Automating Algebraic Methods in Isabelle

Walter Guttmann®, Georg Struth?, and Tjark Weber?

! Institut fiir Programmiermethodik und Compilerbau, Universitat Ulm
walter.guttmann@uni-ulm.de
2 Department of Computer Science, The University of Sheffield
g.struth@dcs.shef.ac.uk
3 Computer Laboratory, University of Cambridge
tw333Qcam.ac.uk

Abstract. We implement a large Isabelle/HOL repository of algebras
for application in modelling computing systems. They subsume compu-
tational logics such as dynamic and Hoare logics and form a basis for var-
ious software development methods. Isabelle has recently been extended
by automated theorem provers and SMT solvers. We use these integrated
tools for automatically proving several rather intricate refinement and
termination theorems. We also automate a modal correspondence result
and soundness and relative completeness proofs of propositional Hoare
logic. These results show, for the first time, that Isabelle’s tool integra-
tion makes automated algebraic reasoning particularly simple. This is a
step towards increasing the automation of formal methods.

1 Introduction

Many popular formalisms for developing and verifying programs and software
systems, and many system semantics are based on algebra. Many computational
logics, for instance temporal, dynamic or Hoare logics, have algebraic siblings.
Algebraic approaches offer simple abstract modelling languages, system analysis
via equational reasoning, and a well developed meta-theory, namely universal
algebra. In the area of formal methods, algebraic semantics form an important
part of, for example, Alloy, B and Z.

Among the above algebraic methods, variants of idempotent semirings and
Kleene algebras play a fundamental role. They provide the operations for non-
deterministic choice, sequential composition and (in)finite iteration of a system;
important semantics—binary relations, computation traces, computation trees—
are among their models. They have already been applied widely from compiler
optimisation and feature-oriented software development to program transfor-
mation and refinement. They are particularly suitable for automation [18,20];
automated theorem proving (ATP) systems were, in fact, instrumental for de-
veloping some recent variants [10].

Stand-alone ATP systems, however, do not suffice for coherently implement-
ing and applying algebraic methods. Mechanisms for designing modular theory
hierarchies, inheriting and instantiating theorems across hierarchies and mod-
els, exploiting dualities, filtering relevant hypotheses, supporting (co)inductive

reasoning or decision procedures for data types, and integrating domain specific
solvers are indispensable for these tasks. Yet all these mechanisms are available
through the recent integration of ATP systems and Satisfiability Modulo The-
ories (SMT) solvers into Isabelle/HOL [28,4]. Our paper shows that this offers
new perspectives for algebraic methods in formal software development: we have
implemented a large Isabelle/HOL repository for algebraic methods, which con-
tains more than 1000 facts.* They have all been obtained by ATP and SMT,
using Isabelle’s Sledgehammer tool which calls the external provers E;, SPASS
and Vampire and internally reconstructs their output with the theorem prover
Metis or the SMT solver Z3. While some basic features of the repository have
been presented in a tutorial paper [13], this paper describes the more advanced
implementation of modal algebras and computational logics and discusses several
intricate modelling examples. Our main results are as follows:

* In the context of Kleene algebras [6,22] we show how inductive proofs in-
volving finite iteration can be automated and give a new simple automated
calculational proof of a well-known termination theorem [2].

* In the context of modal Kleene algebras [8,26] we automatically derive the
axioms of propositional dynamic logic, notably Segerberg’s formula, show
how dualities give theorems for free, discuss how to obtain an algebraic wlp-
calculus, and automate a rather complex computational modelling task.

* Based on modal Kleene algebras, we automatically relate three algebraic no-
tions of termination, which implies a modal correspondence result for Lob’s
formula. We apply these notions in a simple automated proof of a generali-
sation of the above termination theorem [12].

* From a minimalist set of algebraic axioms we develop the calculus and se-
mantics of propositional Hoare logic and provide simple abstract automated
soundness and relative completeness proofs. We instantiate this theory to
modal Kleene algebras and further to the relational wlp-semantics.

* We instantiate all abstract concepts and results to binary relations, thus
making them available for relational program semantics and development.

In combination, these results yield the main contribution of this paper: Isabelle’s
Sledgehammer tool enabled us to design and implement a large modular reposi-
tory for algebraic methods with relative ease by ATP and SMT, to extend it to
implementations of various computational logics and program semantics, and to
automate some rather complex modelling tasks. Such methods can complement
existing Isabelle verification technology [29] by additional support for developing
programs that are correct by construction.

This paper can only present some main theorems and proof sketches. A com-
plete documentation of all formal proofs is available in our repository. This pa-
per has been generated by Isabelle’s document preparation system. The theory
sources and its technical content are formally verified by Isabelle2011.

4 The repository is available at http://www.dcs.shef.ac.uk/~georg/isa/.

http://www.dcs.shef.ac.uk/~georg/isa/

2 Preliminaries

This work builds on our large repository for Kleene and relation algebras that
contains most of the standard calculational theorems in these areas. We use a
relational semantics, but do not need full relation algebras.

An Isabelle theory for dioids is the basis of our formalisation. It covers vari-
ants of semirings needed for process algebras, the analysis of probabilistic al-
gorithms, program refinement, formal language theory or relational program
semantics. Isabelle’s class mechanism [14] is used for implementing this theory
hierarchy. For the sake of simplicity we only discuss semirings and dioids. Many
theorems hold already in weaker variants.

