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Abstract. The Quantified Boolean Formulae (QBF) solver Squolem can
generate certificates of validity, based on Skolem functions. We present
independent checking of these certificates in the HOL4 theorem prover.
This enables HOL4 users to benefit from Squolem’s automation for valid
QBF problems. Detailed performance data shows that LCF-style check-
ing of validity certificates is often (but not always) feasible even for large
QBF instances. Additionally, our work provides high correctness assur-
ances for Squolem’s claims of validity and uncovered a soundness bug in
a previous version of its certificate validator QBV.

1 Introduction

Quantified Boolean Formulae (QBF) extend propositional logic with universal
and existential quantification over Boolean variables. QBF have numerous ap-
plications in adversarial planning and formal verification [1,2,3]; for instance,
they enable succinct encodings of bounded and unbounded model checking prob-
lems [4]. As a simple example, consider the formula

∀x∃y ∃z. (x∨y∨¬z)∧ (x∨¬y∨z)∧ (¬x∨y∨z)∧ (¬x∨¬y∨¬z)∧ (¬y∨z), (1)

which says for all x there is a y that implies x⊕ y.
Deciding the validity of QBF is an extension of the well-known Boolean satis-

fiability problem (SAT). A propositional formula φ in Boolean variables x1, . . . ,
xn is satisfiable if and only if the QBF ∃x1 . . . ∃xn. φ is valid. However, SAT is
merely NP-complete, while QBF is the canonical PSPACE-complete problem [5].
Satisfiable propositional formulae have short certificates—namely, their satisfy-
ing assignments—that can be validated in polynomial time. For valid QBF, there
is no known way to even specify a solution succinctly.

Nevertheless, certain QBF solvers can produce certificates for their answers
that can be checked independently [6]. Squolem is a state-of-the-art QBF solver
that generates certificates for valid formulae in a unified format based on finitary
Boolean Skolem functions [7].

In this paper, we present independent checking of these certificates in the
HOL4 [8] theorem prover. HOL4 is a popular interactive theorem prover for
higher-order logic [9]. It is based on a small LCF-style [10,11] kernel that pro-
vides an abstract data type of theorems, equipped with a fixed set of construc-
tor functions. Each function corresponds to an axiom schema or inference rule
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of higher-order logic. Derived rules that are not provided by this kernel must
be implemented by composing existing rules. This provides high correctness as-
surances: derived rules cannot produce inconsistent theorems, as long as the
theorem data type itself is implemented correctly. On the other hand, it makes
an efficient implementation of derived rules challenging.

Our work is motivated primarily by a desire for increased automation in
interactive theorem proving. Systems like Coq [12], HOL4, Isabelle [13] and
PVS [14] can greatly benefit from the reasoning power of automated tools. This
has been demonstrated numerous times, e.g., by integrations of SAT [15] and
SMT solvers [16,17] as well as automated first-order provers [18,19,20]. We en-
vision that HOL4 users might invoke Squolem directly to solve suitable proof
obligations, but also that our integration might serve as a foundation, on top
of which decision procedures for richer logics can be implemented through QBF
encodings. Since the results are checked by HOL4’s inference kernel, no trust
needs to be put in the QBF solver.

An additional motivation arises from the fact that correctness of QBF solvers
is hard to establish. QBF solvers are complex software tools that employ sophis-
ticated heuristics and optimizations [21,22]. Different solvers may disagree on
the status of individual benchmarks. QBF-Eval competitions until 2006 resolved
disagreements by majority vote [23]. This rather unsatisfactory approach (which
has been replaced by certificate checking in recent years) confirms the importance
of QBF benchmark certification. HOL4’s inference kernel has been scrutinized
by dozens of researchers for over two decades. By using HOL4 as an independent
checker, we obtain high correctness assurances for Squolem’s results.

We review related work in Section 2, before introducing relevant background
material in Section 3. Our main contribution, an efficient LCF-style implementa-
tion of certificate checking for valid QBF, is presented in Section 4. We evaluate
our implementation in Section 5, and conclude in Section 6.

2 Related Work

This paper complements previous work on LCF-style checking for QBF cer-
tificates of invalidity. In [24], an algorithm was presented that, given a QBF φ,
obtains a HOL4 theorem ` ¬φ from a Squolem-generated certificate of invalidity.
Here we present an algorithm to obtain a HOL4 theorem ` φ from a certificate
of validity. Certificates of validity and invalidity for QBF are quite different. The
latter employ Q-resolution [25], a refutation-complete inference rule that extends
propositional resolution to quantified Boolean logic. The former (as considered
here) are based on Skolem functions (see Section 3). In principle, one could estab-
lish validity of φ from invalidity of ¬φ. However, this approach is not feasible in
practice: current QBF solvers usually find inverted valid instances considerably
harder and often time out [7]. Therefore, it is a practical necessity to support
certificates of validity directly. We do not know whether inverted invalid in-
stances become easier to solve as validity problems. It would be interesting to



understand when one approach is superior to the other, based on the shape of a
formula.

