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Abstract This article contributes to the field of operating-systems verification. It

presents a formalization of virtual memory that extends to memory-mapped devices.

Our formalization consists of a stack of three detailed formal memory models: physical

memory (i.e., RAM), physically-addressable memory-mapped devices (including their

respective side effects, access and alignment requirements), and page-table based virtual

memory. Each model is formally shown to satisfy the plain-memory specification, a

memory abstraction that enables efficient reasoning for type-correct programs.

This stack of memory models was developed in an attempt to verify Nova, the

Robin micro-hypervisor. It is a key component of our verification environment for

operating-system kernels based on the interactive theorem prover PVS.

Keywords operating-system kernel · micro-hypervisor · virtual memory · memory-

mapped devices · formal verification

1 Introduction

The programming environment of operating-system kernels differs in essential ways

from that of application programs. Certain guarantees, such as that memory behaves

well without strange effects, hold for application programs, because they are provided
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by the operating system. However, these guarantees are not in general valid inside

operating-system kernels. Consequently, a verification environment for kernels must

differ from that of application programs. Consider, for instance, the property that

variables change only when explicitly modified (directly or via an alias). For applica-

tion programs this property can be built into the verification environment. For op-

erating systems, however, the property is not a priori true. Therefore, a verification

environment for operating systems must model many more details of the execution

environment to allow this property to fail, thereby permitting a sound verification of

the kernel code.

In this article, we focus on two points that are different in kernel programming:

control over virtual memory, and direct hardware access. For the first point, virtual

memory, note that operating-system kernels must manage the data structures that

control the mapping from virtual addresses to physical addresses. Simple errors can

therefore lead to a situation where the contents of a relatively large address range

change without accessing it. Additionally, kernels often map the same memory contents

to different virtual address ranges for optimization purposes. We use the term virtual

alias to refer to this phenomenon, where a certain memory area is available at different

(virtual) addresses. Certainly, a verification environment for kernels must model virtual

aliases correctly.

For the second point, direct hardware access, note that hardware registers and

memory-mapped devices have very special behavior when read or written. Reading

or writing might have side effects, that is, trigger special actions in the hardware

that change the state of the system substantially. For instance, whether interrupts

are enabled or disabled is controlled by writing to the EFLAGS register on an IA32

platform [14]. Apart from side effects, one has to pay attention to alignment rules (the

read or write access must be done with a certain base address and a certain access size)

and reserved bits (when writing, certain bits must not be changed). Violating these

requirements might result in a wide range of possible behavior, ranging from correct

execution to an immediate crash of the processor. The precise behavior often depends

on the processor model. The verification environment must therefore very carefully

model all side effects and implement all alignment and reserved-bit checks.

In this article we present our solutions for modeling virtual memory and access to

devices in a kernel verification environment. The material has been developed for the

verification of a micro-hypervisor running on the IA32 platform. Therefore, when it

comes to details (e.g., register names or page-table formats) our descriptions are IA32

specific. The general setup and our modeling techniques, however, apply to all platforms

that have memory-mapped devices and where the kernel runs in virtual memory.

The main contribution of this article is a stack of three detailed formal memory

models:

– physical memory, i.e., RAM (Section 3.2.1);

– device memory, an abstract memory model whose concrete instances contain

memory-mapped devices. Device memory models their side effects, access and align-

ment restrictions, and reserved bits in device registers (Section 4); and

– paged virtual memory, which performs address translation and corresponding

access-permission checks via multi-level page tables (Section 5).

All memory models presented are formally shown to satisfy the plain-memory spec-

ification, a memory abstraction that captures virtual aliases, permits the verification

of page-table modifications, and supports efficient reasoning about well-behaved code
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(Section 3). The stack of memory models remains flexible though, and further layers

may easily be added, because each plain-memory proof (with the exception of the proof

for physical memory, which is the lowermost layer) assumes as one of its preconditions

the plain-memory property for the respective underlying layer. The device memory

model makes plain-memory proofs particularly easy for memory-mapped devices that

have visible side effects and restrictions only on their device registers.

In addition to the core contributions, Section 2 provides an overview of our verifi-

cation environment, and Section 6 contains a verification example. Section 7 discusses

related work, and Section 8 concludes. This article is an extended and revised version

of [25].

The solutions that we present in this article rely on a combination of over-

approximation and underspecification, where especially underspecification plays a very

important role. Over-approximation is used for features that are present on the IA32

platform but never used in our verification target. For instance, the bit that controls

virtual x86 mode is modeled in such a way that any verification attempt fails when it

is switched on.

Underspecification is typically used where the relevant hardware manuals do not

precisely specify the behavior. In addition, we use underspecification to ensure data-

type correctness for hardware operations and the software that we verify. For instance,

the page-table walks that are implemented in a specific part of our hardware model

(see Section 5) use typed memory accesses for reading and writing page-table entries.

These typed accesses leave some important details underspecified. As a result, every

read access generates a proof obligation that data of the right type is contained in

the memory (see Section 2.3 for details). This prevents our hardware model from,

for instance, interpreting a string as a page-table entry, which we consider an error

(although the resulting behavior is precisely defined).

The specification and modeling techniques presented here are key components of

the Robin verification environment. Robin was a European project that ended in

April 2008, with partners from Germany, France, and the Netherlands. The Robin

project focused on the further development of the Nizza security architecture [12]. One

major goal was the design and implementation of Nova, a new micro-hypervisor for the

IA32 architecture, in parallel with the development of formal methods for the verifica-

tion of this new micro-hypervisor [24,26,27]. For more information on Robin see [22,

33].

The formal methods part of the Robin project builds on the earlier VFiasco

project [10,32]. The formalization of IA32 hardware and the plain memory specifi-

cation in the interactive theorem prover PVS [21] were started in VFiasco, but had not

reached a state that permitted verification of actual code. The work was continued in

Robin, finally building a detailed verification environment for operating-system kernels

(and other low-level code) in PVS.

The results of this work are collected at http://www.cs.ru.nl/~tews/Robin. Be-

sides the project deliverables, this web page also contains all relevant software, including

our PVS repository. All PVS code in this article is taken directly from this repository.

All lemmas and theorems contained in this article have been proven in PVS.

http://www.cs.ru.nl/~tews/Robin
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This section provides some background informa-

tion about our verification environment for the

Nova micro-hypervisor, which has been developed

in Robin. According to the classification given

in [13], Nova is a type 1 hypervisor (i.e., running

directly on the hardware platform, with no oper-

ating system underneath) for the common IA32

architecture. It is written in C++ with some in-

line assembly. More technical information can be

obtained from [26] and [27].

Figure 1 illustrates our verification approach.

We perform source-code verification (i.e., C++

code with inline assembly statements) in the interactive theorem prover PVS [21].

The input language of PVS is higher-order logic enriched with predicate subtyping

and dependent record types. As Figure 1 shows, we have modeled parts of the IA32

hardware and of the semantics of C++ data types in PVS. These two blocks provide

the basic operations for the semantics of the Nova source code. On top of the generated

semantics, specifications of Nova’s behavior can be written as formulas in PVS. One

can then use the prover component of PVS to establish the validity of these formulas.

Technically we show

Φdata types , Φhardware ⊢ ϕ(Nova),

where ϕ is a property of the Nova source code, such as absence of runtime type er-

rors, or that a particular function or system call behaves as specified in the Nova

specification [26]. Our verification results describe properties of the source code. A for-

mal lifting of the results to object code (which would eliminate the correctness of the

C++ compiler from our assumptions) was not part of the Robin project.

Figure 2 depicts the data flow of our verification approach. A semantics compiler

translates Nova’s C++ sources into their semantics in higher-order logic in PVS. Us-

ing this semantics, which draws upon the underlying hardware model and data-type

axiomatization, the theorem prover then generates verification conditions (i.e., proof
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obligations required to show that Nova meets its formal specification). These are solved

by interactive proof, ultimately establishing correctness of the Nova implementation.

In the following subsections we elaborate in more detail on important aspects of

the two base blocks of our verification environment, the hardware model and the data

type axiomatization.

2.1 State Transformers

The IA32 hardware is modeled in PVS as a set of its possible states, where each

state contains the contents of the physical memory and the hardware registers. The

operations on the hardware model, as well as the data-type semantics and the semantics

of C++ fragments, are uniformly modeled as state transformers. State transformers

come in two flavors: statement state transformers (for C++ statements), and expression

state transformers (for C++ expressions and everything else). An expression state

transformer is a function of type

State →ExprResult[State, Data].

Here Data is a type parameter for the result of the state transformer (if it terminates

successfully), and State is the type of all possible states of the hardware model. Hence,

expressions may have side effects. For example, reading a value in virtual memory sets

the page-accessed bit in the corresponding page-table entries.

Because both State and Data are type parameters of our PVS theory (as opposed

to types that have a concrete definition), our formalization of the C++ semantics is

polymorphic in the underlying hardware model and datatype semantics. In the verifi-

cation of concrete C++ programs, Data is instantiated with a fixed type for each state

transformer. The State parameter is either instantiated as well (if we verify against a

concrete hardware model), or left polymorphic if we verify against the plain-memory

specification (see Section 3) in general. In the latter case, the verification results au-

tomatically hold for all hardware models for which the plain-memory abstraction was

established.

The type ExprResult is defined as follows:

ExprResult[ State, Data : Type] : Datatype

Begin

OK(state: State, data: Data) : OK?

Exception(ex type: Exception type, state : State) : Exception?

Fatal : Fatal ?

Hang : Hang?

End ExprResult

This piece of PVS code defines ExprResult as a disjoint union with four variants tagged

OK, Exception, Fatal, and Hang. The identifiers with question marks are recognizer

predicates for the corresponding variants (e.g., OK? is true on OK(−), and false on the

other three variants). The identifiers state, data, ex type are (partial) accessor functions

(e.g., state(OK(s, −)) = s).

A state-transformer result of the form OK(s, d) models successful termination with

successor state s and result d. Hang stands for non-termination, for instance because of a

while loop or a page fault that keeps occurring at the same instruction. Non-termination

is an unrecoverable error. (Operating-system kernels should not terminate, but only in
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a very general sense. Looking at details, every system call should terminate, possibly by

returning to a different thread of execution.) Fatal is reserved for other unrecoverable

errors, e.g., attempting to write 3 bytes into the register EAX. We want to rule out

both Hang and Fatal by verification. A result of the form Exception models interrupts

that will be handled by the micro-hypervisor. It also models exceptions [IA32-1-6.4]1

that IA32 instructions—and consequently C++ expressions implemented with these

instructions—may generate: e.g., the div instruction may cause a divide error.2

Statement state transformers are functions of type

State →StmtResult[State],

where StmtResult is defined as follows:

StmtResult[State : Type] : Datatype

Begin

OK(state: State) : OK?