Formally, a semiring is a structure (S, +,-,0,1) such that (S, +,0) is a com-
mutative monoid, (5, -, 1) is a monoid, the distributivity laws x-(y+2) = z-y+z-2
and (x+y)-z=x-z+y-2z hold and 0 is an annihilator, that is, 0-x =0 = z-0.
A dioid is a semiring in which addition is idempotent, that is, x + x = x. By
idempotency, the additive monoid forms a semilattice and the dioid is ordered
by the semilattice order z < y «» x +y = y. The semiring operations are isotone
with respect to < and 0 is its least element. The order is instrumental for prov-
ing theorems in dioids and Kleene algebras, splitting identities into inequalities:
‘Use inequalities wherever possible’ [6, page 120].

Each semiring comes with a dual semiring—its opposite—in which the order
of multiplication is swapped. This is captured in Isabelle by defining x Oy = y-x
and proving the following fact.

Lemma (in semiring-one-zero) dual-semiring-one-zero:
class.semiring-one-zero (op +) (op ©) 10

We have shown in Isabelle that the binary relations on a set S under union,
relational composition, the empty set and the identity relation form a dioid. In
this model, (a,c¢) € x -y if and only if (a,b) € x and (b,c) € y for some b € S,
and 1 = {(a,a) : a € S}. More abstractly, an element x represents an action
of a system, 4+ a non-deterministic choice between actions and - the sequential
composition of actions; 0 and 1 are the aborting and the ineffective actions.

For modelling iterative behaviour, dioids can be expanded to Kleene algebras.
Formally, a Kleene algebra is a dioid augmented with a star operation that
satisfies the unfold and induction axioms

Assumes star-unfoldl: 1+z-z* < z*
Assumes star-inductl: z+z-y <y — 2%z < y

and their opposites (with arguments to - swapped). In relation Kleene algebras,
x* is the reflexive transitive closure of the relation x. More abstractly, z* is the
least (pre)fixpoint of the mapping f(y) = 1 + x - y and its opposite. It models
finite iteration of x in the sense that, by the unfold law, either 1 is executed
(which has no effect) or an z-action is performed before the iteration continues.
The next section shows how infinite iteration can be axiomatised similarly.
Kleene algebras were initially conceived as algebras of regular expressions. A
classical result states that Kleene algebras are complete for the equational theory

of regular expressions [22]. Hence all regular identities from formal languages,
for instance, 1 + - a2* = z* = 2* - 2* = 2™ and (zx +y)* = z* - (y - 2*)* and
x-(y-x)* = (z-y)* -z, hold in this setting. The theory of Kleene algebras
in our repository contains more than 100 facts for different variants and, by
instantiation, for models based on binary relations, languages and traces. Almost
all proofs could be fully automated by invoking Sledgehammer. All identities hold
in weak variants where the Isabelle decision procedure for regular expression
equivalence [24] is not applicable.

3 Warm-Up: Three Proofs in Kleene Algebra

We now set the scene for later results. First, beyond purely equational reasoning
and the capabilities of ATP systems, we automate two inductive proofs in Kleene
algebras. Second, reasoning about infinite behaviours, we automate a coinductive
proof of a well-known termination theorem.

The Kleene star is often defined as a sum of powers: z* = Y_,.x’. A ben-
efit of Kleene algebra, which is slightly weaker, is that it replaces higher-order
inductive reasoning about powers and unbounded suprema by equational rea-
soning in first-order logic. Yet many theorems combine the star and finite sums
and require both kinds of reasoning. To implement this combination we use a
primitive recursive function power for z* with Isabelle’s built-in theory of sums
and a small set of simple lemmas (see below). Our first induction example is an
unfold law that frequently occurs in automata theory.

Lemma powerstar-unfoldl: (3 i=0..n . z*) + " 1.a* = z*

Proof (induct n)
case 0 show ?case by simp (smt mult-oner star-unfoldl-eq)
case Suc thus ?case by (simp add: setsum-cl-ivl-Suc) (smt add-assoc
power.simps(2) distl mult-oner mult-assoc star-unfoldl-eq power-commutes)
qged

Isabelle’s Isar proof language allows users to obtain human-readable proofs. In
our examples, however, the main emphasis is on proof automation beyond the
granularity of textbook proofs. Hence the above proof only displays the splitting
into inductive cases, which is beyond first-order reasoning. The proofs of the
base case and the induction step are fully automatic, using previously verified
lemmas that have been selected by Sledgehammer’s relevance filter.

In the base case, Isabelle’s simplifier strips off the sums before Z3 uses some
basic regular identities. In the induction step, we simplify again before Z3 uses
the inductive definition of powers z°%¢ ™ = x - ", the lemma z™ - 2" = z" - ™
and further regular identities.

One advantage of the approach is that users can, to a large extent, control
the granularity of Isar proofs. In the rest of this paper, we will usually only
display Isar proof skeletons, in which the list of lemmas used is omitted. In these
cases, we merely indicate whether Metis or the SMT solver has been used.

Our second example is (the dual of) Conway’s powerstar aziom for Kleene
algebras [6]. Its proof requires some inductive facts about sums, but does not
need induction itself.

Lemma conway-powerstar-var: z* = (3 i=0..n . z*)-(z"T1)*
Proof —
have z* < (3 i=0..n . z)-(z"1)* by (smt star-inductl-eq sum-power-3 distr
add-assoc add-comm star-unfoldl-eq mult-onel sum-power-2 mult-assoc mult-oner)
thus ?thesis
by (smt power-le-star prod-star-closure star-invol star-iso sum-power-le-star eq-iff)
qed

The identities z - > i yz* = (X, 2") + 2" and Yo j2t = 1+ Y0 o'
are used in the first step together with star induction. The second step uses
the approximation law Y ja’ < z*. All other properties are again regular
identities. We will further need the following instance of the powerstar axiom.