Other related work concerns the integration of automated solvers with LCF-
style theorem provers, and certificate checking for QBF solvers. Integrations have
been proposed, e.g., for first-order provers [18,19,20], for model checkers [26], for
computer algebra systems [27,28,29], and more recently for SMT solvers [16,17].
We use a HOL4 integration of SAT solvers [15] in this work.

Narizzano et al. [6] give an overview of certificate checking for QBF solvers.
Squolem’s certificates show competitive performance, and they are relatively
simple. Unsurprisingly, stand-alone proof checkers for QBF are typically much
more efficient than the LCF-style proof checker presented here. However, they
arguably do not provide the same degree of trustworthiness as the HOL4 kernel.

3 Background and Theory

We now introduce relevant terminology and describe the QBF certificate format
(Section 3.3) as well as HOL4’s inference calculus (Section 3.4). Propositional
logic is presupposed.

3.1 Quantified Boolean Formulae

We assume an infinite set of Boolean variables. A literal is a possibly negated
Boolean variable. When l is a literal, we write l to denote its variable. A clause
is a disjunction of literals. We say that a propositional formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses.

Definition 1 (Quantified Boolean Formula). A Quantified Boolean For-
mula (QBF) is of the form

Q1x1 . . . Qnxn. φ,

where n ≥ 0, each xi is a Boolean variable, each Qi is either ∀ or ∃, and φ is a
propositional formula in CNF.

Q1x1 . . . Qnxn is called the quantifier prefix, and φ is called the matrix. With-
out loss of generality, we consider QBF in this prenex form only. Any formula
involving only propositional connectives and quantifiers over Boolean variables
can be transformed into prenex form through straightforward syntactic manip-
ulations. (We have not yet implemented such a transformation in HOL4.) The
innermost variable of the above QBF is xn.

The QDIMACS format [30] is the standard input format of QBF solvers. It
provides a textual means of encoding QBF in prenex form. It is a backward-
compatible extension of the DIMACS format [31], the standard input format
of SAT solvers. We have implemented a translation from (the QBF subset of)
HOL4 terms to QDIMACS, and a simple recursive-descent parser for QDIMACS
files that returns the corresponding QBF as a HOL4 term (see Section 3.4).



The QDIMACS format imposes further restrictions: all variables xi must be
distinct, all variables must appear in the matrix, and the innermost quantifier
must be existential (i.e., Qn = ∃). We further require all variables that appear
in the matrix to be bound by some quantifier, i.e., we consider closed QBF only.
This is to avoid confusion: in the QDIMACS format, free variables have existen-
tial semantics (to retain backward compatibility with DIMACS), while in HOL4,
free variables in theorems have universal semantics (to permit instantiation). If
a QBF has free variables, we consider its existential closure instead.

B = {>,⊥} denotes the set of truth values. The semantics of closed QBF
is defined recursively: [[∀x. φ]] = [[φ[x 7→ >] ∧ φ[x 7→ ⊥]]], and similarly [[∃x. φ]] =
[[φ[x 7→ >] ∨ φ[x 7→ ⊥]]]. (Here φ[x 7→ y] denotes substitution of y for all free
occurrences of x in φ.) A QBF is called valid if its semantics is > (i.e., true).

3.2 Skolem Functions and Models

QBF of interest typically contain several dozen or even hundreds of quantifiers.
A naive recursive computation of their semantics, which would be exponential
in the number of quantifiers, is not feasible. Therefore, QBF solvers implement
different algorithms. The certificates of validity that we consider here are based
on finitary Boolean Skolem functions [7].

Definition 2 (Model). A model of the QBF Q1x1 . . . Qnxn. φ maps each ex-
istentially quantified variable xk to a function fk : Bk−1 → B.

A model provides a witness function for every existentially quantified vari-
able. We identify each witness function fk with a propositional formula in k− 1
variables. Because Skolemization preserves satisfiability, we have

Theorem 1. A QBF Q1x1 . . . Qnxn. φ with existentially quantified variables
xe1 , . . . , xem (where e1 < · · · < em) is valid if and only if there is a model
{xek

7→ fek
}mk=1 such that the propositional formula
φ[xem

7→ fem
(x1, . . . , xem−1)] · · · [xe1 7→ fe1(x1, . . . , xe1−1)]

obtained by replacing existential variables with their witness functions in φ is
valid.

Thus, every valid QBF has a model that witnesses its validity, and conversely,
a model that produces a valid propositional formula proves validity of the original
QBF. This is the theoretical foundation for the certificate format that we describe
in Section 3.3.