Break(state: State) : Break?

Continue(state : State) : Continue?

Return(state : State) : Return?

Switch(state : State, case: int ) : Switch?

Default(state : State) : Default?

Exception(ex type: Exception type, state : State) : Exception?

Fatal : Fatal ?

Hang : Hang?

End StmtResult

The main difference between ExprResult and StmtResult is that the latter addition-

ally contains the variants Break, Continue, Return, Switch and Default to model C++

control-flow statements, similar to [11]. Statements that follow after one of these

control-flow statements in the body of a loop or function, and likewise case state-

ments that do not match the selected case, must be skipped in the semantics. We

collectively refer to these variants as abnormalities, indicating that they disrupt the

normal (i.e., sequential) control flow. Moreover, since C++ statements do not denote

a value, OK does not have a data argument.

Note that Return has no data argument either. In an earlier version StmtResult

had a Data type parameter for the return value of C++ functions, which was stored

in the Return abnormality. However, for certain compound types (e.g., classes), the

C++ compiler allocates memory for the return value before the function call, and

passes an additional pointer to the allocated memory into the function. To detect

incorrect stack frame manipulations we have to model this behavior in our verification

environment. Therefore, the Return abnormality does not carry the function return

value any longer. For scalar types (e.g., integers, pointers), the compiler (and our

verification environment) only allocates a register (usually EAX) for the return value.

We leave this register address underspecified to remain independent of the calling

convention of the C++ compiler.

1 The notation [IA32-1-6.4] refers to Volume 1, Section 6.4 of the Intel 64 and IA-32 Archi-
tectures Software Developer’s Manual [14].

2 Exception does not model C++ exceptions. The Nova developers consider C++ exceptions
too heavyweight to be used in an operating-system kernel. Therefore, they are outside the
fragment of C++ treated in the Robin project.
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State transformers can be composed. For two state transformers f and g their com-

position f ## g is a state transformer that performs the effect of g on the successor

state of f if f returns OK. Otherwise g is discarded, and the result of f is the re-

sult of the composition. For convenience we overload the ##-operator for functions

g that take an additional argument of type Data (and return a state transformer):

f ## λ(x: Data): g(x) means that the state transformer g(d) is applied to state s if f

returns OK(s, d), i.e., (f ## λ(x: Data): g(x)) = (f ## g(d)) in this case. Otherwise,

g is discarded as described before.

In various contexts statement and expression state transformers must be mixed. For

instance, to describe an invariant, all statement and expression state transformers that

maintain the invariant must be collected in one set. We therefore define SuperResult as a

common supertype of both ExprResult and StmtResult. SuperResult only distinguishes

normal termination (generalizing OK), abnormal termination with a successor state

(generalizing Exception and the C++ control-flow abnormalities, such as Return), and

abnormal termination without successor state (generalizing Hang and Fatal). The PVS

definition of SuperResult is as follows.

SuperResult[State : Type] : Datatype

Begin

OK(state: State) : OK?

Abnormal(state: State) : Abnormal?

Bottom : Bottom?

End SuperResult

A function of type State → SuperResult[State] is called a super transformer. Func-

tions expr 2 super and stmt 2 super convert expression and statement state transform-

ers, respectively, into super transformers by a case distinction on their result. The

conversion into super transformers is only done for typing reasons, semantically it is

irrelevant.

2.2 The Robin Hardware Model: A Collection of Stackable Memory Models

The first base component of our verification environment, the hardware model, for-

malizes an abstract model of the IA32 hardware in PVS. It provides physical memory,

virtual memory with address translation via page tables, all general-purpose registers,

selected special-purpose registers, and a general formalization of memory-mapped de-

vices.

The hardware model does not fully implement the behavior of the real hardware.

Instead a combination of over-approximation and underspecification is employed. Cer-

tain operations, such as enabling virtual x86 mode, directly yield a verification error,

i.e., Fatal. For other operations, the semantics is constructed in such a way that any

use of it yields an unprovable proof obligation during the verification. For instance,

the attempt to interpret a string as a page-table entry yields a proof obligation that

remains unprovable unless a suitable data-type conversion is formalized as an axiom.

(Of course such an axiom is unjustified, and not available in our verification environ-

ment.) This latter kind of error checking even works for hardware-initiated page-table

traversals during address translation.

On the IA32 architecture, both application programs and the operating-system ker-

nel typically run in virtual memory. This means that the addresses that are contained
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Memory model Features

segmented memory segment checking, segment-based address translation

TLB TLB consistency check

linear memory page-table based address translation (see Section 5)

APIC device IA32 Advanced Programmable Interrupt Controller (APIC)

physical memory finite physical memory, processor registers

Figure 3 The stack of memory models that forms the Robin IA32 hardware model

in the object code are first translated into physical addresses before the main memory

is accessed. Special data structures, namely segment registers and page tables, which

are automatically traversed by the processor, control the translation from virtual to

physical addresses. If the address translation fails (because some region of virtual ad-

dresses is not backed up by physical memory), the processor transfers control to the

page-fault handler, which typically resides in the operating-system kernel. Eventually

the page-fault handler solves the problem by either adjusting the segment registers

and/or the page tables, or by killing the execution thread that caused the page fault.

The address translation on IA32 processors involves two translation steps: (i) seg-

mentation, and (ii) page-table translation. In the first translation step, segment-local

addresses, which are called logical addresses in the hardware manuals [IA32-3a-3.1], are

translated into linear addresses of a flat 32-bit address space by addition of the seg-

ment base address. In the second translation step, linear addresses are translated into

physical addresses with the help of multi-level page tables. This second step involves

a Translation Lookaside Buffer (TLB) [15]. The TLB is a special CPU-internal cache.

It stores results from the linear-address translation and requires explicit invalidation

when the corresponding page-table entries are modified.

To reduce the overall complexity, we have decided to split the modeling of the IA32

hardware into several memory models. For a list of all our memory models (current and

planned) see Figure 3. Each such memory model formalizes a particular feature set of

the IA32 hardware. For instance, the model of physical memory formalizes access to

the main memory via physical addresses. As its internal state, it maintains a function

from Address to Byte to model the contents of the main memory and the processor

registers.

To provide the complete functionality of the hardware model, the different mem-

ory models are stacked on top of each other, with the model of physical memory at

the bottom. The generated semantics of the Nova source code and our specifications

only access the topmost memory model. To provide its service, each memory model

typically performs some computation (e.g., address translation), collects data from the

underlying model, and combines everything into a result.

The linear memory model is named after the term linear address that is used in

the IA32 manuals. The linear memory model contains page tables and the translation

from linear to physical addresses. It is explained in detail in Section 5. For the actual

contents of the memory it relies on some underlying memory model, e.g., physical

memory.

The TLB memory model and the segment model are future work. They will cover

TLB consistency checking and segment-based translation from logical to linear ad-

dresses, respectively. Note that on the IA32 architecture one can disable neither the
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TLB nor segment-based address translation. The Robin hardware model is therefore

somewhat incomplete until these two memory models have been implemented.

It is convenient to also model certain devices, especially memory-mapped devices,

as memory models that are inserted at the appropriate place into the stack of memory

models. For instance, we are currently building a model of the Advanced Programmable

Interrupt Controller (APIC) that contains the memory-mapped APIC control registers.

Accesses to addresses outside of the APIC registers are simply passed on to the un-

derlying memory model, which should typically be physical memory. In this article,

we first focus on the plain-memory abstraction (Section 3). The modeling of devices is

described afterwards in Section 4.

All memory models share a common interface. Before we can discuss this interface,

we have to introduce the type Address. We observe that reserved-bit checks must not

only be done for memory-mapped devices, but also for registers. Further, accessing

typed data in registers behaves the same as accessing typed data in main memory.

Therefore, we combine register addresses and memory addresses into a uniform ad-

dress space. This effectively halves the number of functions required in the abstract

memory interface. Interestingly, such a uniform address space also provides the core of

an assembly semantics for free, see Section 2.3. Because of all these reasons we define

Address as a record consisting of a Register Id and an offset:

Address : Type = [# type of : Register Id, offset : nat #]

Real memory appears as a (rather big) special register with Register Id Mem. For mem-

ory the offset is the real address. For hardware registers the offset will most often be 0,

but also other small numbers are permitted (e.g., 1 for accessing register AH inside EAX).

The sizes and possible offsets of hardware registers are enforced with suitable side ef-

fects (see Section 4).

Every memory model defines a type State of possible states, and the following

record of operations.

Memory struct : Type = [#

memory read : [ Address → [ State → ExprResult[ State, Byte]]],

memory write : [ Address, Byte → [ State → ExprResult[ State, Unit]]],

memory read side effect : [ Address, list [ Byte], bool →

[ State → ExprResult[ State, list [ Byte]]]],

memory write side effect : [ Address, list [ Byte], bool →

[ State → ExprResult[ State, list [ Byte]]]]

#]

The operations in the memory structure form a suitable abstraction on top of which

functions for reading and writing typed data can be defined polymorphically for all

memory models (see Section 2.3). Our specifications and the generated Nova semantics

refer to these derived functions only; they never use the above operations directly.

We define a memory structure to contain these operations (rather than the derived

functions) to ease the implementation of memory models.

The first two operations in the memory structure read and write one byte at the

given address, respectively. Note that reading in memory can change the memory con-

tents (for instance, set reference bits in the page table). The last two operations perform

side effects. Collectively they are referred to as side-effect state transformers. Side-

effect transformers model real side effects when accessing memory-mapped devices.

Alignment, reserved bits, and access restrictions are also checked with appropriate
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side-effect transformers. If such a check fails, the side-effect transformer yields Fatal

as result to abort any verification attempt. Side-effect transformers are always used

in combination with a series of memory read or memory write operations (see below).

Thereby the side-effect transformers are solely responsible for performing the side ef-

fect, and for checking the relevant constraints.

In general, the phenomena that we model with side effects depend on the whole

memory block that is read or written. Therefore, the side-effect transformers take the

start address and the whole memory block (of type list[Byte]) as arguments. The third

(Boolean) argument indicates whether the memory access has been split on a virtual-

memory page boundary. This Boolean makes it possible to check for a subtle error

condition, see Section 4.2. As part of their operation the side-effect transformers can

change the memory block, or discontinue the execution by returning a result different

from OK. We further elaborate on the use and potential of side-effect transformers in

Section 4.

