
Fast LCF-Style Proof Reconstruction for Z3

Sascha Böhme1 and Tjark Weber2,?

1 Technische Universität München, boehmes@in.tum.de
2 University of Cambridge, tw333@cam.ac.uk

Abstract. The Satisfiability Modulo Theories (SMT) solver Z3 can gen-
erate proofs of unsatisfiability. We present independent reconstruction of
these proofs in the theorem provers Isabelle/HOL and HOL4 with par-
ticular focus on efficiency. Our highly optimized implementations out-
perform previous LCF-style proof checkers for SMT, often by orders of
magnitude. Detailed performance data shows that LCF-style proof re-
construction can be faster than proof search in Z3.

1 Introduction

Interactive theorem provers like Isabelle/HOL [1] and HOL4 [2] have become
invaluable tools in formal verification. They typically provide rich specification
logics, which allow modelling complex systems and their behavior. Despite the
merits of user guidance in proving theorems, there is a need for increased proof
automation in interactive theorem provers: even proving a simple theorem can
be a tedious task.

In recent years, automated theorem provers have emerged for combinations
of first-order logic with various background theories, e.g., linear arithmetic, ar-
rays, bit vectors [3]. These provers, called Satisfiability Modulo Theories (SMT)
solvers, are of particular value in formal verification, where specifications and ver-
ification conditions can often be expressed as SMT formulas [4,5]. SMT solvers
also have applications in model checking, constraint solving, and other areas.

Interactive theorem provers can greatly benefit from the reasoning power of
SMT solvers. Proof obligations that are SMT formulas can simply be passed to
the automated prover, which will solve them without further human guidance.
However, almost every SMT solver is known to contain bugs [6]. When integrated
naively, the SMT solver (and the integration) become part of the trusted code
base: bugs could lead to inconsistent theorems in the interactive prover. For
formal verification, where correctness is often paramount, this is undesirable.

The problem can be solved by requiring the SMT solver to produce proofs
(of unsatisfiability), and reconstructing these proofs in the interactive prover.
Among the proof-producing solvers is Z3 [7], a state-of-the-art SMT solver de-
veloped by Microsoft Research. In this paper, we present independent recon-
struction for the proofs generated by Z3 in Isabelle/HOL and HOL4. These two
? The first author was supported by the German Federal Ministry of Education and

Research under grant 01IS07008. The second author was supported by the British
EPSRC under grant EP/F067909/1.

2 Sascha Böhme and Tjark Weber

popular LCF-style [8] systems are based on a relatively small trusted kernel (see
Sect. 3) that provides a fixed set of simple inference rules. Z3, on the other hand,
uses a number of powerful inference rules in its proofs (see Sect. 4). This makes
proof reconstruction challenging.

Our LCF-style implementations of proof reconstruction (see Sect. 5) do not
extend the trusted code base. Any attempt to perform an unsound inference
will be caught by the underlying theorem prover’s kernel. In contrast, a stand-
alone proof checker for Z3 could be implemented much more efficiently, but
would have to be trusted. For utmost reliability, the latter approach is clearly
not ideal, also because Z3’s proofs are relatively difficult to check: besides first-
order reasoning also decision procedures for supported theories (e.g., arrays,
linear arithmetic) are required. As a mixture of both worlds, a proof checker
obtained by reflection could be much faster than our LCF-style implementation
yet be formally verified. However, sparse documentation of Z3’s proof rules would
heavily complicate this approach, while our implementations just fall back to
existing automated proof tools for underspecified cases. Maybe not surprisingly,
the only proof checker applicable to all Z3 proofs that existed previous to our
work was an older version of Z3 [9]. By using Isabelle/HOL and HOL4 as proof
checkers, we in fact discovered previously unknown bugs in Z3.

Driven by the nature of proof obligations commonly seen in formal verifica-
tion and related domains, we restrict ourselves to reconstruct proofs of first-order
logic theorems over the theories of equality and uninterpreted functions, arrays,
and linear integer and real arithmetic. In particular, we do not consider proof
reconstruction for the theory of bitvectors.