As a simple example, consider (1). A model is given by fy(x) = ⊥ and
fz(x, y) = x. From this model, we obtain the propositional formula (x ∨ ⊥ ∨
¬x)∧ (x∨>∨x)∧ (¬x∨⊥∨x)∧ (¬x∨>∨¬x)∧ (>∨x). This formula is easily
seen to be valid: each of its clauses is valid, containing either > or both x and
¬x. Hence (1) is valid by Theorem 1.



3.3 Certificates of Validity

Squolem generates certificates in a unified format that is described in detail
in [32]. The format is ASCII-based. Clauses and variables are indexed by posi-
tive integers. Negative values stand for negated variables, i.e., integer negation
denotes propositional negation. Indices do not necessarily correspond to variable
positions in the quantifier prefix.

A certificate of validity encodes a model of a QBF, as defined in Section 3.2.
Certificates introduce fresh extension variables as abbreviations for witness func-
tions and other (sub-)formulae. For each extension variable, the certificate con-
tains a line that defines the extension as either

– a conjunction of literals (with the empty conjunction denoting >), or
– a formula if x then y else z, where x, y, z are literals.

All variables that occur in the definiens must be extension variables that have
been defined previously, or must come from the original QBF. From these two
simple building blocks, extension variables can be defined for arbitrary propo-
sitional formulae (and hence, for arbitrary witness functions). The certificate’s
final line contains a list of (xk, fk) pairs that establishes the map from existen-
tial variables to witness functions, each function denoted by a (possibly negated)
extension variable.

For instance, mapping x, y and z to variable indices 1, 2 and 3, respectively,
Squolem generates the following certificate for (1):

QBCertificate // explanatory comments:
E 4 A 2 0 // v4 = v2 (0 ends the line)
E 5 A 1 -2 0 // v5 = v1 ∧ ¬v2
E 6 I 4 4 5 // v6 = if v4 then v4 else v5
E 7 A 0 // v7 = > (empty conjunction)
CONCLUDE VALID 2 -7 3 6 // v2 = ¬v7, v3 = v6

There are four extension variables v4 through v7, defined as v4 = y, v5 = x∧¬y,
v6 = if v4 then v4 else v5, and v7 = >. The witness for y is declared to be ¬v7,
i.e., ⊥. The witness for z is declared to be v6, which simplifies to x given that
v4 = y = ⊥. The certificate thus encodes the model given in Section 3.2.

We have written a simple recursive-descent parser for this certificate format
that returns the encoded information as a value in Standard ML.

3.4 Higher-Order Logic

HOL4 is a popular LCF-style [10,11] theorem prover for polymorphic higher-
order logic [9]. It is based on Church’s simple type theory [33] extended with
Hindley-Milner style polymorphism [34]. Higher-order logic (HOL) contains a
type of Booleans, propositional connectives, and quantifiers over arbitrary types.
Hence, quantified propositional logic embeds straightforwardly into HOL.

HOL4 implements a natural-deduction calculus. Theorems represent sequents
Γ ` φ, where Γ is a finite set of hypotheses, and φ is the sequent’s conclusion.



Instead of ∅ ` φ, we simply write ` φ. Internally, the set of hypotheses is given by
a red-black tree (for efficient search, insertion and deletion), with terms treated
modulo α-equivalence.

Like other LCF-style provers, HOL4 has a small inference kernel. Theorems
are implemented as an abstract data type, and new theorems can be constructed
only through a fixed set of functions provided by this data type. These functions
directly correspond to the axiom schemata and inference rules of higher-order
logic. Figure 1 shows the rules of HOL that we use to validate certificates of
QBF validity (our call to MiniSat [35], described in the next section, may use
additional primitive rules involving negation).

Assumeφ{φ} ` φ
Γ ` φ

Instθ
Γ θ ` φ θ

Reflt` t = t

Γ ` ψ
Dischφ

Γ \ {φ} ` φ =⇒ ψ

Γ ` φ =⇒ ψ ∆ ` φ
MP

Γ ∪∆ ` ψ

Γ ` φ
Genx (x not free in Γ )

Γ ` ∀x. φ
Γ ` φ[t]

Exists(∃x. φ[x],t)
Γ ` ∃x. φ[x]

Fig. 1. Selected HOL inference rules

The LCF-style architecture greatly reduces the trusted code base. Proof pro-
cedures, although they may implement arbitrarily complex algorithms, cannot
produce unsound theorems, as long as the implementation of the theorem data
type is correct. HOL4 is written in Standard ML [36], a type-safe functional
language (with impure features, e.g., references) that has an advanced module
system. To benefit from HOL4’s LCF-style architecture, we must implement
proof reconstruction in this language.

On top of its LCF-style inference kernel, HOL4 offers various automated
proof procedures: e.g., a simplifier, which performs term rewriting, and various
first-order provers. The performance of these procedures is hard to control, so
we mostly avoid them by combining primitive inference rules directly. A major
exception is our use of an existing HOL4 integration [15] of the SAT solver
MiniSat to prove the propositional conjecture obtained from a QBF and its
validity certificate. We now describe our certificate checking method, with this
use of MiniSat, in more detail.