Lemma conway-powerstar-2: z* = (z2)*+z-(z%)* — by smt

The above examples show, for the first time, how combined fixpoint-based
and inductive reasoning can be fully automated in Isabelle.

To reason about infinite iteration we augment Kleene algebras by an omega
operation which is axiomatised as a greatest (post)fixpoint.

Assumes omega-unfold: % < z-x*
Assumes omega-coinduct: y < z4+zy — y < z°+z"2

Kleene algebras expanded by this operation are called omega algebras [5]. We
have shown within Isabelle/HOL that binary relations form omega algebras and
developed the basic calculus of omega algebra. The following, for instance, is a
separation theorem for infinite loops.
Theorem omega-sum-refine: y-z < z-(z+y)* — (z+y)* = z“+z*-y*
Proof

assume y-z < z-(z+y)*

hence (z+y)* < z-(z+y)"-(z+y)“+y~ — by smt

thus (z+y)* = z“+z"-y* — by metis
qed

It states that if 2 quasicommutes over y, that is, y - & < x - (x + y)*, the infinite
loop (x4 y)“ in which z and y are executed non-deterministically can be refined
to the more deterministic loops in z“+x*-y*“. The initial step uses the unfold law
(z+y)* = y“+y* -z - (z+y)“ and then applies the consequence y*-x < z-(x+y)*
of quasicommutation.

In omega algebra, termination can be expressed as the absence of infinite iter-
ation: (iteration of) x terminates if and only if z* = 0. Our previous refinement
theorem then implies the following well-known separation of termination:
Corollary bd: y-z < z-(z+y)" — ((z+y)* = 0 < z*+y* = 0)

by (smt add-comm annil no-trivial-inverse omega-sum-refine omega-sum-unfold)

It states that termination of x + y can be separated into individual termination
of x and y whenever x quasicommutes over y. An informal proof chasing infinite

relational diagrams is due to Bachmair and Dershowitz [2]. In omega algebra,
it arises as a simple consequence of the loop refinement law. The proof in this
section is significantly simpler and more automatic than earlier proofs [18]. A
generalisation of this result in modal Kleene algebra is proved in Section 6.

4 Modal Semirings and Kleene Algebras

Reasoning about computing systems often requires modelling state spaces in
addition to actions. One way to achieve this is to define modal operators over
dioids or Kleene algebras. For an action x of a system and a set of states p, the
forward diamond operator |x)p models the set of all states from which executing
x may lead into p, whereas the forward box operator |z]p models the set of
all states from which executing x must lead into that set. Backward boxes and
diamonds can be defined as well: (z|p describes the set of states one may reach
from p by executing z, and [z|p describes the set of all states that can only be
reached from p. In relational models (Kripke frames), |2)p is the preimage of the
set p under the relation x, that is, the domain of x restricted in its range to p:
|z)p = d(x - p). Similarly, (z|p = r(p - «), where r denotes the range operation.

Modal operators can therefore be obtained in dioids or Kleene algebras by
axiomatising domain and range. In fact, an antidomain operation a can be in-
troduced in dioids by three simple axioms [10]:

Assumes al: a(z)-z = 0
Assumes a2: a(z-y)+a(z-a(a(y))) = a(z-a(a(y)))
Assumes a3: a(a(z))+a(z) = 1

It is the Boolean complement of the domain operation: a(x) describes the set
of states mot in the domain of an action z, that is, the part of the state space
where x is not enabled. In the relational model, a(z) = {(s,s) : =3t. (s,t) € z}.
Domain can then be defined as d(z) = a(a(x)). It models that part of the state
space where the action z is enabled. Thus d(z) = {(s,s) : 3t.(s,t) € x} in the
relational model. The domain operation induces an appropriate state space: if
S is a dioid, then the set of domain elements d(S) = {d(z) : z € S} forms a
Boolean algebra with join +, meet - and complement a. Moreover, p € d(S) if
and only if p = d(p), whence domain elements can be typed by applying d or a.
We use the letters p, g, ... to highlight domain elements.

A range operation is axiomatised as domain in the opposite semiring. We
have formalised this duality in Isabelle. All theorems about domain semirings
have been automatically dualised to range semirings.

Forward diamonds and boxes are then defined in an Isabelle class for forward
modal semirings.

Assumes fdiamond-def: |z)y = d(z-y)
Assumes fboz-def: |z]y = a(z-a(y))

We have axiomatised backward modal operators dually by using range. Kleene
algebras extended by all these operations are called modal Kleene algebras [26].

Again, duality has been formally established by Isabelle’s locale mechanism and
all statements about backward modalities have been obtained directly by duality.

Boxes and diamonds are duals, too: |z]p = a(|z)a(p)) and [z|p = a({z|a(p)).
This De Morgan duality acts on the Boolean subalgebra d(S) of S. Capturing
it formally within Isabelle requires axiomatisations based on carrier sets, which
have a detrimental effect on proof automation. To dualise diamond statements
into box statements, we use a simple trick instead: we provide the dual theorem
together with a set of about 10 lemmas, including the De Morgan laws for a and
d and similar ‘conversion theorems’. We show an example in Section 5.

