples. With approximately 211 proof steps, it
is the longest proof in this paper. About 140 of those steps are required only to
show uniqueness of h. However, initiality only needs to be proven once for each
data-type. Having proven initiality of List(T ), we can treat any list-consuming
function, not just all.

Using the kernel_inclusion_implies_fold theorem, we can now prove
that the composition of map and and is a catamorphism. We need just one
more assumption: that we can decide for all b ∈ B whether there exists a
list L ∈ List(T ) with b = and(map(p; L)). Since and(map(p; [])) = true, it is
sufficient if we can decide whether p(t) = false for some t ∈ T . (If there is
such a t, false = and(map(p; t :: [])). Otherwise and(map(p; L)) = true for all
L ∈ List(T ). This argument is reflected in the structure of the resulting pro-
gram.) Figure 24 shows the Nuprl theorem list_and_2_map_is_fold.

* THM list_and_2_map_is_fold�
T:
�
.
�
p:T ��
 .

Dec( � t:T. p t = false)

� ( � g:Algebra(ListF{i}(T))
<T List, 
 ,

�
L. �� (map(p;L))> =

fold[large_category{i},ListF{i}(T),InitialAlgebra(ListF(T))](g) )

Fig. 24. Theorem list_and_2_map_is_fold
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We can unfold its extract (and the extracts of other lemmata that were used
in its proof) to obtain the actual function g with and (map(p; ·)) = fold g. This
function (with a few simplifications made by hand) is shown in Figure 25. The
first and second component of the triple are the function’s domain and codomain,
respectively. The if-then-else statement is used to determine whether x ∈
1 + (T × B) is in the image of LT (and(map(p; ·))). Three cases need to be
distinguished: x = inl ·, x = inr (y1, true), and x = inr (y1, false). The latter
can only occur if p(t) = false for some t ∈ T ; whether such a t exists is determined
by the value of φ. If x is in the image of LT (and(map(p; ·))), the then part is
used to apply and(map(p; ·)) · (nil + cons) to an element z ∈ 1 + (T × List(T ))
with (LT (and (map(p; ·))))(z) = x. Otherwise, an arbitrary boolean (in this case
true) is returned in the else part.

< (ListF{i}(T)_O 
 )
, 

,
�
x.if case x

of inl(_) => true

| inr(<y1,y2>) => case y2

of inl(_) => true

| inr(_) => case φ

of inl(_) => true

| inr(_) => false

then (<T List, 
 , � L. � � (map(p;L))> ListF{i}(T)_dom_op

InitialAlgebra(ListF(T))_arr).2.2

(case x

of inl(_) => <inl � , Ax>

| inr(<y1,y2>) => case y2

of inl(_) => <inr <y1, []> , Ax>

| inr(_) => case φ

of inl(<t,_>) => <inr <y1, t::[]>, Ax>

| inr(_) => arbitrary)

else true

fi >

Fig. 25. A function g with and(map(p; ·)) = fold g

The function shown in Figure 25 is unlikely to be more efficient than the
initial composition of and and map, due to the increased overhead associated
with each list element. However, we could further simplify the function by using
and(map(p; [])) = true and and(map(p; t :: [])) = false and combining the two
outermost case constructs (which have identical structure).

6.3 Constructively characterizing unfold

Now we consider reformulating the (⇐) direction of Theorem 6. To prove it, we
identify additional assumptions under which the inclusion of images construc-
tively implies the existence of prefactors. Dualizing our results for kernels and
postfactors, one could suspect that (among other things) we need to be able to
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decide whether the domain of h is empty. However, it turns out that the classical
proof of the (⇐) direction of Theorem 6 given in [6] can be simplified signifi-
cantly. In particular, the dual of Lemma 2, although easily provable in Nuprl
(see Fig. 26), turns out not to be needed.

�
F:Functor{i’}(large_category{i},large_category{i}).�
T:{T:Coalgebra(F)| coalgebra_category(F)-terminal(T)} .�
A:large_category{i}_Obj. Dec(A) �
Mor[large_category{i}](A,T_obj) � Mor[large_category{i}](A,F_O A)

Fig. 26. Theorem: cohom_fun_implies_coalgebra_fun

Therefore it is sufficient to replace the precondition img(out ·h) ⊆ img(Fh) by
the (classically equivalent) condition ∀c ∈ img(out · h). ∃b ∈ FA. c = (Fh)(b)
to give a constructive proof. We first prove that the latter condition implies the
existence of prefactors.