4 Checking Validity Certificates in HOL4

4.1 Overview

Given a QBF ψ = Q1x1 . . . Qnxn. φ and a certificate of its validity, our goal is
to derive ` ψ as a HOL4 theorem.



The certificate provides witnesses for the QBF’s existential variables. How-
ever, unfolding the definition of witness functions in the QBF’s matrix φ, as
suggested by Theorem 1, could lead to an exponential blowup of the formula.
Instead, we observe that we can use these definitions as hypotheses.

More specifically, the certificate gives a definition 〈ti〉 for each extension vari-
able vi, and a witness literal fek

(where fek
= vi for some i) for each existential

variable xek
.1 We convert definitions 〈ti〉 to HOL4 terms ti, and replace exis-

tential variables with their witnesses to ensure each ti contains only universal
and extension variables. We then prove the theorem {xe1 ⇔ fe1 , . . . , xem

⇔
fem

, v1 ⇔ t1, . . . , vp ⇔ tp} ` φ, where m and p are the number of existential
and extension variables, respectively. To prove validity of the QBF from this
theorem, we reintroduce quantifiers in order, from Qn up to Q1, and prove the
hypotheses. We eliminate hypotheses eagerly, while ensuring we do not unfold
the definition of any variable that occurs more than once in the sequent.

In the certificate, variables are indexed by positive integers. Our implemen-
tation maintains a one-to-one correspondence between variables and indices. For
conceptual clarity, we describe the algorithm entirely in terms of variables. The
implementation uses indices where possible to achieve better performance.

We maintain two maps keyed on variables. The first map, V , gives the vari-
able’s kind—universal, existential, or extension—along with a HOL4 term for its
definition, if applicable: fek

for existential, and ti for extension variables. The
second map, D, maps each variable to a list of variables that it depends on.
Dependency between variables is characterized as follows.

(D1) xk depends on xk+1, for all 1 ≤ k < n;
(D2) fek

depends on xek
, for all 1 ≤ k ≤ m; and

(D3) each variable in ti depends on vi, for all 1 ≤ i ≤ p.

We explain in Section 4.3 how dependencies are used for hypothesis elimination.
Our algorithm for checking validity certificates has four main steps.

1. Construct the formula φ′ = (xe1 ⇔ fe1) ⇒ · · · ⇒ (xem
⇔ fem

) ⇒ φ and
partially construct the maps V and D, omitting extension variables;

2. Add extension variable definitions, obtaining the formula φ′′ = (v1 ⇔ t1)⇒
· · · ⇒ (vp ⇔ tp)⇒ φ′, and finish constructing the maps V and D;

3. Prove the (purely propositional) theorem ` φ′′ using the MiniSat integra-
tion, then turn its antecedents into hypotheses to obtain {xe1 ⇔ fe1 , . . . ,
xem ⇔ fem , v1 ⇔ t1, . . . , vp ⇔ tp} ` φ; and finally,

4. Topologically sort the variables according to D, then eliminate hypotheses
and reintroduce quantifiers to obtain ` ψ.

4.2 Preparing the Formula for MiniSat

We first process the quantifier prefix of ψ, stripping off one quantifier at a time
until we obtain φ. For each quantifier, we add xk 7→ [xk+1] to D (or xn 7→ [ ] for
1 Squolem may omit witnesses for variables whose value does not affect the QBF’s

validity. For these variables we use a dummy extension variable with definition >.



the innermost variable). For each universal quantifier, we add xk 7→ ∀ to V . For
each existential quantifier, we add xek

7→ (∃, fek
) to V and fek

7→ [xek
] to D.

When all the quantifiers have been stripped, V maps every quantified variable,
and D accurately represents the first two dependency conditions. Iterating over
V , we add each existential variable’s definition, xek

⇔ fek
, as an antecedent to

φ to complete the algorithm’s first main step, obtaining φ′.
Next, we process the certificate’s definitions of extension variables. For each

definition (vi, 〈ti〉), we construct a term ti by creating a HOL4 conjunction or if-
then-else term, replacing references to existential variables with their witnesses.
For each variable x that occurs in ti (after replacing existential variables), we
add vi to the list associated with x in D. Thus, when all definitions have been
processed, D accurately represents all three dependency conditions. We also add
vi 7→ (ext, ti) to V , and vi ⇔ ti as an antecedent to φ′, in the end obtaining φ′′.
This completes the second main step.