On top of the memory structure we define the following two functions. They com-

bine side-effect-free byte-wise memory access with side-effect transformers to memory-

block access functions.

memory write list(pm : Memory struct)(addr : Address, bl : list[Byte]) :

[State →ExprResult[State, Unit]] =

memory write side effect(pm)(addr, bl, false) ##

λ(bl1 : list[Byte]) : memory write list nse(pm)(addr, bl1)

memory read list(pm : Memory struct)(addr : Address, size : nat) :

[State →ExprResult[State, list[Byte]]] =

memory read list nse(pm)(addr, size) ##

λ(bl1 : list[Byte]) : memory read side effect(pm)(addr, bl1, false)

The functions memory write list nse and memory read list nse lift the byte-wise memory

access from the memory structure to whole memory blocks (of type list[Byte]), perform-

ing one byte-wise access for each byte in the memory block. For writing, the side effect

is performed before accessing the real memory. For reading, the side effect comes last.

2.3 C++ Data Type Semantics

The second base component of our verification environment is a formalization in PVS

of various data types. It provides a suitable semantics for all C++ types used in

Nova, and for all necessary hardware data types (such as page-table entries). The

data-type semantics is independent of any memory model. Every scalar3 data type has

a semantic domain Data, and an object representation of type list[Byte]. The number

of bytes in the object representation (i.e., the length of the byte list) is fixed. It is

given by the data type’s size field. A valid? predicate checks whether a given byte

list is a valid object representation of some value of the type. Moreover, functions

to byte and from byte convert data to and from their object representation. Writing

and reading the object representation to and from memory is done with the above

functions memory write list and memory read list, respectively, that are provided by

3 In the C++ standard, arithmetic types, enumeration types and pointer types are collec-
tively called scalar types [16, §3.9(10)].
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an arbitrary underlying memory model. The function from byte has a result of type

lift[Data], because not every byte list forms a valid object representation. The type

constructor lift adds a constant bottom to its type argument and keeps all elements of

the type constructor in the form up(...).

Uninterpreted data type : Type = [#

size : nat,

valid? : [list[Byte], Address → bool]

#]

Interpreted data type : Type = [#

uidt : Uninterpreted data type,

to byte : [Data, Address → list[Byte]],

from byte : [list[Byte], Address → lift[Data]]

#]

These two PVS types correspond to the different signatures of the semantics of

non-scalar and scalar C++ types. Scalar types, such as integers and pointers, but also

page-table entries, are modeled with Interpreted data type. Hence, they have a semantic

domain with associated to byte and from byte functions. Non-scalar types, e.g., classes,

unions, and arrays, are modeled as Uninterpreted data type. Consequently, they have

no semantic domain, and no to byte and from byte functions. The following reasons

motivate our unusually simple semantics for non-scalar types:

– A precise semantics for C++ structures, classes, and unions is very complex. Struc-

tures and classes can be partially initialized. Under certain circumstances unions

can be used to perform implicit type casts (i.e., writing field a of the union, and

then reading field b). Therefore, the semantic domain of a C++ union would have

to be a certain quotient of the disjoint union of its fields.

– In C++ (and consequently also in our semantics), there are no operations that

store or retrieve entire objects of, e.g., class type in or from memory at once.

The language standard prescribes that assignment and copying is done field-by-

field. Field access does not access the whole compound data object, instead it only

accesses the portion of memory containing the field.

– For virtual method dispatch the validity of classes (as provided by valid?) is im-

portant to ensure that the virtual function table has not been corrupted. In our

approach the semantics of virtual methods is relatively independent of the seman-

tics of types.

– For structures, classes and unions one might often prefer a custom semantics any-

way. For instance, for a class S with an int field and a pointer S∗, one might want to

use list[int semantics] as the semantics of properly initialized elements, rather than

int semantics × pointer semantics.

A discussion of further details is beyond the scope of this article.

A number of properties must be satisfied by the semantics of every scalar

data type. These properties are combined in a predicate interpreted data type? on

Interpreted data type[Data]. We require that valid? must fail on object encodings whose

length does not equal size, to byte must produce valid encodings only, from byte must

succeed on valid encodings, and from byte must be a left-inverse of to byte (i.e.,

from byte(to byte(d, a), a) = d). Otherwise, however, to byte and from byte are largely

underspecified. This underspecification is exploited by our data-type semantics to make
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the detection of erroneous type casts and wrong implicit type conversions possible. For

instance, reading data from a C++ union with a wrong type will cause an unprovable

proof obligation [9]. Because of the underspecification there is no property in the data-

type formalization that ensures success of from byte of type t1 on the result of to byte

of type t2.

The semantics of scalar data types is combined with memory access in the following

two functions, which are parametric in the memory model pm and the data type dt:

read data(pm : Memory struct[State], dt : (interpreted data type?[Data]))

(addr : Address) : [State →ExprResult[State, Data]] =

(memory read list(pm)(addr, size(uidt(dt))) ##

λ(bl : list[Byte]) : ok lift(from byte(dt)(bl, addr)))

write data(pm : Memory struct[State], dt : (interpreted data type?[Data]))

(addr : Address, data : Data) : [State →ExprResult[State, Unit]] =

memory write list(pm)(addr, to byte(dt)(data, addr))

The function read data reads a scalar data type at address addr by reading the correct

memory block and passing it to from byte. The result of from byte, which is of the PVS

option type lift[Data], is mapped to ExprResult by the function ok lift as follows: results

of the form up(−) are mapped to OK, and bottom is mapped to Fatal. The function

write data writes the memory block returned by to byte to memory.

Because the Address type contains register addresses, read data and write data can

be used to provide a semantics for many inline assembly statements, for which suitable

data-type declarations can be inferred. For a lot of untyped assembly, that is, where

no data-type declarations are available, memory read list and memory write list suffice

to give a semantics. Note that important assembly instructions, such as loading the

page-table base register (CR3) or disabling interrupts, are covered. We noticed this

assembly semantics only long after the Address type and the above functions had been

implemented in PVS. The uniform address space therefore provided us truly for free

with the core of an assembly semantics.

In our design, the hardware model, the data-type semantics, and the C++ seman-

tics are relatively independent of each other. Because of the underspecification of these

models it is therefore possible

– to add new operations to the hardware model,

– to use different versions of the hardware model for different parts of the hypervi-

sor; the boot code of the hypervisor, for instance, can be verified against physical

memory,

– to add additional axioms to the data-type semantics, e.g. to model compiler-specific

assumptions about the size of data types or the precise behavior of certain type

casts, and

– to adopt the semantics of new C++ features or compiler-specific C++ constructs.

2.4 Limitations and Assumptions

Formalizing the entire IA32 architecture, or the entire C++ standard, would be tremen-

dous tasks well beyond the scope of the Robin project. Moreover, many features of a

complete formalization would not be used anywhere in the Nova sources (or in any
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other contemporary operating-system kernel). Therefore, our hardware model and the

C++ semantics are incomplete. The hardware model, for instance, does not contain

virtual 8086 mode.

Most omissions, however, do not lead to global assumptions that would restrict

the validity of our verification results. For example, we do not assume absence of

instructions that enable virtual 8086 mode. Instead the VM flag, which controls this

mode, is protected with a suitable side effect (see Section 4). Any attempt to enable

virtual 8086 mode will yield a Fatal result. Hence, a proof of normal termination suffices

to show that virtual 8086 mode is never enabled. Similarly, the use of C++ features

that are missing in our semantics would trigger an assertion in the semantics compiler.

A number of features have been considered, but were not implemented within

the limited time-frame of the Robin project. These features are (i) the Translation

Lookaside Buffer (TLB), (ii) segment offset and segment size checking, (iii) cache policy

checking for devices, and (iv) linking object code and instruction fetch to the C++

semantics. Because of their absence the Robin verification environment is currently

unable to detect certain kinds of errors, namely

1. TLB errors, e.g., inconsistencies between the TLB and page tables, or implicit

assumptions about the TLB’s size and structure,

2. segment violations (the Robin micro-hypervisor uses a flat memory model where no

segment violations can occur, however, currently we do not check that the segment

registers are initialized with correct descriptor values),

3. cache policy errors and delayed side effects for cached memory-mapped devices,4

and

4. discrepancies between our C++ semantics and the compiled object code. Apart

from compiler bugs, these could occur for the following reasons: volatile-related

errors in the source code (e.g., missing volatile annotations, missing memory

fences),5 certain compiler optimizations (e.g., delayed write-back to memory), or

self-modifying code (however, no self-modifying code is contained in the Robin

micro-hypervisor).

Moreover, our verification is based on the following general assumptions:

– The software to be verified will be executed on a single-processor system.

– Caches for real memory are working completely transparent and can be ignored.

On single-processor systems, this should be guaranteed by the hardware.

– The software tools involved—the C++ compiler used to compile the Robin micro-

hypervisor, our semantics compiler, and PVS—produce correct results.

Note that in the Nova design, drivers for hard disks and other common devices

are located in user space. Thus, apart from the Advanced Programmable Interrupt

Controller (APIC) no devices need to be modeled for a complete verification of Nova.

4 It is in general straightforward to add side effects to the device model that check whether
the device is accessed with the proper caching policy (see Section 4). The source code that we
are currently targeting does not involve devices that require a specific caching policy.

5 C++ compilers are permitted to perform arbitrary optimizations with respect to non-
volatile data. Memory accesses to such data are not part of the observable behavior of a C++
program. This makes a correct semantics difficult. At the moment our C++ semantics treats
all data as volatile.
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3 Plain Memory

The memory in an IA32 system is a sophisticated device: segments and page tables

specify access rights, a given region of memory might be visible in different virtual-

address ranges, bogus TLB entries might cause the address translation from virtual to

physical addresses in the CPU to differ from what is specified in the page table, and

much more. When verifying kernel code we cannot ignore these effects, not even for

most innocent code, because of the errors that they might cause.

As a consequence we have designed the plain-memory abstraction for the verifica-

tion of those parts of the kernel that require only the standard C++ memory model.

The plain-memory abstraction deals with the following issues.

– Writing or reading a single byte in memory can have devastating effects if one

hits a memory-mapped device, a page table, or simply an unmapped address. For

correctness, the verification must therefore be carried out against a detailed model

of IA32 memory. Plain memory provides a (comparatively) simple abstraction that

can be used for those parts of the sources that only access well-behaved memory

without special effects.

– The IA32 hardware provides several memory configurations: real-address mode,

protected mode with and without paging. Our hardware model implements these

modes in multiple different memory models, see Section 2.2. Most of the code,

however, does not depend on a concrete memory model, and should consequently be

verified against a suitable set of memory models. Plain memory permits precisely

this, because every memory model of interest will give rise to a model of plain

memory.