The interaction between the star, the modalities and (anti)domain elements
is particularly interesting. The relational semantics of while-programs can be
encoded in this setting, for example, if p then z else y as d(p) - © + a(p) - y, and
while p do z as (d(p) - z)* - a(p). This is used in Section 7. Furthermore, modal
star induction laws can be derived:

Lemma dia-star-induct: d(p)+(|z)d(q)) < d(q) — |z*)d(p) < d(q)
Lemma boz-star-induct: d(q) < d(p)-|z]d(q) — d(q) < |z)

These link modal Kleene algebras with computational logics such as proposi-
tional dynamic logic or Hoare logic. In particular, the forward box operator
abstractly represents the wlp-operator and the calculus of modal Kleene algebra
encompasses the laws of partial correctness for while-programs. Finally, we have
instantiated the relational model of modal Kleene algebras in Isabelle.

5 Dynamic Algebras and Segerberg’s Formula

We now relate modal Kleene algebras with dynamic algebras, which are alge-
braic siblings of propositional dynamic logic (PDL). Our repository contains
automated proofs of all PDL axioms—in algebraic form—as theorems of modal
Kleene algebra. As an example we present the derivation of Segerberg’s formula,
the only non-trivial proof task, from the modal star induction law. To simplify
presentation and proof we introduce an auxiliary function.

Definition A z p = d(z-p)-a(p)

It models those states outside of p from which executing x may lead into that
set. Since the domain and antidomain operations are used for complementa-
tion and for typing domain elements, type conversions that humans would leave
implicit tend to pollute proofs and inhibit automation. We therefore provide
helper lemmas, for instance, |z)p = d(|z)p), |z)p = |x)d(p), A x p = d(A z p),
Az p=(|z)p) - alp) and a(A = a(p)) = a(p) + |z]d(p), to derive Segerberg’s
formula after splitting into inequalities.

Lemma fsegerberg: |z*)d(p) = d(p)+|z")(A z p)

Proof —
have |z*)d(p) < d(p)+|z*)(A = p) — by smt, using diamond star induction
thus ?thesis — by smt

qged

Segerberg’s formula is perhaps better known and explained in box form. We
prove it by duality using the trick described above.

Lemma foz-segerberg: |o*]d(p) = d(p)-|z*)(a(p)+]2]d(p))
by (smt a-A a-closure a-de-morgan-var-2 antidomain-semiring-domain-def
fboz-simp-2 fdia-fbox fsegerberg)

The list of lemmas contains the diamond variant of Segerberg’s formula plus
some helpers, including a De Morgan law for domain and antidomain elements.
This list has been obtained from a larger one by minimising with Sledgehammer.

In box form, Segerberg’s formula expresses induction: its right-hand side
states that the system is originally in p and it is always the case (after executing
x any number of times) that p will be preserved when executing = once more. The
left-hand side states that the system is always in p (after repeatedly executing).
The term a(p) 4 |z]d(p) corresponds to the Boolean implication d(p) — |z]d(p).
We introduce special notation in Isabelle,

Definition piq = a(p)+|z]d(q)

expressing that if p holds in the current state, ¢ must hold after executing the
action 2. We can then rewrite Segerberg’s formula as |2*]d(p) = d(p) - |z*](p=p).
Modal Kleene algebra supports automated computational modelling by equa-
tional reasoning. As an example we prove a rather intricate formula expressing
a separation property for alternating transitions between sets of states p and
q. Again, we first introduce some helper lemmas: (i) d(p) - p=q = d(p) - |z]q,
(i) poq - lalgos < p=os, and (i) 27)(d(p) - [a]d(p)) = |2*]d(p). Bquation
(i) expresses a (dynamic) form of modus ponens, (ii) a property of sequential
composition, as in the wlp-calculus, and (iii) an unfold property for boxes.

Theorem alternation:
* T T ¥ T % T
d(p)-lz*]((p=a)-(a=p)) = |(z-2)"](d(p)-(¢=p)) |z-(z-2)*](d(q)-(p—1))
Proof —
¥ x x * x T T x
have d(p)-|z"]((p—4q)-(¢—p)) = d(p)|(z-z)"|((p=0)-|z](¢=p)-(¢—p)|z](p—1))
— essentially by powerstar, distributing boxes and regular identities
also have ... = d(p)-|(z-z)"](p=5p) | (z-2)"]((p=q) 2] (¢=p)- () | 2] (p"4))
— essentially by the above property (ii)
also have ... = |(z-z)"]d(p)-|(z-z)"]((p=9)-|z](¢=p)-(¢=p)-|2] (=q))
— by Segerberg’s formula
also have ... = |(z-z)"](d(p)-|z-2]d(p)) | (z-2)*]((¢=p)-|](d(q)-(p"=7)))
— by distributing boxes, property (i) and rearranging terms
finally show ?thesis — by property (iii) and distributing boxes
qged

By instantiating ¢ with a(p) or p, our separation theorem specialises to an ex-
ercise from Harel, Kozen and Tiuryn’s book on dynamic logic [15, Exercise 5.6],
namely the identity p- |2*](p=a(p) - a(p)=p) = |(z - 2)*]p- |z - (z - 2)*]a(p), and
to Segerberg’s formula. Both instances have again been proved automatically.

6 Termination and Lob’s Formula

To generalise our termination example from Section 3 we now implement no-
tions of termination in modal Kleene algebra. In particular, we prove a modal
correspondence result, namely that Lob’s formula expresses wellfoundedness on
transitive Kripke frames. We express both the frame property and Lob’s formula
in modal Kleene algebra and then establish their equivalence.