We now invoke MiniSat to prove φ′′, which is a purely propositional formula
with antecedents defining all existential and extension variables and the origi-
nal matrix as consequent. MiniSat is an independent SAT solver that has been
integrated into HOL4 just as we are now integrating Squolem. In particular,
MiniSat logs proofs, and each proof is replayed via HOL4 inferences to produce
a theorem that depends only on the trusted kernel [15]. When MiniSat returns a
theorem ` φ′′, we turn all antecedents into hypotheses using Assume and MP.

4.3 Hypothesis Elimination

Given the theorem {xe1 ⇔ fe1 , . . . , xem
⇔ fem

, v1 ⇔ t1, . . . , vp ⇔ tp} ` φ
obtained from the previous step, our goal is to introduce quantifiers and eliminate
hypotheses to obtain ` ψ. To introduce a universal (existential) quantifier, we
use Gen (Exists, respectively). To eliminate a hypothesis of the form x ⇔ t,
we use Inst with a substitution mapping x to t. The hypothesis thus becomes
t⇔ t. We prove ` t⇔ t with Refl, then use Disch and MP (see Figure 1).

However, care must be taken to introduce quantifiers and eliminate hypothe-
ses in the correct order. The Inst rule instantiates all free occurrences of a
variable in a sequent. When eliminating a hypothesis, we want the variable on
its left-hand side to occur only there, both to avoid changing the conclusion of
the theorem, whose matrix should always be φ, and to prevent terms in the
hypothesis set from growing too large. Therefore, before eliminating x ⇔ t, we
ensure both that x is quantified in the conclusion (or is an extension variable),
and that x does not appear on the right-hand side of any hypothesis. It is enough
to consider right-hand sides, since the left-hand sides are all distinct.

A variable x has been eliminated if it has been quantified, if necessary, and
the hypothesis with x on the left, if any, has been eliminated. Only existen-
tial variables require both treatments; for them, we quantify before eliminating
the hypothesis. A variable x depends on another variable y if y must be elimi-
nated before x can be eliminated. The last two dependency conditions defined
in Section 4.1 effectively say that the left-hand side of a hypothesis must be
eliminated before any variable on its right-hand side, which agrees with our



observations about Inst. Dependency condition D1 simply ensures that we in-
troduce quantifiers in the correct order. To complete the algorithm’s final main
step, we topologically sort all variables according to their dependencies in D,
then eliminate each variable in the order obtained.

The Genx rule has a side condition: x must not occur free in the hypotheses.
We rely on the fact that if we eliminate hypotheses eagerly, i.e., as soon as their
left-hand side is a lone occurrence, then the side condition holds as long as each
witness function fej

represented by the certificate depends only on variables
x1, . . . , xej−1. In fact, Squolem may re-order existential variables, i.e., define a
witness fej in terms of xek

for some ek > ej , provided there is no interven-
ing universal quantifier. However, only acyclic dependencies between existential
variables are allowed; cycles are detected as failure of the topological sort.2

4.4 Example

Consider (1) again, where we have

ψ = ∀x∃y ∃z. (x∨y∨¬z)∧ (x∨¬y∨z)∧ (¬x∨y∨z)∧ (¬x∨¬y∨¬z)∧ (¬y∨z).

Assume x, y, and z have variable indices 1, 2, and 3, respectively. Squolem
provides the certificate of validity given in Section 3.3. Let v1 through v4 be
extension variables with indices 4 through 7. Witnesses are given as (y,¬v4) and
(z, v3). Definitions are given as (v1, A y 0), (v2, A x −y 0), (v3, I v1 v1 v2), and
(v4, A 0). After processing the quantifier prefix, we have

φ = (x ∨ y ∨ ¬z) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ y ∨ z) ∧ (¬x ∨ ¬y ∨ ¬z) ∧ (¬y ∨ z),
V = {x 7→ ∀, y 7→ (∃,¬v4), z 7→ (∃, v3)},
D = {x 7→ [y], y 7→ [z], z 7→ [ ], v3 7→ [z], v4 7→ [y]},
φ′ = (y ⇔ ¬v4)⇒ (z ⇔ v3)⇒ φ.

We process the definitions of extension variables (as described in Section 4.2)
to obtain t1 = ¬v4, t2 = x ∧ v4, t3 = if v1 then v1 else v2, t4 = >, and

V = {x 7→ ∀, y 7→ (∃,¬v4), z 7→ (∃, v3),
v1 7→ (ext, t1), v2 7→ (ext, t2), v3 7→ (ext, t3), v4 7→ (ext, t4)},

D = {x 7→ [y, v2], y 7→ [z], z 7→ [ ], v1 7→ [v3], v2 7→ [v3], v3 7→ [z], v4 7→ [y, v1, v2]},
φ′′ = (v1 ⇔ t1)⇒ (v2 ⇔ t2)⇒ (v3 ⇔ t3)⇒ (v4 ⇔ t4)⇒ φ′.