Evaluation of our implementations (see Sect. 6) is performed on SMT-LIB
problems [10]. This is because there is a large and diverse library of problems
readily available, promising a good coverage of Z3’s proof rules. The implicit
assumption that such an approach yields a practically useful system for typical
goals in Isabelle/HOL or HOL4 has already been confirmed by first users.

2 Related Work

Work on the integration of SMT solvers with LCF-style theorem provers is rel-
atively sparse.

McLaughlin et al. [11] describe a combination of HOL Light and CVC Lite for
quantifier-free first-order logic with equality, arrays and linear real arithmetic. Ge
and Barrett [12] present the continuation of that work for CVC3, the successor
of CVC Lite, supporting also quantified formulas and linear integer arithmetic.
CVC Lite’s and CVC3’s proof rules are much more detailed than the ones used
by Z3. For instance, CVC3 employs more than 50 rules for the theory of real
linear arithmetic alone. Although one would expect this to allow for more precise
(and hence, faster) proof reconstruction, McLaughlin et al. report that their
implementation is around six times slower than a decision procedure for linear
real arithmetic implemented directly in HOL Light. For an in-depth comparison
of our work with proof reconstruction for CVC3 see Sect. 6.

Fast LCF-Style Proof Reconstruction for Z3 3

Fontaine et al. [13] describe an integration of the SMT solver haRVey with
Isabelle/HOL. Their work is restricted to quantifier-free first-order logic with
equality and uninterpreted functions. Hurlin et al. [14] extend this approach
to quantified formulas. Skolemization is discussed in great detail. Unlike in our
work, background theories (e.g., linear arithmetic, arrays) are not supported.

Recently, the first author [15] presented proof reconstruction for Z3 in the
theorem prover Isabelle/HOL. We improve upon that work in both reconstruc-
tion speed and completeness (i.e., correct coverage of Z3’s inference rules). We
discuss similarities and differences in detail in Sect. 5, before comparing perfor-
mance in Sect. 6.

Common to the above approaches is their relatively poor performance on
larger problems. Evaluation is typically done on a few selected, hand-crafted toy
examples. Only [12,15] use a significant number of SMT-LIB [10] benchmarks
for demonstrating success rates—at the cost of long reconstruction run-times.
This paper is the first to focus on efficiency, and consequently, the first to give
solid evidence of attainable performance for LCF-style proof reconstruction.

3 LCF-Style Theorem Proving

The term LCF-style [8] describes theorem provers that are based on a small in-
ference kernel. Theorems are implemented as an abstract data type, and the only
way to construct new theorems is through a fixed set of functions (corresponding
to the underlying logic’s axiom schemata and inference rules) provided by this
data type. This design greatly reduces the trusted code base. Proof procedures
based on an LCF-style kernel cannot produce unsound theorems, as long as the
implementation of the theorem data type is correct.

Traditionally, most LCF-style systems implement a natural deduction calcu-
lus. Theorems represent sequents Γ ` ϕ, where Γ is a finite set of hypotheses,
and ϕ is the sequent’s conclusion. Instead of ∅ ` ϕ, we simply write ` ϕ.

The two incarnations of LCF-style systems that we consider here, i.e., HOL4
and Isabelle/HOL, are popular theorem provers for polymorphic higher-order
logic (HOL) [2], based on the simply-typed λ-calculus. Both systems share the
implementation language, namely Standard ML.

Although Isabelle/HOL and HOL4 implement the same logic, they differ in
their internal data structures, and even in the primitive inference rules provided:
some rules that are primitive in one system are derived (i.e., implemented as a
combination of primitive rules) in the other. Therefore, optimization is challeng-
ing, and performance comparisons must be taken with a grain of salt. Highly
optimized proof procedures typically show similar performance in the two sys-
tems [16].

On top of their LCF-style inference kernels, both Isabelle/HOL and HOL4
offer various automated proof procedures: notably a simplifier, which performs
term rewriting, a decision procedure for propositional logic, tableau- and resolu-
tion-based first-order provers, and decision procedures for Presburger arithmetic
on integers and real algebra.

4 Sascha Böhme and Tjark Weber

Substitution of type and term variables is a primitive inference rule in both
Isabelle/HOL and HOL4. Consequently, substitution is typically much faster
than (re-)proving the theorem’s specific instance. General theorems (which we
will call schematic) can, therefore, play the role of additional inference rules.