3.1 The Plain-Memory Specification

Technically, plain memory is a specification that provides byte-wise read and write

access to memory, where special properties are guaranteed for read-blessed and read/

write-blessed address regions. The general idea is simple. Memory at blessed addresses

is well-behaved: a read access does not change anything in the blessed address range,

and a write access only changes the bytes written (in the expected way). The side-

effect transformers must neither change the memory block nor any memory at blessed

addresses. Moreover, these special properties are maintained as long as only blessed

addresses are accessed. However, no guarantees are made for the memory contents at

non-blessed addresses (even when only accessing blessed addresses), and for memory

accesses outside the blessed address regions.

We want the plain-memory specification to be usable with all concrete memory

models, including physical real-address memory. Therefore, the specification must de-

scribe all its properties with observations that can be made by reading and writing

single bytes only, by referring to the Memory struct interface that is common to all

memory models. In PVS the specification is split into a record of functions (capturing

the plain-memory signature), and a predicate for the required properties. With this

technique the axioms of the plain-memory specification do not show up as axioms in

the PVS formalization, hence they do not affect consistency. Instead, any use of a plain-

memory property in a verification proof will spawn a subgoal requiring a proof of the

plain-memory axioms for the underlying memory model. The plain-memory signature

is given by the following record.
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Plain Memory : Type = [#

mem : Memory struct[State], % see page 9 (Section 2.2)

states : PRED[State], % states fulfilling the plain memory properties

ro addr : PRED[Address], % read−blessed addresses

rw addr : PRED[Address] % read/write−blessed addresses

#]

Here, the type constructor PRED constructs the type of all predicates over its argument

type. For instance, PRED[State] is equal to [State → bool]. Record fields in PVS can

be accessed with two equivalent syntaxes. If pm is of type Plain Memory, then both

mem(pm) and pm‘mem denote its first field.

The properties of plain memory are specified as follows.

plain memory?(pm) : bool =

unchanged memory invariant?(pm‘mem, pm‘states,

all permitted state transformers except write access to pm‘rw addr,

union(pm‘ro addr, pm‘rw addr)) ∧

unchanged memory invariant?(pm‘mem, pm‘states,

memory write transformers(pm‘mem, pm‘rw addr),

pm‘ro addr) ∧

unchanged memory write invariant?(pm‘mem, pm‘states, pm‘rw addr) ∧

changed memory invariant?(pm‘mem, pm‘states, pm‘rw addr) ∧

transformers ok?(pm‘states,

all permitted state transformers ) ∧

side effect content unchanged(union(pm‘ro addr, pm‘rw addr), pm‘states,

memory read side effect(pm‘mem)) ∧

side effect content unchanged(pm‘rw addr, pm‘states,

memory write side effect(pm‘mem))

For better readability the rather involved expression denoting the union of all per-

mitted state transformers is only shown once below. Its definition relies on the

utility functions memory read transformers and memory write transformers to collect

all state transformers that perform a read or write access, respectively, and on

memory read side effect super transformers / memory write side effect super transformers

to collect all side effects of the underlying memory model at a given set of addresses.

all permitted state transformers ≡

union(union(memory read transformers(pm‘mem, union(pm‘ro addr, pm‘rw addr)),

memory write transformers(pm‘mem, pm‘rw addr)),

union(memory read side effect super transformers(pm‘mem,

union(pm‘ro addr, pm‘rw addr)),

memory write side effect super transformers(pm‘mem, pm‘rw addr)))

The first clause in the definition of plain memory? states that read accesses to

blessed addresses and all possible side effects do not change the contents of any of

the blessed addresses. The second clause expresses the same for write accesses and

read-blessed addresses (this implies that read-blessed and read/write-blessed addresses

must be disjoint). The third clause requires that a write access to one address leaves

the memory at all other read/write-blessed addresses unchanged. The fourth clause

states that write accesses actually change the memory at the written address in the

expected way. The utility predicates used in the first four clauses additionally require
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that the set of states forms an invariant with respect to the respective set of state

transformers. This makes the plain-memory property an invariant: permitted state

transformers must stay in the set of plain-memory states, in which all the desirable

properties hold. The fifth clause requires that all memory accesses to blessed addresses

terminate with OK. This prohibits, e.g., unhandled page-faults. The last two clauses

require that side effects (which we discuss in Section 4) do not change the data read

or written.

The plain-memory specification entails that only explicit writes change a memory

location. This property enables us to prove the following lemma.

plain memory read write other res : Lemma

plain memory?(pm) ∧

pm‘states(s) ∧

in blessed memory?(dt1, addr1, pm‘rw addr) ∧

in blessed memory?(dt2, addr2, union(pm‘ro addr, pm‘rw addr)) ∧

blocks disjoint?(addr1, size(uidt(dt1)), addr2, size(uidt(dt2))) ∧

valid in mem(pm,dt2)(addr2)(s)

=⇒

data( (write data(pm,dt1)(addr1, data1) ##

read data(pm,dt2)(addr2))(s) ) =

data( read data(pm,dt2)(addr2)(s) )

The lemma expresses that for two variables (of type dt1 and dt2, respectively) that lie

disjoint in blessed memory, writing the first one does not change the contents of the

second. The proof uses induction on the size of dt1 to show that the memory write list

call that is inside write data does not change the result of the memory read list call that

is inside read data. Then the result follows.

For program verification, the lemma is part of a rewriting engine that allows PVS

to symbolically compute the value of a variable by going back to the last write access

to that variable, while ignoring memory accesses to other variables.

3.2 Establishing Plain Memory

In Section 6, we show in more detail how the plain-memory abstraction simplifies the

verification of C++ programs. To avoid vacuous results, however, the plain-memory

property must be established for the underlying memory model. For each memory

model contained in our PVS formalization of the IA32 architecture, we have established

the plain-memory property for a suitable range of addresses. These results discharge

the plain-memory assumptions on our verification results.

The Robin hardware formalization contains plain-memory results for physical mem-

ory (RAM), for memory containing devices, and for linear memory. In the following

subsection we detail the result for physical memory. The plain-memory result for de-

vices is shown in Section 4.3. A description of the linear memory model with its plain-

memory result follows in Section 5.

3.2.1 Establishing Plain Memory for Physical Memory

As a base of all other memory models, physical memory provides one byte of storage

for every address between a certain minimum and maximum. Accesses above the max-

imum or below the minimum yield Fatal as result. Unsurprisingly we can prove in PVS
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that all states of physical memory form a plain memory, with all addresses between

the minimum and the maximum read/write-blessed. The plain-memory structure for

physical memory is thus given by

phy pm : Plain Memory[Physical memory] = (#

mem := phy mem, % Memory struct of the physical memory model

states := fullset [ Physical memory],

ro addr := emptyset[Address], % all addresses are read/write blessed

rw addr := in memory(min, max),

#)

We establish the plain-memory property with the following lemma.

phy mem plain memory : Lemma plain memory?(phy pm)

The proof is rather trivial because our physical memory is simply a byte array, without

any side effects.

4 Memory-Mapped Devices and Reserved Bits

Although most device drivers reside outside the micro-hypervisor, some devices (e.g.,

the interrupt controller) must remain under kernel control to prevent malicious code

from monopolizing the system. To program these devices, the micro-hypervisor code

accesses certain device registers. Unlike normal RAM, these registers show very special

behavior when accessed.

Many aspects that occur when reading and writing memory-mapped device reg-

isters can also be found in special-purpose processor registers (such as the IA32 con-

trol registers [IA32-3a-2.5]). In our verification environment, we therefore treat both

memory-mapped device registers and special-purpose processor registers in a similar

way. For verification, the following effects are important.

Access type restrictions. Some device registers and also some special-purpose proces-

sor registers are read-only or write-only accessible, or they allow no instructions to

be fetched. ROM is a prominent example of a read-only accessible device.

Alignment restrictions. Some devices require that registers are accessed only at cer-

tain offsets relative to the register’s base address. Furthermore, each access must

read or write a certain amount of data at once. The registers of the IA32 Advanced

Programmable Interrupt Controller (APIC) provide an example. They are aligned

on 16-byte boundaries, and they must be accessed with 4-byte wide and 4-byte

aligned reads and writes [IA32-3a-8.4.1].

Reserved bits. The value of reserved bits must not be modified, or otherwise the

processor’s behavior is undefined. For instance, bits 0–2 and bits 5–11 of the IA32

page-table base register (CR3) are reserved [IA32-3a-2.5]. Bits of memory-mapped

device register may also be marked as “reserved”, and modifying these bits may

cause similar side effects.

Side effects. Reading or writing causes side effects on some devices. For example, writ-

ing to the IA32 APIC end of interrupt register signals completion of the interrupt-

handling procedure [IA32-3a-8.8.5]. This may cause immediate delivery of the next

pending interrupt. Similar effects can be observed for special-purpose processor

registers.
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More abstractly, we can summarize these effects as follows: reading and writing cer-

tain registers and certain locations in memory may cause modifications to the system

state, to the memory (or register) contents, and to the value read or written. Fur-

thermore, the behavior of an operation may be undefined; in this case the verification

should fail.

4.1 Modeling Devices and Reserved Bits

One popular way to describe external devices is to model the CPU and the device

as separate entities that execute in parallel. This approach is well-suited for complex

devices that perform some computation in parallel and asynchronously with the pro-

cessor. However, this approach makes the verification much more complicated, because

one has to reason about all possible interleavings of state changes of the processor and

the device.

For the verification of the Nova micro-hypervisor we only need to model relatively

simple devices. We therefore aimed at a modeling approach that would avoid the addi-

tional verification costs for parallel executing entities. Our key insight here is that the

devices that we need can be modeled in a synchronous way. That is, these devices only

perform state changes when the processor accesses them. They can therefore be mod-

eled sufficiently precise with side-effect transformers, which can perform a state change

in the device on every access. A device can then conveniently be modeled as a separate

memory model. With this approach reasoning about interleavings of state changes is

not necessary, and the verification does not become substantially more difficult.

To some extent, we can even model asynchronous state changes in devices. To model

external interrupt sources, the APIC model can define a side-effect transformer that

is executed at every memory access and that non-deterministically signals an external

interrupt. The memory access counter described in Section 4.1.3 below provides another

example for an asynchronous device.

In the following we illustrate our approach by providing several examples for the

side-effect transformers memory read side effect and memory write side effect. First, we

recall their type from Section 2.2 (on page 9):

Address, list[Byte], bool → [State →ExprResult[State, list[Byte]]].

As explained before, the second argument of these side-effect transformers is the entire

memory block read from (or written to) the given address. Having the address and

the complete memory block available provides high flexibility and makes it possible to

implement all the effects discussed above. Checking alignment, for instance, requires the

address and the length of the memory block, while checking for reserved bits requires

the contents of the memory block.6 The third parameter indicates whether the access

crossed a page boundary in a memory layer stacked on top. We elaborate on the use

of this parameter in Section 4.2.