After passing φ′′ to MiniSat and stripping all antecedents from the resulting
theorem, we have

{y ⇔ ¬v4, z ⇔ v3, v1 ⇔ t1, v2 ⇔ t2, v3 ⇔ t3, v4 ⇔ t4} ` φ
2 Squolem’s own certificate validator, QBV, did not implement this acyclicity check

correctly in version 1.03. It would therefore accept certain invalid certificates. This
bug has been fixed in the latest version (2.0) of QBV.



We now eliminate variables in a topological order according to D, say z <
v3 < v1 < v2 < y < x < v4. After eliminating z, v3, and v1, we have

{y ⇔ ¬v4, v2 ⇔ t2, v4 ⇔ t4} ` ∃z. φ

We show the remainder in more detail. To eliminate v2, we instantiate v2 to
t2, then prove the hypothesis with a theorem ` t2 ⇔ t2:

{y ⇔ ¬v4, t2 ⇔ t2, v4 ⇔ t4} ` ∃z. φ
{y ⇔ ¬v4, v4 ⇔ t4} ` ∃z. φ

To eliminate y, we first quantify. Then we can instantiate without affecting the
sequent’s conclusion, before proving the hypothesis:

{y ⇔ ¬v4, v4 ⇔ t4} ` ∃y.∃z. φ
{¬v4 ⇔ ¬v4, v4 ⇔ t4} ` ∃y.∃z. φ

{v4 ⇔ t4} ` ∃y.∃z. φ

To eliminate x, we simply quantify, which is possible since all hypotheses men-
tioning x have been eliminated. And to eliminate v4, we instantiate again before
proving the hypothesis as before.

{v4 ⇔ t4} ` ∀x.∃y.∃z. φ
{t4 ⇔ t4} ` ∀x. ∃y.∃z. φ

∅ ` ∀x. ∃y.∃z. φ

This sequent is now ` ψ as required.

5 Experimental Results

We have evaluated our implementation on a set of 100 valid QBF problems
that resulted from applying Squolem 2.02 to all 445 problems in the 2005 fixed
instance and 2006 preliminary QBF-Eval data sets. With a time limit of 600
seconds per problem, Squolem solved 217 of these problems; 100 were deter-
mined to be valid.3 (We did not consider inverting invalid problems.) The same
set of problems was previously used (by the Squolem authors) to evaluate the
performance of Squolem’s certificate generation [7].

All experiments were conducted on a 64-bit Linux system with an Intel Core
i7-920XM processor at 2.0 GHz clock speed. Memory usage was restricted to
4 GB. HOL4 was running on top of Poly/ML 5.4.1.

3 In comparison, Squolem 1.03 only solved 142 problems, among them 73 valid ones.



5.1 Run-Times

Table 1 shows our experimental results for the first 50 of the 100 valid QBF
problems. Our full results are available at http://www.cl.cam.ac.uk/~tw333/
qbf/. The remainder of this section comprehensively covers all 100 problems.

The first column in Table 1 gives the name of the benchmark. The next
three columns provide information about the size of the benchmark, giving the
number of alternating quantifiers,4 variables, and clauses, respectively. Column
five shows the run-time of Squolem 2.02 (with certificate generation enabled) to
solve the benchmark. Column six shows the number of extension variables in the
resulting certificate.

The last two columns finally show the run-time of certificate validation in
HOL4. The HOL4 system comes with two different implementations of its infer-
ence kernel: one uses de Bruijn indices (and explicit substitutions) to represent λ-
terms [37], the other (by M. Norrish) uses a name-carrying implementation [38].
These implementations differ in the performance (and even complexity) of prim-
itive operations. We present run-times for both implementations.

All run-times are given in seconds (rounded to the nearest tenth of a second).
Timeouts are indicated by T. For comparison, we have also measured run-times
of QBV [7], a stand-alone checker for Squolem’s certificates that was developed
by the authors of Squolem. QBV is written in C++ and uses MiniSat for tau-
tology checking. Its run-times are given in column seven.

We observe that even for Squolem’s stand-alone checker QBV, certificate
validation is considerably harder than certificate generation on selected problems
(e.g., adder-6-sat, qshifter 7, qshifter 8). This is in line with earlier results [7]
and reflects the fact that certificate validation for valid QBF instances is, in
general, co-NP-complete [39].

However, QBV times out on one problem only, while HOL4 times out on 13
problems (de Bruijn kernel) or 15 problems (name-carrying kernel). This corre-
sponds to success rates of 87% and 85%, respectively. These rates are largely due
to a number of relatively easy problems. The largest certificates that are vali-
dated successfully in HOL4 (k d4 n-20, toilet c 08 10.2) define just over 15000
extension variables each; QBV validates them in about a second. Figure 2 shows
run-times for the de Bruijn kernel as a function of the number of extension
variables. The dotted trend line (R2 = 0.96) is given by f(x) = 1.09 ·10−5 ·x1.85.