Lemma 5. Suppose that f : B → C and h : A → C, where A, B, C are sets.
Then (∃g : A → B. h = f · g) ⇐= (∀c ∈ img h. ∃b ∈ B. c = f(b)).

Proof. Assume ∀c ∈ img h. ∃b ∈ B. c = f(b). Let choice : imgh → B be a
function with f(choice(c)) = c for all c ∈ imgh. Now define g = choice · h. Then
(f · g)(a) = f(choice(h(a))) = h(a) for every a ∈ A, hence h = f · g. �

Note the difference between Lemma 5 and [6, Lemma 5.3]: our proof does not
need A → B 6= ∅ as an additional assumption. Figure 27 shows the corresponding
Nuprl theorem, which is proved in 19 steps. As usual, we prove a lifted version
for arrows in the category of types. This lifted version is shown in Fig. 28; using
the image_inv_fun_implies_prefactor lemma, it is proved in 45 steps.

�
A,B,C:

�
i.
�
f:B � C.

�
h:A � C. ( � g:A � B. h = f o g)�

(
�
c:img[A,C] h. � b:B. c = f b)

Fig. 27. Theorem: image_inv_fun_implies_prefactor

�
A,B,C:large_category{i}_Obj.

�
f:Mor[large_category{i}](B,C).�

h:Mor[large_category{i}](A,C).

( � g:Mor[large_category{i}](A,B). h = f large_category{i}_op g)�
(
�
c:img[A,C] h.2.2 � b:B. c = f.2.2 b)

Fig. 28. Theorem: image_inv_fun_implies_prefactor_cat

Our main result for anamorphisms is now immediate.

Theorem 9. Suppose F : SET → SET is a functor with a terminal coalgebra
〈νF, out〉, A is a set, and h : A → νF . Then

(∃g : A → FA. h = unfold g) ⇐= (∀c ∈ img(out · h). ∃b ∈ FA. c = (Fh)(b)).
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Proof.

∀c ∈ img(out · h). ∃b ∈ FA. c = (Fh)(b)

=⇒ { Lemma 5 }

∃g : A → FA. out · h = Fh · g

⇐⇒ { universal property }

∃g : A → FA. h = unfold g.

�

Theorem image_inv_fun_implies_unfold, shown in Fig. 29, is the corre-
sponding Nuprl theorem. Again mostly due to well-formedness goals, the formal
proof requires about 91 steps.

�
F:Functor{i’}(large_category{i},large_category{i}).�
T:{T:Coalgebra(F)| coalgebra_category(F)-terminal(T)} .�
A:large_category{i}_Obj.

�
h:Mor[large_category{i}](A,T_obj).

( � g:Coalgebra(F). h=unfold[large_category{i},F,T](g))�
(
�
c:img[A,F_O T_obj] (T_arr F_dom_op h).2.2

� b:F_O A. c = (F_M h).2.2 b)

Fig. 29. Theorem: image_inv_fun_implies_unfold

7 Conclusions

We have presented a constructive characterization of fold and unfold which we
believe is of interest, independent of the formalizations presented here. However,
we have completely formalized these results in Nuprl. The extract of Thm. 7 was
applied to a small example involving the reformulation of the program all p L

= and (map p L) as a fold. The hardest part of that proof was to show that the
inductive type List(T ) is in fact the object of an initial algebra. However, proofs
of initiality or finality only need be done once for each data-type. We have also
proven finality for the coinductive type Stream(T ) and exercised the extract of
Thm. 9 on a simple stream-generating function.

The presented program transformations could be used in an optimizing com-
piler to transform any function that meets certain (rather simple) semantic cri-
teria into a fold or unfold. No knowledge of the function’s implementation is
required. Of course this generality comes at a price: the semantic properties that
must be verified are, like all non-trivial semantic properties, not decidable in
general. The compiler could analyze the function in question to try and prove
these properties automatically, it could rely on human guidance, or it could use
a combination of both approaches.

In the longer term, we hope to incorporate a wide variety of program trans-
formations into the framework outlined here.
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