We use a simple memory-mapped random number generator (RNG) as an example

to illustrate how one can model side effects and access restrictions. The RNG device

6 In principle one could check for reserved bits inside memory write and use side-effect trans-
formers only for, e.g., alignment checks. Then it would be sufficient to pass the length of the
memory block instead of the block itself into the side-effect transformer. We did not investigate
such a solution, because, for modularity reasons, we prefer to separate the conventional mem-
ory interface from the side-effect interface and implement side effects in side-effect transformers
only.
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provides one read-only memory-mapped register, rnd val, that contains an unspecified

(supposedly “random”) value. We have implemented this device as a separate mem-

ory model in PVS, which adds its functionality to an arbitrary underlying memory

model (cf. Section 2.2). The memory state is augmented with the internal state of

the RNG device, which contains two non-negative integers, seed and access count. The

value of access count is incremented as a side effect with each memory access. The

seed is left unspecified. To obtain the random value, a completely unspecified func-

tion random is applied to the seed and the current access count. Since access count is

strictly increasing, we obtain potentially different values for every access to rnd val in

our verification environment.

Underspecified and nondeterministic behavior of more complicated devices could

be modeled in a similar fashion. For example, interrupt-generating devices could be

modeled through underspecified side-effect transformers that set the interrupt pending

flag in the interrupt controller. Masking and demasking of interrupts in the CPU and in

the interrupt controller correspond to writes to the respective registers (e.g., the I-Flag

in the EFLAGS CPU register [IA32-1-3.4.3] and the Mask Flags in the APIC Local Vector

Table [IA32-3a-8.5.1]). The actual delivery is then simply a state transformer that

evaluates these flags and changes the system state accordingly. [IA32-1-6.4] describes

these state changes in detail.

4.1.1 Access Type and Alignment Restrictions

Modeling devices with access-type and alignment restrictions is straightforward by

checking these restrictions for overlapping accesses. As an example, we impose that

rnd val must be accessed with a certain granularity.

unaligned access(a : Address, bl : list[Byte], cp : bool) :

[Random device memory →ExprResult[Random device memory, list[Byte]]] =

If disjoint?(address block(a, length(bl)), address block(rnd val, word size)) ∨

(¬ cp ∧ length(bl) = word size ∧ a = rnd val)

Then ok result(bl)

Else fatal result Endif

Here word size comes from the C++ data-type model and gives the number of bytes of

an unsigned int (which is usually 4 on the IA32 architecture, although this may vary

with the C++ implementation). The term ¬cp ensures that the memory access is not

part of a larger memory access that crossed a page boundary (see Section 4.2).

To require the read-only behavior of the rnd val register, we use the following side-

effect state transformer after the above alignment check has been passed:

write rnd dev(a : Address, bl : list[Byte], cp : bool) :

[Random device memory →ExprResult[Random device memory, list[Byte]]] =

If a = rnd val Then fatal result

Else ok result(bl) Endif

The memory read side effect and memory write side effect transformers of the RNG de-

vice are defined as compositions of the above two transformers and other checks, which

we present below.
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4.1.2 Reserved Bits

Reserved-bit restrictions come in two flavors, depending on whether the value of re-

served bits is specified. For instance, the IA32 manual says that bits 11–31 of the

CR4 register must have value 0 [IA32-3a-2.5]. As long as the value of reserved bits

is specified, we merely have to check that the value in the byte list passed to the

memory write side effect transformer adheres to the specification. One can then simply

write to those registers whose reserved bits are completely specified.

Other special-purpose processor registers and device registers leave the value of

certain reserved bits undefined, yet, the value of these bits may not be altered. In this

case we match against an unspecified value in the memory write side effect transformer.

Because the initial register contents are not specified, we can establish that reserved

bits are unaltered by a write access only when the written data originates from a

previous read of the register.

Reserved bits can also be used to restrict the processor modes in which the micro-

hypervisor may execute. For instance, we fix the mode bits in the IA32 control regis-

ters CR0 and CR4 to the setting for 32-bit paged, protected mode. This prevents the

hypervisor from switching back to real mode. Consequently, it suffices to model only

those parts of real mode that are required for the verification of the hypervisor’s boot-

strapping code.

4.1.3 Side Effects

Side effects on memory reads or writes cause additional parts of the system state to

be updated. Here, one can either update the memory state itself, or add an additional

device state. For the random number generator, we decided to use the latter approach.

As described earlier (see Section 4.1, page 19), the RNG device implements a side effect

to count all memory accesses in its internal state. Here we show its definition:

access count(a : Address, bl : list[Byte], cp : bool)(s) :

ExprResult[Random device memory, list[Byte]] =

OK(increase access count(s)(length(bl)), bl)

The following side effect read rnd val is part of the complete read side-effect trans-

former of our RNG device. It exploits the completely underspecified function random,

which, for two arguments, returns an arbitrary byte list of length word size. The func-

tion read rnd val checks whether the memory-mapped register rnd val is accessed. If

this is the case it discards the value from the underlying memory model and returns

the result of random instead. Note that alignment restrictions are checked before in

unaligned access, see Section 4.1.1 (on page 19). When read rnd val is evaluated, the

memory block read is either precisely the memory-mapped register rnd val or com-

pletely disjoint from it.

random : [nat, nat →{ l : list[Byte] | length(l) = word size }]

read rnd val(a : Address, bl : list[Byte], cp : bool) :

[Random device memory →ExprResult[Random device memory, list[Byte]]] =

If a = rnd val

Then λ(s : Random device memory) :

ok result(random(get seed(s), get access count(s))(s)

Else ok result(bl) Endif
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Figure 4 Splitting of side effects when stacking virtual memory on top of device memory

4.2 Stacking Memory with Side Effects

In Section 2.2, we described the stacking of different memory models. However, the

combination of virtual memory with memory-mapped devices yields two complications.

First, address translation must also be applied to the memory blocks that are supplied

to one of the side-effect transformers. Thereby the memory block might be split at

page boundaries into several smaller, non-contiguous blocks. For each such smaller

block the side-effect transformer of the underlying memory must be called, and the

results of all these calls must be suitably combined. The side-effect transformers of

the linear memory model (see Section 5.2) perform this splitting and recombination of

results.

Second, by coincidence the splitting might result in an access to a memory-mapped

device that seemingly satisfies all alignment and granularity requirements of the device.

For instance, in Figure 4 the very last piece of the virtual address block is mapped

precisely to the first APIC register. Such an access should be considered an error,

because it is only part of a larger memory access. Moreover, the IA32 architecture

gives no guarantee that in the case depicted in Figure 4, the access to the APIC is

performed with 4-byte granularity [IA32-3a-7.1.1], as required by the APIC.

Checking for this kind of error is problematic because the memory layer that models

the APIC is independent of the linear memory model, and therefore has no information

whether splitting at page boundaries has occurred or not. One possible solution would

be to pass a list of memory blocks as argument to the side-effect transformers. This list

would contain more than one element if splitting had occurred. The downside of this

list-of-memory-blocks approach is that every side-effect transformer has to perform its

own iteration over the memory-block argument list.

In our solution to the problem, we introduce a Boolean crossed-page indicator cp

as argument to the side-effect transformers of our memory models. Initially being false,

this indicator is set to true when the address translation splits a contiguous memory

access.

The side-effect transformer unaligned access of the example RNG device (see Sec-

tion 4.1.1, page 19) checks the cp flag every time the rnd val register is accessed, and

delivers an error if the flag is true. Use of the cp flag is further exemplified by the

side-effect transformers for linear memory, see Section 5.2.

4.3 Establishing Plain Memory for Device Memory

A device typically keeps its state internally where it cannot directly be read or written.

Furthermore, many devices cause side effects only on their memory-mapped registers

and on their I/O ports.
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In order to assist writing device models that only implement side-effect transformers

(and simply forward memory accesses to their underlying memory layer), we developed

Device memory. In this memory layer, we maintain an additional Device state next to

the state of the underlying memory, and we lift (in em lift below) a state transformer on

the latter to a state transformer on Device memory, keeping the Device state unchanged.

Device memory gives rise to the following Memory struct, which takes the device side

effects as arguments.

device pm(device read side effect,

device write side effect) : Memory struct[Device memory] =

(#

memory read := λ(a : Address) :

em lift[Physical memory, Device state, Byte](memory read(pm)(a)),

memory write := λ(a : Address, b : Byte) :

em lift[Physical memory, Device state, Unit](memory write(pm)(a, b)),

memory read side effect :=

λ(a : Address, bl : list[Byte], cp : bool) :

em lift[Physical memory, Device state, list[Byte]](

memory read side effect(pm)(a, bl, cp)) ## λ(bl1 : list[Byte]) :

device read side effect(a, bl1, cp),

memory write side effect :=

λ(a : Address, bl : list[Byte], cp : bool) :

em lift[Physical memory, Device state, list[Byte]](

memory write side effect(pm)(a, bl, cp)) ## λ(bl1 : list[Byte]) :

device write side effect(a, bl1, cp)

#)

Like our other memory models, device memory is parametric in the underlying memory

model pm. It can therefore be stacked on top of any other memory model.

The following lemma establishes that device memory is plain memory:

device memory plain memory : Lemma

is device plain memory?(device read side effect, device write side effect)(pm)

=⇒plain memory?(pm)

Here is device plain memory? encodes the necessary preconditions. It is defined as fol-

lows, where pm phy is a plain-memory structure for the underlying memory model

pm:

is device plain memory?(device read side effect, device write side effect)

(pm) : bool =

pm‘mem = device pm(device read side effect, device write side effect) ∧

% the underlying memory is plain memory

plain memory?(pm phy) ∧

pm‘states = em lift(pm phy‘states) ∧

subset?(pm‘rw addr, pm phy‘rw addr) ∧

subset?(pm‘ro addr,

union(pm phy‘ro addr, difference(pm phy‘rw addr, pm‘rw addr))) ∧

% properties about device side effect transformers

transformers ok?(pm‘states, union(

drse super transformers(union(pm‘ro addr, pm‘rw addr),
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device read side effect),

dwse super transformers(pm‘rw addr, device write side effect))) ∧

unchanged memory invariant?(pm‘mem, pm‘states, union(

drse super transformers(union(pm‘ro addr, pm‘rw addr),

device read side effect),

dwse super transformers(pm‘rw addr, device write side effect)),

union(pm‘ro addr, pm‘rw addr)) ∧

side effect content unchanged(union(pm‘ro addr, pm‘rw addr), pm‘states,

device read side effect) ∧

side effect content unchanged(pm‘rw addr, pm‘states,

device write side effect)

The first clause links the memory structure of this plain memory to the device memory

structure. The clauses 2–5 establish that the underlying memory is plain memory,

blessed states are underlying blessed states, write-blessed addresses are write-blessed

in the underlying memory, and read-blessed addresses are read-blessed or write-blessed

in the underlying memory (but not write-blessed in the device memory), respectively.