Definition 2 z p = d(p)-a(z-p)

If p is a set, then {2 x p describes those elements in p from which no further
z-transitions inside of p are possible, hence z-maximal elements. We have first
proved helper lemmas such as 2 « p = d(p) - a(|x)p) = d(p) - |z]a(p). We have
also proved that the non-maximal states in p are those from which there is an
a-transition into p: a(2 x p) = a(p) + |x)p and d(p) - a(2 = p) = d(p) - |x)p.
Finally, we have shown that 2 z p = 0 if and only if d(p) < |z)p.

Following [9] we have formalised three algebraic notions of termination in
Isabelle. In set theory, a relation x on a set q is Noetherian if every non-empty
subset of ¢ has an z-maximal element, which means that if a subset p of ¢ has
no z-maximal elements, then it must be empty:

Definition Noetherian(z) = (Vp . 2 zp =0 — d(p) = 0)

This is equivalent to Vp . d(p) < |z)p — d(p) = 0. Our abstract notion of Noether-
ity has been formally linked with the standard relational definition within Isa-
belle, that is, in the relational model the two definitions are equivalent. The
second way of expressing termination is as follows:

Definition PreLoebian(z) = (Vp . d(p) < |2*)(£2 z p))

Third, if = is transitive, which implies z = x - *, we can apply |z) to both sides
of this formula and obtain Lob’s formula.

Definition Loebian(z) = (Vp . |z)p < |2)(£2 z p))

We now relate the three properties, formalising the approach in [9]. Noetherity
can be interpreted as a frame property via the relational model, and Lob’s for-
mula as a formula of modal logic; hence we establish a modal correspondence
result. The main step is to show that an element is pre-Lobian if and only if it
is Noetherian.

Theorem Noetherian(z) < PreLoebian(z)

Proof —
have Vp . d(p)-a(|z*)(2 z p)) < |z)(d(p)-a(]z”)(2 = p))) — mainly star unfold
hence Noetherian(z) — PreLoebian(z) — by Noetherity
thus ?thesis — straightforward

ged

The remaining proofs are then straightforward.

Lemma Loebian(z) — Noetherian(z)
Lemma (Vp . |z)(|z)p) < |z)p) — PreLoebian(z) — Loebian(z)
Theorem (Vp . |z)(|z)p) < |z)p) — (Noetherian(z) < Loebian(z))

Finally, we translate Lob’s formula into its more conventional box version:
Lemma (Vp . |z)p < [z)(£2 z p)) < (Vp . |z](a(|z]d(p))+d(p)) < |z]d(p))

As an example for termination analysis with modal Kleene algebra, we now
prove a generalisation of Bachmair and Dershowitz’s theorem which, in a higher-
order relational setting, is due to Doornbos, Backhouse and van der Woude [12].
We expand modal Kleene algebras by an operation V of divergence [9], mapping
each action x to the set of those states from which infinite z-transition sequences
may start. Divergence is modelled as a greatest (post)fixpoint; it is the greatest
set of states that is invariant with respect to ‘stepping back’ with z.

Assumes nabla-closure: d(Vz) = Vz
Assumes nabla-unfold: Vz < |z)Vz
Assumes nabla-coinduction: d(y) < |z)d(y)+d(z) — d(y) < Va+|z")d(z)

We have developed a simple V-calculus in Isabelle which is very similar to that of
the omega operation. We use the instance d(y) < |z)d(y) — d(y) < Vz of nabla
coinduction, the fact that nabla is a fixpoint Vo = |z)Vz, subdistributivity
Va < V(z +y), isotonicity z < y — Va < Vy, star absorption |2*)Vz = Vz,
and 2 z d(y) = 0 — d(y) < Vz. We have also formally linked divergence Kleene
algebras with the relational model.

In divergence Kleene algebras an action = terminates if and only if Vo = 0.
We have shown that this property implies that x is Noetherian (hence pre-
Lobian).

Doornbos, Backhouse and van der Woude’s theorem generalises quasicommu-
tation to lazy commutation: y-x < z-(x+y)* +y. We use that lazy commutation
implies y - 2* <z (z+y)* +y.

Theorem dbw: y-z < z-(z+y)"+y — (Vz+Vy = 0 < V(z+y) = 0)
Proof (rule+)
assume lazycomm: y-z < z-(z+y)*+y and zy-wf: Vz+Vy = 0
hence V(z+y) < |2)V(z+y)+|y)|z™) (2 = (V(z+y)))
— by nabla unfold and because z is pre-Lobian
hence V(z-+y) < [2)V(a-+9)+2)|(5+9))2 = (V(z+9)Hy)(2 o (T(a-+))
using lazycomm — and distributing diamonds
hence V(z+y) < |2)V(z+y)+|y)(2 z (V(z+y))) — by star absorption
with zy-wf show V(z+y) = 0 — by Noetherity
next assume V(z+y) = 0 thus Vz+Vy = 0 — by subdistributivity of nabla
ged

In particular, this theorem holds in the relational model, where Va = d(z*).

7 Hoare Logic

In this section we consider propositional Hoare logic (PHL), a fragment of Hoare
logic that abstracts from assignments and focuses on the control structure of
while-programs. PHL is also a fragment of PDL [15] and it is subsumed by
Kleene algebra with tests [23]. We give an abstract algebraic formalisation and

automatically derive soundness and relative completeness of PHL. To link Hoare-
style reasoning about programs with modal Kleene algebras, we show that the
latter satisfy the abstract axioms.