4 Z3: Language and Proof Terms

A detailed and perspicuous description of Z3’s language and proof terms has
been given in [9,15]. We briefly review the key features necessary to understand
this work.
Z3’s language is many-sorted first-order logic, based on the SMT-LIB lan-
guage [10]. Basic sorts include bool, int and real. Interpreted functions include
arithmetic operators (+, −, ·), Boolean connectives (∨, ∧, ¬), constants > and ⊥,
first-order quantifiers (∀, ∃), the distinct predicate, and equality. It is worth not-
ing that the connectives ∧ and ∨ are polyadic functions in Z3, i.e., they can take
an arbitrary number of arguments.

Z3’s proof terms encode natural deduction proofs. The deductive system used
by Z3 contains 34 axioms and inference rules. These range from simple rules
like mp (modus ponens) to rules that abbreviate complex reasoning steps, e.g.,
rewrite for equality reasoning involving interpreted functions, or th-lemma for
theory-specific reasoning. We discuss selected rules in more detail in Sect. 5.

Z3’s proofs are directed acyclic graphs (DAGs). Each node represents application
of a single axiom or inference rule. It is labeled with the name of that axiom
or inference rule and the proposition to conclude. The edges of a proof graph
connect conclusions with their premises. The hypotheses of sequents are not
given explicitly. A designated root node concludes ⊥.

5 Proof Reconstruction

Our work on Z3 proof reconstruction, although heavily optimized (and in large
parts developed independently), shares certain features with the approach pre-
sented in [15], and more generally also with [14,16]. We thereby confirm that
these solutions are of general interest and benefit, beyond a single theorem prover
implementation. The similarities with related work are as follows.

Representation of Z3’s language in higher-order logic is natural and direct. Basic
types and interpreted functions have corresponding counterparts in the HOL
implementations considered here. We translate uninterpreted functions and sorts
into higher-order logic as variables and type variables, respectively. Arrays are
translated as functions. Thus, array updates (store) become function updates,
array lookup (select) reduces to function application, and extensionality is an
axiom.

Representation of Z3’s proofs in Standard ML is via a balanced tree, with lookup
in O(log n), that maps node identifiers to proof nodes. The proof generated by

Fast LCF-Style Proof Reconstruction for Z3 5

Z3 is parsed, and a corresponding ML value is built. Proof nodes are given by a
disjoint union. Initially, each node contains the information that is recorded ex-
plicitly in the Z3 proof. Once the corresponding inference step has been checked
in the theorem prover, this information is replaced by the derived theorem. Thus,
lemmas only need to be derived once, even if they are used multiple times in the
proof. This technique was originally proposed in [16], where efficient LCF-style
proof checking for SAT solvers is discussed.

Depth-first (postorder) traversal of the proof, starting from the root node, de-
termines the order in which proof steps are reconstructed. If there are steps in
the Z3 proof that do not contribute to the derivation of the final ⊥, they are
never checked. This technique was also adapted from [16].

Assumptions in the Z3 proof can be introduced by three rules: asserted and
goal introduce assumptions made in the input problem (from which ⊥ is derived
eventually), while hypothesis introduces arbitrary local assumptions. These
must be discharged by the lemma rule later. We use the axiom schema {ϕ} ` ϕ
(which is available in both Isabelle/HOL and HOL4) to introduce assumptions,
thereby inserting them as hypotheses whenever they are used in the proof. At
the very end of proof reconstruction, we check that only assumptions from the
input problem remain as hypotheses.

Skolem functions introduced by Z3’s proof rule sk are given hypothetical defi-
nitions in terms of Hilbert’s choice operator (see [14,15] for details). This allows
to replace the equisatisfiability relation that Z3 uses in its proofs, which has no
direct counterpart in higher-order logic, with equivalence.

Local definitions are used by Z3 to introduce abbreviations for formulas. The
relevant rules are intro-def and apply-def. We model locally defined abbrevi-
ations by hypothetical definitions, in much the same way as Skolem functions.