Clauses 6–8 establish the required properties for the device side effects: side effects

terminate with OK on blessed addresses, do not change blessed addresses, and change

no data read to or written from blessed addresses.

To exemplify the use of device memory, we proved that the RNG device gives rise

to a plain memory for all underlying physical states, and for all physically blessed

addresses with the exception of the device register.

random device plain memory : Lemma

plain memory?(pm phy) =⇒plain memory?(random device pm(pm phy))

The proof follows from the fact that side effects are only allowed to modify the extended

device state. Proving this lemma in PVS (by establishing the above preconditions) took

us less than an hour.

5 Linear Memory

Following Intel’s terminology of linear address [IA32-3a-3.1], we use linear memory to

denote a memory model that provides page-table based address translation, but no

Translation Lookaside Buffer (TLB) or segment-based address translation. (Therefore,

linear memory is merely an abstraction that does not exist in reality. On an IA32

platform, one can neither disable the TLB nor the segment-based address translation.)

Like all our memory models, linear memory defines a memory structure, where the

address arguments of the functions memory read and memory write are now considered

to be linear addresses. To access page-table entries and the contents of the translated

physical address, these two functions call the underlying memory model. To keep the

stacking flexible, the linear memory model is not directly based on a model of physical

memory, but is instead parametrized with the Memory struct pm of an arbitrary mem-

ory model. Therefore, linear memory can be stacked on physical memory, on device

memory, or on any other memory model. Throughout this section the constant pm

refers to the memory structure of the underlying memory. (In PVS, pm is a theory

parameter that is instantiated when the stack of all memory models is formed, see

Section 2.2.)
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5.1 Address Translation

Functions memory read and memory write of the linear memory model translate their

linear address argument to a physical address, check access rights in the corresponding

page-table entries, update reference bits in these entries and finally access the memory

content in the underlying memory model. The function for memory read is given by

linear read(a : Address) : [Linear memory →ExprResult[Linear memory, Byte]] =

If in memory(max linear)(a) Then

If Mem?(type of(a)) Then

linear resolve(a, Read) ## λ(pa : Address) : memory read(pm)(pa)

Else

memory read(pm)(a)

Endif

Else fatal result Endif

The state-space type Linear memory is equal to the state space of the underlying mem-

ory model. The constant Read, the second argument of linear resolve, comes from an

enumeration type Memory access, which contains one element for each kind of memory

access (namely Read, Write, and Execute for instruction fetch). The function linear read

first checks if the access is within the memory or register bounds. For a real memory

access, the virtual address a is translated into the physical address pa, which is used

in memory read to access the underlying memory. Register accesses are passed to the

underlying memory model without address translation.

The function linear write, which fills the memory write slot in the linear memory

structure, is defined analogously to linear read. We now introduce in more detail the

function linear resolve, which performs address translation and page-table updates.

Readers who are not interested in the technical details of virtual memory on the IA32

architecture may wish to skip forward to Section 5.2 (on page 27), which discusses the

side-effect transformers of our linear memory model.

We model linear resolve precisely as described in [IA32-3a-3.7] for a configuration in

which the two address extensions—physical address extension (PAE flag), and page-size

extension (PSE-36 feature flag)—are disabled, and large pages (PSE flag) are enabled.

In this mode, an IA32 processor implements two levels of page tables with 1024 entries

each, and supports up to 4GB of physical memory, with 4KB and 4 MB pages.

Address translation follows the standard multi-level page-table algorithm, which is

described in [IA32-3a-3.7.1] and [IA32-3a-3.7.2]. From the virtual address, the processor

extracts the topmost 10 bits to index into the first-level page table. The entry at this

index may either be not present (or be marked as read only for a write operation), in

which case the processor generates a page fault, or it may refer to either a page (of size

4MB) or to a second-level page-table, for which this translation step is repeated with

the respective next highest 10 bits of the virtual address. The entries in this second

table may either be not present, or they may refer to a page of size 4KB. [IA32-3a-3.7.6]

describes the layout and semantics of individual bits in page-directory (first level) and

page-table (second level) entries.

Address translation involves similar checks and updates at each of the two levels.

Hence, we formalize the updates and the translation required for a single level in the

following generic function.

translate(lvl : Level, base, addr : Memory Address 4G,
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access : Memory access, priv : Memory privilege)

: [Physical memory →ExprResult[Physical memory, [bool, Address]]] =

Let pe addr = xlat idx(lvl, base, addr) In

(read data(pm, paging data type(lvl))(pe addr) ##

λ(pe : (range pt(lvl))) :

If present?(pe) Then

If accessible?(pe, access) ∧ privileged?(pe, priv) Then

write data(pm, paging data type(lvl))(pe addr, set reference(pe, access)) ##

ok result( (is leaf?(pe), base(pe)) )

Else

raise fault(priv, access, true, addr)

Endif

Else

raise fault(priv, access, false, addr)

Endif)

Here the type Level is a two-element subtype of the non-negative integers, containing

just 1 (for first-level page directories) and 2 (for second-level page tables). First, xlat idx

combines the page-table base address base, the virtual address addr, and the level lvl to

determine the address pe addr of the relevant page-table entry. Reading this entry with

read data will only terminate normally if a page-table entry has been previously written

at the address pe addr. Otherwise, because of the underspecification of from byte, an

unprovable proof obligation will remain. The function paging data type selects either

the data type for page-directory entries (lvl = 1) or page table entries (lvl = 2). After

reading the entry, translate performs two orthogonal privilege-level checks: first, whether

the entry is present (a present entry implicitly grants read and execute access), and

whether the entry is writable if the access mode was Write (accessible?(pe, access));

second, whether the page is user accessible when the processor executes in user mode

(in privileged?(pe, priv)). In case any such check fails, translate generates a page fault

with the function raise fault, which we describe below. Otherwise, translate sets the

accessed bit, and if the access was a write also the dirty bit. The function returns

either false and the base address of the page table of the next level, or true and the

base address of the memory page. In the first case, the translation is incomplete yet,

and a further translation step indexing into the second level page table is required.

translate also models this second translation step when invoked with lvl = 2 and with

the base address of the second-level page table that the first translation step returns.

Page faults are reported with the abnormal ExprResult Exception. It carries all

relevant information about the page fault, except for the page-fault address, which is

written to the special register CR2 before returning the Exception result.

raise fault(priv : Memory privilege, access : Memory access, present : bool,

pfa : Memory Address 4G)

: [Physical memory →ExprResult[Physical memory, [bool, Address]]] =

write data(pm, address data type)(CR2, pfa) ##

exception result(Page fault(

(# reserved bit violation := false,

privilege := priv,

access := add(Read, access),

present := present #)))
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Because the PAE flag is clear, the processor will not generate page faults when a

reserved bit is not set to 0 [IA32-3a-3.7.6].

We can now already establish important results about page-table traversals. Pro-

vided the base address of the page directory (or page table) is properly aligned to 4KB

[IA32-3a-3.6.2], and provided translate terminates with OK, it holds that:

1. translate returns a positive address below 4 GB,

2. translate returns a 4KB aligned address if the page-directory entry refers to a page

table, and

3. if translate returns a page base address (as opposed to the base address of the next-

level page table), this address is properly aligned (i.e., it is either a 4KB aligned

address if translate is invoked on a page-table, or a 4 MB aligned address if translate

is invoked on a page-directory).

For illustration, the lemma formalizing property 3 looks as follows.

translate result leaf : Lemma

Forall (lvl : Level, base, addr : Memory Address 4G, access : Memory access,

priv : Memory privilege, s : Linear memory) :

aligned?(bits per level + pe size)(offset(base)) ∧

OK?(translate(lvl, base, addr, access, priv)(s)) ∧

Proj 1(data(translate(lvl, base, addr, access, priv)(s)))

=⇒

aligned?(bus width − bits per level ∗ lvl)

(offset(Proj 2(data(translate(lvl, base, addr, access, priv)(s)))))

Here Proj 1 and Proj 2 respectively project out the Boolean and the address in the

result of translate.

With bus width = 32 bit and bits per level = 10 (as described above), the term

bus width − bits per level ∗ lvl evaluates to the exponent 22 (thus 4MB) for the first

level, and to the exponent 12 (thus 4KB) for the second level.

On the basis of translate, the traversal function for one level in a page-directory

structure, we can now define linear resolve, which translates virtual into physical ad-

dresses.

linear resolve(addr : Memory Address 4G, access : Memory access)

: [Linear memory →ExprResult[Linear memory, Address]] =

% 1. get current privilege level from cs

(read data(pm, segment reg data type)(CS) ## λ(cs : Segment Reg type) :

Let priv = segment to priv(cs) In

% 2. read page−directory base register PDBR

(read data(pm, pdbr data type)(PDBR) ## λ(pdbr : Pdbr type) :

% 3. first level page−directory lookup

Let lvl = pdir lvl In

(translate(lvl, pdbr‘base addr, addr, access, priv) ##

λ(leaf : bool,

base : {b : Memory Address 4G |

If leaf

Then aligned?(bus width − bits per level ∗ lvl)(offset(b))

Else aligned?(bits per level + pe size)(offset(b))

Endif}) :
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If leaf Then

ok result(xlat ofs(lvl, base, addr))

Else

% 4. second level page−table lookup

Let lvl = ptab lvl In

(translate(lvl, base, addr, access, priv) ##

λ(leaf : bool, base : Memory Address 4G) :

ok result(xlat ofs(lvl, base, addr)))

Endif)))

As explained before, the Memory access is either Read, Write, or Execute, depending

on the access kind to be performed on the virtual address addr. The constant pdir lvl

holds the page-directory level 1, and ptab lvl the page-table level 2. The rather involved

type expression for base, i.e., {b : Memory Address 4G | . . . }, is a dependent type, con-

taining just those b’s that satisfy the predicate after the vertical bar |. In other words,

base is 4MB aligned if leaf is true, and 4KB aligned if leaf is false.

The current privilege level (CPL) [IA32-3a-4.5] of the memory access, that is user

(ring 3) or supervisor (rings 0–2) [IA32-3a-4.11.2], is stored in the code segment de-

scriptor CS [IA32-3a-3.4.5]. Because the processor caches the results of the segment

descriptor tables (GDT and LDT) when loading a segment [IA32-3a-3.5.1], and be-

cause writes to these tables may modify the descriptor without simultaneously updat-

ing the descriptor cache, we have to read the current privilege level from the hidden

part of the code segment register [IA32-3.4.3]. The page table base register CR3 (or

PDBR) [IA32-3a-2.5] contains (besides further cache-control bits) the physical address

of the page directory. The individual fields of this register are formalized in the record

type Pdbr type. After translate returns the base address of a 4MB (resp., 4KB) page,

we obtain the physical address by adding the lower 22 (resp., 12) bits of the virtual

address to this base address.