If we count each timeout as 600 seconds, average run-times are 7.5 seconds
for Squolem, 8.4 seconds for QBV, 134.1 seconds for the de Bruijn kernel, and
163.1 seconds for the name-carrying kernel. (Considering successfully validated
problems only, average run-times are 2.4 seconds for QBV, 64.5 seconds for the
de Bruijn kernel, and 86.1 seconds for the name-carrying kernel.) The de Bruijn
kernel thus takes 16 times longer on average than QBV (and 18 times longer
than Squolem’s proof search), but is almost 18% faster than the name-carrying
kernel.
4 Counting successive quantifiers of the same kind, as in ∀x∀y ∀z . . ., as one quantifier

only. The total number of quantifiers in each benchmark is typically identical to the
number of variables.

http://www.cl.cam.ac.uk/~tw333/qbf/
http://www.cl.cam.ac.uk/~tw333/qbf/
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Interestingly, the picture is very different for invalid QBF [24]. For LCF-style
validation of invalidity certificates, the name-carrying kernel is 75 times faster
on average than the de Bruijn kernel, and 25 times faster than proof search
with Squolem. This shows that LCF-style validation of QBF invalidity is not
only easier in general, but also exercises different primitive inference rules of the
HOL4 kernel.

5.2 Profiling and Future Improvements

To gain deeper insight into these results, we present profiling data for the
de Bruijn kernel (Figure 3) and the name-carrying kernel (Figure 4).

For each kernel, we show the share of total run-time (dark bars) and relative
number of function calls (light bars) for the following functions: elimination of
extension variable definitions (ext), introduction of existential quantifiers into
the conclusion (exists), and propositional tautology proving (SAT). Time spent
on other aspects of certificate validation, e.g., parsing and pre-processing the
certificate, is shown as well (other). The relative number of function calls (light
bars) is similar for each kernel; small differences are caused by timeouts.

We observe that the bulk of run-time (52% for the de Bruijn kernel, 69%
for the name-carrying kernel) is spent on eliminating extension variables. There
are about four extension variables on average for every existential quantifier.
Introducing the latter takes 11% (name-carrying kernel) to 14% (de Bruijn ker-
nel) of total run-time. With either kernel, about 20% of run-time is spent on
propositional tautology proving, i.e., on the call to MiniSat with pre-processing
and proof checking in HOL4. Other inferences, e.g., introduction of universal
quantifiers via Gen, take a much greater share of run-time in the de Bruijn ker-
nel (14%) than in the name-carrying kernel (0%). As indicated by the run-times
in Section 5.1, however, this effect is more than outweighed by the name-carrying
kernel’s slightly inferior performance on ext.



Squolem Ext. QBV de Bruijn name-

Benchmark name Quant. Vars. Clauses (s) vars. (s) (s) carry. (s)