Soundness and relative completeness of different variants of Hoare logic are
well known and have already been proved in Isabelle/HOL [27,29]. Our devel-
opment abstracts from underlying structures such as state spaces and program
executions. By assuming a small axiom set, it generalises previous approaches in
modal Kleene algebra [26], benefits automated proving and supports models be-
yond relational ones. Our proofs are highly automatic using Metis and Z3. Basic
algebraic properties, meaningful lemmas and whole cases in inductive proofs can
be shown by single calls to these tools.

Our presentation focuses on partial correctness, but this is not an inherent
limitation. We take the following steps.

1. Axiomatise tests as a subset of elements that form a Boolean algebra. Tests
are needed as conditions in while-programs and as preconditions in correct-
ness statements.

2. Axiomatise preconditions. We use a subset of axioms known from the weakest
liberal precondition operator.

3. Axiomatise while-programs. We use equational axioms for the conditional,
the unfold rule for the while-loop and an axiom capturing soundness of the
loop rule in the Hoare calculus.

4. Derive soundness and relative completeness. We can thus axiomatise validity
of Hoare triples and obtain the rules of PHL as consequences.

5. Show that modal Kleene algebras form an instance of the above theory.

We now elaborate these steps.

1. Boolean subset: As described in Section 4, the range of the antidomain op-
eration a forms a Boolean algebra. In program semantics, its elements typically
represent conditions on the state space. This motivates the following axiomati-
sation.

We assume a structure (.5, -, a) such that a(5), the range of a, is a Boolean
algebra with meet operation - and complement a. Technically, this is achieved
by taking an axiomatisation for Boolean algebra and replacing each variable x
with a(z), denoting an arbitrary element of the range of a. We use Huntington’s
axioms [25], which are particularly concise, and therefore yield a small set of
axioms for a. Additionally, closure of a(S) under - is asserted by the axiom
a(x) - a(y) = a(a(a(z) - a(y))); by definition it is closed under a. The constants 0
and 1, the join operation + and the order < can then be expressed in terms of -
and a. Laws of Boolean algebra, including [25, Theorems 3, 5, 7], are restricted
to the range of a and derived automatically.

It is essential to impose the Boolean algebra only on a subset of elements,
because some models of programs are not closed under general complements [17].

2. Preconditions: The elements of the Boolean subset serve as tests, firstly in
preconditions. Our axioms for preconditions are motivated by the properties of
weakest liberal preconditions [11]. The weakest liberal precondition wlp(z,) is
the set of initial states from which all terminating executions of the program x

end up in a state satisfying ¢q. While the program x may be an arbitrary element,
q and wlp(z, ¢) must be tests, that is, in the range of a.

This motivates the introduction of the binary operation x«q, our abstract
version of wip(z, ¢), with the following axioms in an Isabelle class.

Assumes pre-closed: z«a(q) = a(a(z«a(q)))
Assumes pre-seq: z-y«a(q) = z«y«a(q)

Assumes pre-test: a(p)-(a(p)«a(q)) = a(p)-a(q)
Assumes pre-distrib: z«a(p)-a(q) = (z«a(p))-(z«a(q))

Similarly to the axiomatisation of the Boolean subset, we use a(q) to denote an
arbitrary element in the range of a. The axiom pre-closed states that the result
of « is a test, effectively making « an operation which takes an element and a
test and yields a test. The axioms pre-seq and pre-test capture the interaction
of preconditions with sequential composition and tests, respectively. The axiom
pre-distrib separates the conjunction of two postconditions.

3. While-Programs: A second use of tests is as conditions: the statement
if p then z else y is obtained by the ternary operation z<ipt>y, where p is a test.
For our derivation of PHL it suffices to characterise the two branches by the
following axioms; see [16,21] for more comprehensive axiomatisations.

Assumes a(p)-(z<a(p)>y) = a(p)z
Assumes a(a(p))-(z<a(p)>y) = a(a(p))y

The following consequence exemplifies the interaction of the conditional with
preconditions. It essentially states soundness of the PHL conditional rule.

Lemma a(p)-a(q) < z«a(s) A a(a(p))-a(q) < y«a(s) — a(q) < z<a(p)>y«a(s)
— by smt

Conditions also occur in while-loops: the statement while p do = is obtained by
the binary operation pxx, where p is a test. The unfold property of the while-loop
is captured by the following axiom.

Assumes a(p)*xz = z-(a(p)*z)<a(p)>1

While-programs can be constructed from atomic programs by the operations
of sequential composition, conditional and while-loop. In PHL, atomic programs
are an unspecified set; in concrete models they contain, for example, assignments.

Inductive-Set While-program
where z € Atomic-program = x € While-program
| x € While-program A y € While-program = x-y € While-program
| x € While-program A y € While-program = x<la(p)>y € While-program
| x € While-program = a(p)xxz € While-program

Isabelle expects the meta-logic implication = in such inductive definitions; we
also use it instead of — for subsequent results proved by induction.

For simplicity, we assume that all tests in the range of a can be used as
conditions in while-programs. A more detailed theory prescribes how to construct
tests from an unspecified set of atomic tests by Boolean operations. It is then
necessary to assume that preconditions are such tests; see [7,15,1] for related
questions of expressibility.

4. Hoare Calculus: The unfold rule for while-loops is sufficient for proving
relative completeness of PHL. Soundness of the partial correctness while-loop
rule is essentially captured by the following, additional axiom.