5.2 Side Effects

Recall from Section 4.2 (on page 21) that the side-effect transformers for linear memory

must also perform address translation in order to invoke the side-effect transformers of

the underlying memory model. This may cause a split of the memory block along page

boundaries. In that case the crossed-page indicator cp must be set to true to enable

the relevant checks in the underlying memory models.

The read side-effect transformer for linear memory looks as follows.

linear read side effect(a : Address, bl : list[Byte], cp : bool)

: [Linear memory →ExprResult[Linear memory, list[Byte]]] =

If null?(bl) ∨

. . . % access inside memory/register address range

Then

If Mem?(type of(a)) Then

% split list in page contained lists

apply side effects(split(min page, a, bl),

linear read side effect in page(length(split(min page, a, bl)) > 1 ∨ cp))

Else

memory read side effect(pm)(a, bl, cp)
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Endif

Else

fatal result

Endif

The definition of linear write side effect is analog. Splitting along page boundaries and

recombining the results is done by apply side effects. Its first argument is the list of split

memory blocks as produced by split (which we show below). The second argument (here

linear read side effect in page(...)) is the function to be applied to each split block. The

first argument of linear read side effect in page is the crossed-page indicator to pass

down to the underlying memory layer. It is true if split returns more than one block

(because there was a page boundary in the original memory block), or if the cp flag

that linear read side effect received was true already.

linear read side effect in page(cp : bool)(a : Memory Address 4G, bl : list[Byte])(s) :

ExprResult[Linear memory, list[Byte]] =

(linear resolve(a, Read) ##

Lambda(pa : Memory Address 4G)(ns : Linear memory) :

memory read side effect(pm)(pa, bl, cp)(s))(s)

The function linear read side effect in page, which is applied to each block, performs

address translation before calling the side-effect transformer of the underlying mem-

ory layer. Care must be taken that the additional address translation that our model

introduces for side effects does not contribute anything to the final result state. This

is achieved by passing the state s explicitly into the underlying side-effect transformer

memory read side effect(pm), thereby discarding the successor state of linear resolve.

The definition of apply side effects is as follows.

apply side effects(l : list[[Memory Address 4G, list[Byte]]],

f : [Memory Address 4G, list[Byte] →

[Linear memory →

ExprResult[Linear memory, list[Byte]]]])(s)

: ExprResult[Linear memory, list[Byte]] =

reduce(ok result(null),

λ(e : [Memory Address 4G, list[Byte]],

r : [Linear memory →ExprResult[Linear memory, list[Byte]]]) :

(r ## λ(tail : list[Byte]) :

(f(e) ## λ(head : list[Byte]) : ok result(append(head, tail))))

)(l)(s)

Recall that the second argument f is the function to be applied to every split block in

the list l. For reading, f is linear read side effect in page(...). The function reduce is the

standard algebraic folding function over lists, sometimes called fold right or foldr. On

the empty list it returns its first argument, i.e., ok result(null). For a non-empty list it

applies its second (functional) argument to the head, and to the recursively reduced

tail of the list.

Finally we show the definition of split:

split(size : nat, a : Address, bl : list[Byte])

: Recursive list[[Address, list[Byte]]] =

Let e2size = expt(2, size) In

If null?(bl) Then null Else
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If a + length(bl) ≤floor(e2size)(a) + e2size Then

cons( (a, bl), null)

Else

Let delta = rem(e2size)(offset(a)) In

cons( (a, head(bl, e2size − delta)),

split(size, floor(e2size)(a) + e2size, tail(bl, e2size − delta)))

Endif

Endif

Measure length(bl),

This function splits a list of bytes starting at address a into a list of lists of bytes whose

elements no longer range across 2 size-aligned addresses.

5.3 Establishing Plain Memory for Linear Memory

We can now establish that the plain-memory property is satisfied for our model of linear

memory. Linear memory is plain memory under the following preconditions (which we

combine in a predicate is linear plain memory?):

– In all states, the code segment register (CS) determining the code privilege level,

the page-table base register, and the page-directory and page-table entries that are

accessed when translating blessed virtual addresses are identical up to reference

bits.

– Any address translation for read or execute accesses succeeds for the entire blessed

range of virtual addresses. Translations for writes succeed for the writable subset.

– Blessed writable virtual addresses map to blessed writable physical addresses in

the underlying (e.g., physical) plain memory, blessed read-only addresses map to

blessed readable or writable physical addresses.

– There is no blessed shared-memory alias to a writable virtual address. (Virtual

read-only regions may be shared arbitrarily.)

– Page-table entries that are accessed when translating blessed virtual addresses are

outside of the physical memory area that can be accessed from blessed addresses.

Although these preconditions seem rather restrictive, they hold for most addresses

and for most parts of the kernel code. Situations in which these preconditions are

temporarily violated and for which they must be established again afterward (possibly

for a different set of addresses) include: context switches changing the page directory

(e.g., when switching to another process), allocation and deallocation of thread control

blocks (a data structure that the kernel memory allocator accesses at a different ad-

dress than the remaining code—only one location may remain in the blessed address

range), device accesses (because the underlying address range is not blessed), and some

page-table manipulations. We only exclude those page-table entries from the blessed

addresses that are used to translate the blessed addresses themselves. When verifying

the manipulation of other page-table entries, one can fully benefit from plain memory.

The following lemma contains the plain-memory result for linear memory:

linear memory plain memory : Lemma

is linear plain memory?(pm) =⇒plain memory?(pm)
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We prove this lemma by first showing (in auxiliary lemmas) that the individual clauses

of the plain-memory predicate hold. The proof of these lemmas requires about 18 ad-

ditional nontrivial lemmas, in which we first establish the clauses of the plain-memory

property, and additional results for linear resolve. The proofs of all these lemmas pro-

ceeds in a straightforward way by expanding the relevant definitions and by case split-

ting. Here, the application of an interactive verification tool proved to be useful, as we

could have easily overlooked one of these cases in a traditional pen-and-paper proof.

For space reasons, we clearly cannot show the whole proof in this article. We there-

fore present two of the intermediate lemmas for illustration. Please refer to our pub-

lished PVS sources for more details of the complete proof. The first example here is

a special result about translate, which is needed for both the page-directory level and

the page-table level.

translate unchanged pm phy except pe : Lemma

Forall (base : PTab Address, lin a : Memory Address 4G,

access : Memory access, priv : Memory privilege) :

union(pm‘ro addr, pm‘rw addr)(lin a) ∧

is linear plain memory?(pm) ∧

subset?(address block(xlat idx(lvl, base, lin a), expt(2, pe size)), pm phy‘rw addr) ∧

(Forall(s : (pm‘states)) :

OK?(read data(pm phy, paging data type(lvl))(xlat idx(lvl, base, lin a))(s))) ∧

(Forall(s1, s2 : (pm‘states)) :

set reference(data(read data(pm phy, paging data type(lvl))

(xlat idx(lvl, base, lin a))(s1)), Write) =

set reference(data(read data(pm phy, paging data type(lvl))

(xlat idx(lvl, base, lin a))(s2)), Write))

=⇒

Let pe addr = xlat idx(lvl, base, lin a) In

unchanged memory invariant?(pm phy‘mem, pm phy‘states,

singleton(expr 2 super(translate(lvl, base, lin a, access, priv))),

difference(union(pm phy‘ro addr, pm phy‘rw addr),

address block(pe addr, expt(2, pe size))))

The lemma uses the utility predicate unchanged memory invariant? to express that

translate (under various preconditions) leaves all the read- and write-blessed addresses

unchanged, except for the page-directory or page-table entry at pe addr. This lemma

directly gives rise to a similar result about linear resolve, which states that linear resolve

only changes the relevant page-directory and page-table entries, leaving the remain-

ing blessed addresses alone. Consequently, read-blessed addresses will not change their

value during address translation, and of the blessed addresses only the address written

will change (to the value that was written). Side effects such as the setting of accessed

and dirty bits in the page-table entries occur outside the blessed address range. Clauses

1 to 4 of the plain-memory specification (see Section 3.1) follow immediately from this

lemma and from the respective facts of the underlying memory model.

The second example lemma that we show here is an intermediate result about

linear resolve. It is important with regard to our formalization of side effects for linear

memory (Section 5.2).

linear resolve same page address : Lemma

Forall (addr : Memory Address 4G, delta : nat, ac : Memory access) :
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rem(expt(2, min page))(offset(addr)) + delta < expt(2, min page) ∧

OK?(linear resolve(addr, ac)(s))

=⇒

data(linear resolve(addr, ac)(s)) + delta = data(linear resolve(addr + delta, ac)(s))

The lemma states that the address translation essentially remains unchanged when

increasing the offset by delta, as long as one stays below the next page boundary.

Consequently, when writing a list of n bytes to a contiguous memory block within a

page, it is possible to deduce the translation of the remaining n− 1 addresses from the

translated base address.

6 Example Verification

In order to illustrate how kernel-code verification works in our environment, we have

proven two partial correctness properties of a simple linear search algorithm (in an

array of N unsigned integers) in PVS. The C++ implementation of the algorithm uses

pointers and pointer arithmetic:

1 unsigned int a[N], value;

2 unsigned int ∗first = &a[0];

3 unsigned int ∗last = &a[N];

4 unsigned int ∗current;

5

6 value = rnd device.rnd val;

7 current = first;

8 while(current < last) {

9 if (∗current == value) break;

10 current++;

11 }

More precisely, we have shown that the current pointer refers to an array element

containing the search value if the value is contained in the array, and to the element

one beyond the array bounds (last) if the search value is not present.