Adder2-2-s 6 236 292 0.0 352 0.0 0.7 1.0

Adder2-4-s 6 1117 1405 1.3 5685 0.4 73.6 88.3

adder-2-sat 4 51 109 0.0 179 0.0 0.2 0.3

adder-4-sat 4 226 530 0.1 4422 0.2 49.1 56.8

adder-6-sat 4 525 1259 7.8 104897 83.2 T T

CHAIN12v.13 3 925 4582 0.1 896 0.0 9.0 13.8

CHAIN13v.14 3 1080 5458 0.1 1023 0.0 12.1 19.2

CHAIN14v.15 3 1247 6424 0.1 1157 0.0 15.7 25.2

CHAIN15v.16 3 1426 7483 0.1 3221 0.1 46.3 86.5

CHAIN16v.17 3 1617 8638 0.2 3664 0.1 60.4 113.3

CHAIN17v.18 3 1820 9892 0.3 4136 0.1 80.7 145.4

CHAIN18v.19 3 2035 11248 0.3 4649 0.1 101.1 192.6

CHAIN19v.20 3 2262 12709 0.4 5178 0.1 125.7 247.2

CHAIN20v.21 3 2501 14278 0.5 5748 0.1 153.9 311.4

CHAIN21v.22 3 2752 15958 0.5 6358 0.1 192.3 381.0

CHAIN22v.23 3 3015 17752 0.7 6985 0.1 232.5 467.4

CHAIN23v.24 3 3290 19663 0.9 7628 0.1 283.9 567.8

comp.blif 0.10 0.20 0 1 inp exact 7 311 833 1.3 9231 0.5 173.5 169.4

comp.blif 0.10 1.00 0 1 inp exact 3 307 844 0.1 4667 0.2 41.8 46.8

counter 2 5 42 103 0.0 322 0.0 0.2 0.3

counter 4 9 130 333 0.4 7737 0.2 105.1 104.6

counter e 2 5 50 123 0.0 692 0.0 0.8 1.0

counter e 4 9 144 373 136.4 69771 7.3 T T

counter r 2 5 50 121 0.0 360 0.0 0.3 0.4

counter r 4 9 144 369 0.8 10415 0.4 200.0 226.0

counter re 2 5 58 141 0.0 583 0.0 0.6 0.9

counter re 4 9 158 409 38.8 40716 3.4 T T

impl02 5 10 18 0.0 14 0.0 0.0 0.0

impl04 9 18 34 0.0 28 0.0 0.0 0.0

impl06 13 26 50 0.0 42 0.0 0.0 0.0

impl08 17 34 66 0.0 56 0.0 0.0 0.0

impl10 21 42 82 0.0 70 0.0 0.0 0.1

impl12 25 50 98 0.0 84 0.0 0.0 0.1

impl14 29 58 114 0.0 98 0.0 0.1 0.1

impl16 33 66 130 0.0 112 0.0 0.1 0.1

impl18 37 74 146 0.0 126 0.0 0.1 0.1

impl20 41 82 162 0.0 140 0.0 0.1 0.2

k branch n-4 13 803 2565 33.7 8118 0.5 165.2 235.3

k d4 n-16 41 1437 5140 0.9 11985 0.8 348.2 561.2

k d4 n-20 49 1785 6416 1.3 15069 1.1 574.4 T

k d4 n-21 51 1872 6735 1.4 15840 1.1 T T

k d4 n-4 17 393 1312 0.1 2733 0.1 16.6 28.3

k d4 n-8 25 741 2588 0.3 5817 0.2 76.5 126.9

k dum n-12 35 620 1594 0.1 2315 0.1 15.1 25.0

k dum n-16 43 796 2062 0.1 3035 0.2 25.2 46.2

k dum n-20 51 972 2530 0.1 3755 0.2 38.7 70.0

k dum n-21 53 1016 2647 0.2 3945 0.2 45.1 79.1

k dum n-4 19 262 649 0.0 902 0.0 2.2 3.8

k dum n-8 27 444 1126 0.0 1599 0.0 6.7 12.6

k grz n-12 17 557 2003 7.5 4510 0.2 45.3 77.9

Table 1. Experimental results



At present, we convert the negation of the QBF’s matrix φ into CNF. This
is costly, despite the fact that HOL4 uses a Tseitin-style transformation [15].
It would be more apt to call MiniSat several times, to prove each clause of φ
separately from the certificate’s definitions. However, the overhead associated
with calling MiniSat from HOL4 currently renders this approach infeasible: no
incremental interface to MiniSat is available in HOL4.

More substantial improvements might be gained from a modified term data
structure. The kernel could compute the set of a term’s free variables when the
term is built, and store it in memory along with the term itself. This would
permit more efficient implementations of instantiation and generalization (see
Figure 1) . However, it is difficult to predict the effect that such a major change
in fundamental kernel data structures would have on other HOL4 applications.

As Figure 2 shows, eliminating extension variables is essentially quadratic.
Harrison [40] presents an ingenious solution to this kind of problem using pro-
forma theorems to reduce the complexity. Adapting his approach would require
some effort, but could yield significant performance improvements.

6 Conclusions

We have presented LCF-style checking for certificates of QBF validity in HOL4.
Detailed performance data shows that LCF-style certificate checking is often
feasible even for large valid QBF instances: up to 87% of our benchmark certifi-
cates were checked successfully. With a time limit of 600 seconds, the algorithm
succeeds on certificates that have at most some 15000 extension variables. Our
implementation is freely available from the HOL4 repository [38].

Our work complements earlier work on LCF-style checking for certificates of
QBF invalidity [24]. It has two main applications. First, it enables HOL4 users to
benefit from Squolem’s automation. QBF can simply be passed from the HOL4
system to Squolem. If Squolem proves that the QBF is valid, our method then
derives it as a theorem in HOL4. Second, our work provides high correctness
assurances for Squolem’s results; in fact, we uncovered a soundness bug in an
earlier version of Squolem’s certificate validator QBV. Due to HOL4’s LCF-
style architecture, our proof checker cannot draw unsound inferences (provided
HOL4’s kernel is correct). Thus, it can be used for QBF benchmark certification.

One could extend this work to other QBF solvers (see [23] for an overview),
and to other interactive theorem provers, e.g., Isabelle or Coq. Because seemingly
minor differences in kernel data structures can have significant effects, it is not
clear whether similar performance can be achieved in these systems.

An alternative approach that might yield better performance than the LCF-
style implementation presented in this paper is the use of reflection [41], i.e.,
implementing and proving correct a checker for Squolem’s certificates in the
prover’s logic, and then executing the verified checker without producing proofs.
While this approach still provides relatively high correctness assurances, obtain-
ing a theorem in HOL4 would require enhancing the inference kernel with a
reflection rule that allows us to trust the result of such a verified computation.
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