Assumes a(p)-a(q) < z«a(q) — a(q) < a(p)*z«ala(p))-alq)

It can be derived in models where an explicit definition of while-loops is available.
The reason for this indirect characterisation is that different models may have
different semantics of while-loops.

The calculus makes correctness claims in the form of Hoare triples p {z} q.
Intuitively, this triple states that all terminating executions of the program x
started from a state satisfying p end up in a state satisfying gq.

We capture the rules of the Hoare calculus by the following inductive predi-
cate. Hence p (z]) ¢ holds if the triple p {z} ¢ is derivable.

Inductive derived-hoare-triple (- (-) -)
where z € Atomic-program = z«a(p)(z)a(p)
| a(p)(z)alq) A a(g)(yhals) = a(p)(z-y)a(s)
| a(p)-a(q)(z)a(s) A a(a(p))-a(q)(yDa(s) = alq)(z<a(p)>y)a(s)
| a(p)-a(g)(z)alq) = a(q)(a(p)*z)a(a(p))-a(q)
| a(p) < a(q) A a(g)(zDa(s) A als) < a(t) = a(p)(z)a(?)

The calculus has one axiom for atomic programs, one rule for each program
construct and the rule of consequence. It follows by induction that only while-
programs appear in derivable Hoare triples.

Lemma p(z)q = p = a(a(p)) A ¢ = a(a(q)) A z € While-program
by (induct rule: derived-hoare-triple.induct) — and 5 applications of smt

Validity of the Hoare triple p{z} ¢ is defined by the predicate p (z) ¢, which
holds if p and ¢ are tests, x is a while-program and the condition p is sufficient
to establish the postcondition g:

Definition p(z)q = (p = a(a(p)) A ¢ = a(a(q)) N z € While-program A p < z«q)

Soundness and relative completeness are proved separately by induction. Rea-
soning for each case is automated by Metis or Z3.

Theorem soundness: p(z)q = p{z)q

by (induct rule: derived-hoare-triple.induct) — and 5 applications of smt

Lemma pre-completeness: z € While-program = z«a(q)(z)a(q)
by (induct arbitrary: q rule: While-program.induct) — and 4 applications of smt
Theorem completeness: p(z)q — p(z))g — by smt

For convenient application of the calculus, we axiomatise validity of Hoare triples
without referring to while-programs, using the predicate p {z} q.

Assumes a(p){zfa(q) < a(p) < z«a(q)

Based on this, we derive the above Hoare rules and further, auxiliary rules [1].
5. Instance for Modal Kleene Algebra: In the richer structure of modal Kleene
algebra, we can explicitly define preconditions, the conditional, the while-loop

and the validity of Hoare triples. To inherit the results derived above, we establish
the subclass relationship by verifying the axioms, again using Z3.

— in the context of modal Kleene algebra
Assumes z«p = |z]p

Assumes z<1p>y = d(p)-z+a(p)-y
Assumes pxz = (d(p)-z)"-a(p)
Assumes plalg < d(p) < [2]q

This makes the Hoare calculus available for reasoning about programs in modal
Kleene algebra. The following simple example treats a while-loop, whose body
contains two sub-programs w and y switching between states p and q. They are
surrounded by sub-programs v, x and z for which p and ¢ are invariants. The
result shows that p is preserved by the while-loop.

Lemma d(p){v}d(p) A d(p){wld(q) A d(a){z}d(q) A d(a){yld(p) A d(p){z]}d(p)
— d(p){d(s)*v-w-z-y-z}a(s)-d(p) — by smt

8 Discussion and Conclusion

Our results show that algebraic formal methods can easily be developed by
automated reasoning within Isabelle/HOL. A surprising observation is that the
SMT solver Z3 often outperformed Metis and sometimes even the external ATP
systems invoked by Sledgehammer. Although not especially designed for proofs
in algebra, it could frequently automate proof steps at textbook level. Related
empirical evidence supporting this observation has been obtained by using a
benchmark suite of seven representative Isabelle formalisations that range from
fast Fourier transforms to security protocol analysis [3].

Variants of Kleene algebras and their modal extensions are particularly suit-
able as algebraic methods because, in general, their theories admit a high degree
of automation and important logics of programs and program semantics can be
developed from that basis. This also includes temporal logics [18], which we did
not discuss in this text. In contrast to previous work that was based solely on
ATP [19,20], Isabelle’s mechanisms for higher-order reasoning, proof manage-
ment and theory modularisation are an essential aspect of the formalisation.
To highlight the concision and simplicity of the algebraic approach, we only
presented some proofs at the algebraic level. The complete formalisation of the
relational model can be found in our repository.

While most of the basic proofs in Kleene algebras, omega algebras and modal
Kleene algebras could be found automatically based on proof search by Sledge-
hammer (sometimes after splitting identities into inequalities), most of the more
complex proofs in this paper have been engineered: Sledgehammer was often
only able to automate individual proof steps at the granularity of handwritten
proofs. Sometimes, when the scope of hypotheses was large, it was even unable
to filter out the relevant lemmas. We have then merged steps for Metis or Z3
until those failed within reasonable time limits.

Our repository contains a large coherent set of algebraic theorems that re-
quire both equational and order-based reasoning. Therefore, it lends itself ideally

for empirical investigations, tool optimisation, the design of tactics and the de-
velopment of proof presentation methods. The repository can be extended for
algebraic proof support for existing formal methods. This is promising for ap-
plications in formal program development and analysis. It would yield a high
degree of automation and the possibility to switch seamlessly between pointwise
domain-specific and abstract algebraic reasoning.