The verification of these properties proceeds according to the approach that was

outlined in Figure 2 (on page 4). First, the C++ sources for the search program are

translated into their semantics in PVS. This is done automatically by the semantics

compiler, see Section 6.1. Second, the correctness properties are formulated as pre- and

postconditions, and then verified against the plain-memory specification. Our verifica-

tion thus shows that, under suitable assumptions, the example program runs correctly

in any memory model that satisfies the plain-memory property (see Section 6.2). Third,

to avoid vacuous results, the plain-memory preconditions were validated for concrete

stacks of memory models (e.g., linear memory on top of the RNG device on top of

physical memory), see Section 6.3. Because we have established program correctness

and plain-memory properties separately, changing the memory model only requires

validation of the plain-memory property for the new model.
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6.1 C++ to Semantics Translation

The semantics compiler translates the above C++ code into its PVS semantics. Expres-

sion-to-statement (e2s) and lvalue-to-rvalue (l2r) conversions are made explicit. We only

show the translation of the second part (lines 6–11) of the above code snippet.

e2s[State, Address]

(assign(pm, dt uint)(id(value), l2r(pm, dt uint)(id(rnd val)))) ##

e2s[State, Address]

(assign(pm, dt pointer)(id(current), l2r(pm, dt pointer)(id(first)))) ##

while(l2r(pm, dt pointer)(id(current)) < l2r(pm, dt pointer)(id(last)),

if else(

l2r(pm, dt uint)(deref(pm)(l2r(pm, dt pointer)(id(current))))

== l2r(pm, dt uint)(id(value))),

break,

skip) ##

e2s[State, Semantics pointer](postinc(pm)(id(current)))),

Here first, last and current are addresses of disjointly allocated pointer variables; value

is an unsigned integer variable, which we initialize with a random value obtained from

the random device’s rnd val register. Currently we require disjointness of these variables

in a precondition. With a complete formalization of memory allocation (which we were

not able to finish within the Robin project), however, disjointness would be derived

from the allocator model.

6.2 Verification Against the Plain-Memory Abstraction

Verification is currently done by fixing the size of the array to a small number and by

unrolling loops automatically. A key point is the automatic simplification of variable

read and write operations with the plain-memory rewriting rules. These are mostly

independent of the methods used for the verification of the C++ program. It is therefore

straightforward to replace loop unrolling by more sophisticated verification techniques

(e.g., loop invariants), while still benefiting from plain-memory rewriting.

For a simplification with the plain-memory rewriting rules, the following precon-

ditions were added for the program variables: in blessed memory and valid in mem.

Condition in blessed memory states that a variable is allocated in blessed memory,

valid in mem states that the memory contains a valid bit representation for a variable.

Typically the latter is established by a previous write to that variable. For uninitialized

variables it is part of the precondition.

In our C++ semantics, all expressions and most statements are expressed using a

combination of only four different state transformers: read data, write data (for read-

ing and writing typed data from and to memory, respectively), ok result(data) (which

returns OK(s, data)), and fatal result (which produces Fatal). It is therefore possible

to simplify expressions by first expanding them to sequences of these transformers,

and then simplifying these sequences using the plain-memory rewriting rules (e.g., the

lemma plain memory read write other res shown in Section 3).

Similarly, suitable rewrite lemmas simplify statements up to the point where

only expressions remain in the code sequence. For example, under the precondition

OK?((expr ## b ex)(s)) the sequence
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(e2s(expr) ## if else(b ex, stmt if, stmt else))(s)

is rewritten into

(e2s(expr ## b ex) ##

If data((expr ## b ex)(s)) Then stmt if Else stmt else Endif)(s).

This simplifies with an appropriate rewriting rule for e2s. If data((expr ## b ex)(s)) is

true, we obtain expr ## b ex ## stmt if, otherwise expr ## b ex ## stmt else.

Likewise, statements stmt if and stmt else are rewritten to expression sequences

containing only read data, write data, and the above result transformers. Because of this

transformation it suffices to define and prove the plain-memory rewriting rules only for

data reads and writes. All other rules of the rewriting system operate independently

of the data-type or memory model.

6.3 Validation of the Plain-Memory Precondition

For each memory model we have established the plain-memory property for a certain

range of addresses. As stated in Section 3.2, for physical memory this is the entire

address range. Stacked models contain preconditions which require the blessed address

range to be contained in the blessed range of the underlying memory model. It is

therefore sufficient to show that the addresses used in the code to be verified all reside

in blessed memory. Accesses outside the blessed-memory address range automatically

violate the plain-memory assumption, and cannot be simplified with the plain-memory

rewriting rules. In such cases the plain-memory property must be reestablished before

one can proceed with the automatic simplification.

For the verification example shown, one needs the following preconditions to es-

tablish the plain-memory property for a memory stack consisting of linear memory on

top of the RNG device on top of physical memory:

– The variables are allocated so that they do not overlap with a register of the

RNG device.

– The variables are allocated so that they do not overlap with a page-table entry

used to access some of the variables.

– All page-table entries of these variables are writable (because reference bits may

be written back to memory).

– The memory location of current is not virtually aliased with any of the other vari-

ables used in the search program.

Note that it is possible to have virtual aliases in the array, or for the first and last

pointers, as these are read only.

7 Related Work

For an overview of current and past verification efforts on operating-system kernels

see [17]. Early efforts on operating system verification include the UCLA Secure

Unix [34] and KIT [2]. The project on UCLA Secure Unix mainly focused on spec-

ifications. Functions that perform hardware access were axiomatized as well, but not

proven correct with respect to a model of the underlying hardware. KIT featured a very

rudimentary kernel of only a few hundred lines of assembly code that provides very
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basic operating-system features, but no virtual memory. KIT was the first formally

verified kernel. However, it cannot be used as a basis of a realistic computer system.

In September 2008, the commercial INTEGRITY-178B Separation Kernel became

the first operating system to receive the Common Criteria EAL-6+ certification. This

involved a formal information-flow analysis on an abstraction of the C source code [4],

carried out in the ACL2 theorem prover. The details are still to be published.

Even closer to our work are two still ongoing large-scale verification efforts: the

L4.verified and the Verisoft project. The L4.verified project, originally scheduled to

complete at the end of 2008, is formally establishing correctness of the seL4 micro-

kernel in a verification environment based on the interactive theorem prover Is-

abelle/HOL [23]. In his Ph.D. thesis [20], Norrish models C memory as a map from

addresses to bytes. In [30], Tuch and Klein impose a typed heap abstraction on this

untyped, byte-oriented memory to simplify reasoning about type-correct programs.

Tuch et al. [28,29,31] later combined this typed view with separation logic to address

the problem of aliasing between variables of the same type. The problem of virtual-

memory aliases, however, has been considered in the context of the L4.verified project

only recently. Kolanski and Klein [18,19] propose a lifting of separation logic to vir-

tual memory. Their approach is more abstract than ours and uses a different model of

“sliced” heaps, but has requirements roughly similar to plain memory to ensure the

frame rule of separation logic. It has not been integrated into the seL4 verification

environment yet. To the best of our knowledge, there has been no work on devices and

their special requirements in the context of L4.verified yet.

The Verisoft project [1,6,8], aims at the complete verification of a computer system

from an e-mail client down to the gate level of the processor. Verification of an operating

system kernel is therefore one part of the Verisoft project. Besides the bigger scale, one

important difference between Verisoft on the one hand, and L4.verified and Robin on

the other hand, is that for Verisoft it is acceptable if the verified system runs orders of

magnitude slower than comparable unverified software. The hardware basis of Verisoft

is the completely verified VAMP processor [3], an academic 32-bit RISC CPU design

that can be implemented on an FPGA. In contrast, L4.verified and Robin aim at

verified kernels that run on contemporary PC hardware at competitive speeds.

The VAMP is considerably simpler than the IA32 architecture. In kernel mode

the VAMP, much like the Power PC processor when translation is not re-enabled,

runs without address translation. Thus, the problem of virtual address aliases—one of

the main motivations for our work on the plain-memory abstraction—simply does not

exist. Also our second motivation for plain memory—to verify code independently of

whether it runs in real or virtual memory—is not of interest on the VAMP.

VAMOS, the operating-system kernel considered in Verisoft [5,6], is written in

a high-level language (C0, a simplified subset of C) with some inline assembly. The

C0 code is verified in an abstract C0 machine, achieving independence of hardware

details similar to our plain-memory rewrite system. However, inline assembly is verified

directly with the VAMP assembly semantics. The results of the assembly verification

are propagated upwards into the C0 model via a simulation relation. In contrast our

plain-memory abstraction is also suited for assembly code (provided it only accesses

blessed memory).

In Verisoft also external devices are handled, for instance a hard disk in [7]. Such

devices can be accessed by port or memory-mapped I/O. The variables of the abstract

C0 machine, however, can change only because of C0 assignments. Therefore, an im-

portant property of the simulation relating the C0 machine to the VAMP model is
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that no C0 variables are allocated at addresses that contain memory-mapped device

registers. In contrast, in our model high-level language variables can be allocated in

memory that is not blessed, either because it contains page tables, or because it belongs

to a device and can therefore change spontaneously.

In summary, some problems of the IA32 architecture considered in this article do

not exist on the VAMP and are, therefore, not relevant in Verisoft. For high-level

code, both our plain-memory abstraction and the C0 machine enable verification on a

suitable abstraction level. For assembly code and memory-mapped devices, however,

the plain-memory model appears to be more flexible.

8 Summary

In this article we have presented an approach to formally model the memory of an

IA32 system. The first contribution is a stack of formal memory models, ranging from

physical to paged virtual memory. For each memory model, a plain-memory property

was established in PVS. This specification of well-behaved memory allows to maintain

an abstract level of reasoning with reasonable efficiency on top of complex memory

models, as found in an IA32 system.

The second contribution is our modeling of memory-mapped devices and reserved

bit restrictions. We use side-effect state transformers that are performed before and

after memory access to uniformly model both, devices and reserved bits. Memory

models with devices and reserved bits have been integrated into our stack of memory

models, and the plain-memory property has been established for suitable subsets of

their addresses.

Both techniques have been integrated into our verification environment based on

the interactive theorem prover PVS. To illustrate their application, we have presented

the formalization of a memory-mapped random number generator, and an example

verification of a simple C++ code fragment.

Acknowledgements We would like to thank the anonymous referees for their time and their
extremely valuable comments, which helped to improve this article substantially.

References

1. Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer, and Artem
Starostin. The Verisoft approach to systems verification. In Natarajan Shankar and Jim
Woodcock, editors, Verified Software: Theories, Tools, Experiments Second International
Conference, VSTTE 2008, Toronto, Canada, October 6–9, 2008. Proceedings, volume
5295 of Lecture Notes in Computer Science, pages 209–224, Toronto, Canada, October
2008. Springer.

2. W.R. Bevier. Kit: A study in operating system verification. IEEE Transactions on Soft-
ware Engineering, 15(11):1382–1396, 1989.

3. Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach, and Wolfgang Paul.
Putting it all together: Formal verification of the VAMP. International Journal on Soft-
ware Tools for Technology Transfer, 8(4–5):411–430, August 2006.

4. Science Applications International Corporation. Green Hills Software INTEGRITY-
178B Separation Kernel security target version 1.0, May 2008. Available from
htp://www.niap-ccevs.org/cc-scheme/st/st_vid10119-st.pdf. Retrieved February 11,
2009.

htp://www.niap-ccevs.org/cc-scheme/st/st_vid10119-st.pdf


36
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