5.1 Reconstruction Techniques

Beyond these similarities, however, there are numerous ways in which our ap-
proach differs from previous ones. Noticeably, we have spent considerable time on
profiling (see Sect. 6.4). This has prompted faster reconstruction techniques for
many of Z3’s inference rules. We distinguish four different techniques to model
a Z3 inference rule in an LCF-style system:

1. as a single primitive inference or schematic theorem,
2. as a combination of primitive inferences and/or schematic theorems,
3. by applying an automated proof procedure,
4. as a combination of the above.

These techniques vary in implementation effort and performance. Primitive
inference rules and schematic theorems are typically the preferred choice where
possible (because they are easy to use, and as fast as it gets), but they are limited
in applicability: the set of primitive rules provided by an LCF-style kernel is fixed,
and schematic theorems can only be applied to terms with a fixed structure that

6 Sascha Böhme and Tjark Weber

is known in advance. For instance, deriving ` ϕ from a conjunction ` ϕ ∧ ψ is
within the realm of possibility, but a derivation of ` ϕ from an arbitrarily nested
conjunction ` . . .∧ϕ∧ . . . already requires a combination of primitive inferences
and/or schematic theorem instantiations.

Automated proof procedures, on the other hand, work well for rapid prototyp-
ing. About one third of Z3’s proof rules merely require propositional reasoning,
and another third perform relatively simple first-order reasoning. These rules
can, in principle, be implemented by a single application of (1) a fast decision
procedure for propositional logic [16], or (2) an automated prover for first-order
logic with equality [17], respectively. Even though (1) internally employs a state-
of-the-art SAT solver, and (2) has fared well in various CASC competitions [18],
the key disadvantage of automated proof procedures is that their performance is
hard to control. We have achieved speedups of three to four orders of magnitude
by replacing calls to these automated tools with specialized implementations
(using combinations of primitive inferences and/or schematic theorems) that
perform the specific reasoning steps required to model Z3’s proof rules.

Table 1 gives an overview of the reconstruction techniques currently used for
the different proof rules of Z3. We apply automated proof procedures only to
theory-specific rules and to approximate four rules that Z3 never used in our ex-
tensive evaluation. If performance for the latter rules was important, they might
as well be implemented using the second category of reconstruction techniques.

We now describe relevant optimizations in more detail. Since primitive in-
ference rules in different theorem provers often show different performance rel-
ative to each other, there is not necessarily one (prover-independent) optimal
approach. We discuss alternatives where appropriate.

Reconstruction technique Proof rules

Primitive inference or
schematic theorem

asserted, commutativity, goal, hypothesis,
iff-false, iff-true, iff∼, mp, mp∼, refl, symm,
trans, true

Combination of primitive
inferences and/or schematic
theorems

and-elim, apply-def, def-axiom, elim-
unused, intro-def, lemma, monotonicity,
nnf-neg, nnf-pos, not-or-elim, quant-inst,
quant-intro, sk, unit-resolution

Automated proof procedures der, distributivity, pull-quant, push-quant

Combination of the above rewrite, rewrite∗, th-lemma

Table 1. Proof rules and reconstruction techniques

5.2 Propositional and First-Order Reasoning

Nested conjunctions. A recurring task in Z3’s proofs is to establish equivalence of
two (arbitrarily parenthesized) conjunctions ϕ ≡ p1∧· · ·∧pn and ψ ≡ q1∧· · ·∧qn,
where {pi | 1 ≤ i ≤ n} = {qi | 1 ≤ i ≤ n}. Such permutated conjunctions arise
for two reasons. First, conjunction in Z3 is polyadic, i.e., it can take an arbitrary

Fast LCF-Style Proof Reconstruction for Z3 7

number of arguments, while in Isabelle/HOL and HOL4, conjunction is a binary
(right-associative) operator. For instance, ϕ1 ∧ϕ2 ∧ϕ3 in Isabelle/HOL is really
short for ϕ1 ∧ (ϕ2 ∧ ϕ3). Second, unfolding of the distinct predicate leads to
conjoined inequalities: e.g., distinct [x, y, z] ≡ x 6= y ∧ x 6= z ∧ y 6= z.