Another aspect of tool integration into Isabelle has not been discussed in
this paper. Counterexample generators such as Nitpick complement the ATP
systems and allow a proof and refutation game which is useful for developing and
debugging formal specifications. Examples can be found across the repository.

Our main interest in a repository for algebraic methods and our main moti-
vation for the research in this paper is to devise program development methods
that complement and augment existing verification environments and tools. The
combination of algebraic methods with proof technology ranging from domain-
specific solvers and ATP systems to higher-order reasoning within the Isabelle
theorem proving environment could make formal program development signif-
icantly simpler and more automatic. Integrating additional statements such as
assignments, and data types such as numbers, arrays or lists into our abstract
approach, and linking it with state-of-the-art program development methods is
therefore the obvious direction for future work.

Acknowledgement. Walter Guttmann was supported by a fellowship within the
Postdoc-Programme of the German Academic Exchange Service (DAAD). Georg
Struth acknowledges funding from EPSRC grant EP/G031711/1. Tjark Weber
acknowledges funding from EPSRC grant EP/F067909/1.

References

1. Apt, K.R., de Boer, F.S., Olderog, E.R.: Verification of Sequential and Concurrent
Programs. Springer, third edn. (2009)

2. Bachmair, L., Dershowitz, N.: Commutation, transformation, and termination.
In: Siekmann, J.H. (ed.) 8th International Conference on Automated Deduction.
LNCS, vol. 230, pp. 5-20. Springer (1986)

3. Blanchette, J.C., Bohme, S., Paulson, L.C.: Extending Sledgehammer with SMT
solvers. In: Bjgrner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction:
CADE-23. LNCS, vol. 6803, pp. 116-130. Springer (2011)

4. Bohme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) Interactive Theorem Proving. LNCS, vol. 6172, pp. 179-
194. Springer (2010)

5. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) Math-
ematics of Program Construction. LNCS, vol. 1837, pp. 45-59. Springer (2000)

6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)

7. Cook, S.A.: Soundness and completeness of an axiom system for program verifica-
tion. STAM J. Comput. 7(1), 70-90 (1978)

8. Desharnais, J., Moller, B., Struth, G.: Kleene algebra with domain. ACM Trans-
actions on Computational Logic 7(4), 798-833 (2006)

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Desharnais, J., Moller, B., Struth, G.: Algebraic notions of termination. Logical
Methods in Computer Science 7(1:1), 1-29 (2011)

Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput.
Program. 76(3), 181-203 (2011)

Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)

Doornbos, H., Backhouse, R., van der Woude, J.: A calculational approach to
mathematical induction. Theor. Comput. Sci. 179(1-2), 103—-135 (1997)

Foster, S., Struth, G., Weber, T.: Automated engineering of relational and algebraic
methods in Isabelle/HOL. In: de Swart, H. (ed.) RAMiCS 2011. LNCS, vol. 6663,
pp. 52—67. Springer (2011)

Haftmann, F., Wenzel, M.: Local theory specifications in Isabelle/Isar. In: Berardi,
S., Damiani, F., de’Liguoro, U. (eds.) Types for Proofs and Programs. LNCS, vol.
5497, pp. 153-168. Springer (2009)

Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)

Hoare, C.A.R., Hayes, 1.J., He, J., Morgan, C.C., Roscoe, A.W., Sanders, J.W.,
Sorensen, I.H., Spivey, J.M., Sufrin, B.A.: Laws of programming. Commun. ACM
30(8), 672686 (1987)

Hoare, C.A.R., He, J.: Unifying theories of programming. Prentice Hall Europe
(1998)

Hofner, P., Struth, G.: Automated reasoning in Kleene algebra. In: Pfenning, F.
(ed.) Automated Deduction: CADE-21. LNCS, vol. 4603, pp. 279-294. Springer
(2007)

Hofner, P., Struth, G.: On automating the calculus of relations. In: Armando,
A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 50-66.
Springer (2008)

Hofner, P.; Struth, G., Sutcliffe, G.: Automated verification of refinement laws.
Annals of Mathematics and Artificial Intelligence 55(1-2), 35-62 (2009)

Jackson, M., Stokes, T.: Semigroups with if-then-else and halting programs. Inter-
national Journal of Algebra and Computation 19(7), 937-961 (2009)

Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation 110(2), 366-390 (1994)

Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic 1(1), 60-76 (2000)

Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and rela-
tion algebra. Journal of Automated Reasoning (2011), http://dx.doi.org/10.1007/
s10817-011-9223-4

Maddux, R.D.: Relation-algebraic semantics. Theor. Comput. Sci. 160(1-2), 1-85
(1996)

Moller, B., Struth, G.: Algebras of modal operators and partial correctness. Theor.
Comput. Sci. 351(2), 221-239 (2006)

Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbriiggen,
R. (eds.) Proof and System-Reliability. pp. 341-367. Kluwer Academic Publishers
(2002)

Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics. pp. 3-13 (2010)

Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL.
Ph.D. thesis, TU Miinchen (2006)

http://dx.doi.org/10.1007/s10817-011-9223-4
http://dx.doi.org/10.1007/s10817-011-9223-4

	Automating Algebraic Methods in Isabelle
	Introduction
	Preliminaries
	Warm-Up: Three Proofs in Kleene Algebra
	Modal Semirings and Kleene Algebras
	Dynamic Algebras and Segerberg's Formula
	Termination and Löb's Formula
	Hoare Logic
	Discussion and Conclusion