A rewriting-based approach (using associativity, commutativity and idem-
potence of conjunction) turns out to be far too slow. Instead, we perform the
required re-ordering not at the term level, but using ML data structures. We first
derive theorems {ϕ} ` pi (for each pi) by assuming ϕ and recursively applying
conjunction elimination. These intermediate theorems are stored in a balanced
tree, indexed by their conclusion. From them, we derive {ϕ} ` ψ by recursion
over the structure of ψ, using conjunction introduction. In a similar way, we get
{ψ} ` ϕ. Combining both theorems, we obtain ` ϕ⇔ ψ.

This implementation has complexity O(n log n). It improves over an imple-
mentation with quadratic complexity that had been part of the HOL4 theorem
prover since 1991 [19].

Nested disjunctions are treated dual to nested conjunctions, but our implemen-
tations deviate from each other due to differences in the primitive inference rules
available.

In HOL4, we first show that ψ ≡ q1∨· · ·∨qn follows from each of its disjuncts.
Then we recurse over the structure of the premise ϕ ≡ p1 ∨ · · · ∨ pn, using
disjunction elimination to show that since each disjunct pi implies ψ, we have
{ϕ} ` ψ. Deriving ψ from each of its disjuncts is not completely straightforward.
We achieve complexity O(n log n) by assuming ψ (thereby obtaining {ψ} ` ψ),
and then recursively deriving {ϑ1} ` ψ and {ϑ2} ` ψ from {ϑ1 ∨ ϑ2} ` ψ. This
inference step is not provided as a primitive rule by the HOL4 kernel. We found
an implementation that uses a combination of primitive rules to be roughly twice
as fast as one that instantiates a schematic theorem ` (ϑ1 ∨ ϑ2 ⇒ ψ)⇒ ϑ1 ⇒ ψ
(and a similar theorem for ϑ2).

In Isabelle/HOL, we show equivalence of ϕ and ψ by contraposition, i.e., by
showing that ¬ϕ and ¬ψ are equivalent. This can be done in analogy to the
case of conjunctions, only that instead of conjunction elimination and conjunc-
tion introduction, dual theorems for negated disjunctions must be applied. The
complexity of this approach is again O(n log n).

Unit resolution implements the following inference rule, which strengthens a
disjunction by removing disjuncts that have been disproved:

Γ `
∨

i∈I ϕi 〈Γi ` ¬ϕi〉i∈J

Γ ∪
⋃

i∈J Γi `
∨

i∈I\J ϕi
unit-resolution

We model this inference rule in HOL4 by extending the technique for nested
disjunctions described previously. For i ∈ I\J , deriving the conclusion

∨
i∈I\J ϕi

from each ϕi is done exactly as before. For i ∈ J , on the other hand, we use the
fact that ϕi has been disproved, and that anything (in particular, the desired
conclusion) follows from ⊥. We found this implementation to be about 30%
faster in HOL4 than the approach detailed in [16], which is more efficient only
when proofs contain many successive resolution steps.

8 Sascha Böhme and Tjark Weber

In Isabelle/HOL, we again use contraposition to model unit resolution. As-
sume that ¬

∨
i∈I\J ϕi holds and show that this together with the facts ¬ϕi

(for i ∈ J) implies ¬
∨

i∈I ϕi. Hence the premise
∨

i∈I ϕi implies the conclusion∨
i∈I\J ϕi. The main step of this deduction employs the contraposition-based

technique for nested disjunctions described previously.

Literal memoization. The Z3 proof rule and-elim deduces a conjunct from a
polyadic conjunction. In an LCF-style system where conjunction is binary, this
amounts to repeated application of conjunction elimination. Since and-elim is
commonly applied to the same premise ` ϕ several times, deducing a different
conjunct each time, it is more efficient to explode ` ϕ once and for all instead
of repeatedly extracting a single conjunct. The resulting conjuncts are stored in
the proof node that derived ` ϕ, indexed by a balanced tree for efficient lookup.
This memoization technique applies dually to the rule not-or-elim.

Quantifier instantiations in Z3’s proof rules can be determined by (first-order)
term matching. No first-order proof search is necessary. We avoid the auto-
mated first-order provers that are built into Isabelle/HOL and HOL4: they are
unnecessarily powerful, but relatively slow. Instead, we perform the required
combinations of primitive inferences directly.

5.3 Theory-Specific Reasoning

With these optimizations in place, Z3’s propositional and first-order inference
steps are checked with reasonable efficiency. The one remaining performance hog
is theory-specific reasoning, involving interpreted functions (e.g., linear arith-
metic). This is performed by three proof rules in Z3: rewrite, rewrite∗3 and
th-lemma. We implement these rules by sequentially trying schematic theo-
rems, exploiting associativity, commutativity and idempotence of conjunction
and disjunction, trying the simplifier, and applying decision procedures for lin-
ear integer and real arithmetic.

When done naively, the automated tools, i.e., the simplifier and the decision
procedures for linear arithmetic, dominate run-time. We were able to improve
performance by reducing the number of proof obligations that are passed to these
tools. In our current implementation the simplifier only rewrites array updates,
but not Boolean or arithmetic operators: these are handled through schematic
theorems or specialized proof procedures. We employ the following optimization
techniques for theory-specific reasoning.

Schematic theorems. Matching a theorem’s conclusion against a given term and,
if successful, instantiating the theorem accordingly is typically much faster than
deriving the instance again. By studying the actual usage of rewrite in Z3’s
proofs, we identified more than 230 useful schematic theorems. These include
propositional tautologies such as ` (p⇒ q)⇔ (q∨¬p), theorems about equality,
e.g., ` (x = y) ⇔ (y = x), and theorems of linear integer and real arithmetic,

3 Since rewrite∗ is a variant of rewrite, we implicitly include the former when refer-
ring to the latter in the remainder of this section.

Fast LCF-Style Proof Reconstruction for Z3 9

e.g., ` x + 0 = x. Together, these theorems allow about 76% of all terms given
to rewrite to be proved by instantiation alone. Because of their generality, our
schematic theorems should be useful for a wide range of benchmarks. We store
all schematic theorems in a term net to allow faster search for a match.

To a smaller extent, we also use schematic theorems in the implementations
of Z3’s proof rules def-axiom and th-lemma.

Theorem memoization. Isabelle/HOL and HOL4 allow instantiating free vari-
ables in a theorem, while Z3 has to re-derive theorems that differ in their unin-
terpreted functions. Hence, there is more potential for theorem re-use in these
provers than in Z3. We exploit this by storing theorems of linear arithmetic that
are proved by rewrite or th-lemma in a term net. Since every theorem is also
stored in a proof node anyway, this increases memory requirements only slightly
(namely by the memory required for the net’s indexing structure). Before invok-
ing a decision procedure for linear arithmetic on a proof obligation, we attempt
to retrieve a matching theorem from the net. However, proof obligations that
occur frequently are often available as schematic theorems already. Therefore,
with an extensive list of schematic theorems in place, the performance gained
by theorem memoization is relatively small.

Generalization. We generalize proof obligations by replacing sub-terms that are
outside the fragment of linear arithmetic with variables, before passing the proof
obligation to the arithmetic decision procedures. This has two benefits. First,
it makes theorem memoization more useful, since more general theorems po-
tentially can be re-used more often. Second, it avoids expensive preprocessing
inside the arithmetic decision procedures. For instance, HOL4’s arithmetic deci-
sion procedures perform case splitting of if-then-else expressions. This could lead
to an exponential number of cases. Z3’s proof rule th-lemma, however, does
not require the linear arithmetic reasoner to know about if-then-else: if neces-
sary, conditionals are split using one of the other proof rules before Z3 solves
the problem by linear arithmetic. Therefore, proof obligations are provable even
with all conditionals treated as atomic.

6 Experimental Results

We evaluated our implementations in four ways. First, we measured success rates
and run-times of proof reconstruction for 1273 SMT-LIB benchmarks drawn from
the latest SMT-COMP [20], an annual competition of SMT solvers. Second, a
selection of these benchmarks was taken to compare our implementations with
proof reconstruction for CVC3 in HOL Light [11,12] (CH). Third, we contrasted
our work with previous work on proof reconstruction for Z3 [15] (ZI). Finally,
we measured profiling data to give a deeper insight into our results.

Evaluation was performed on problems comprising first-order formulas (partly
quantifier-free, QF, partly with (+p) or without (-p) quantifier patterns) over
(combinations of) the theories of equality and uninterpreted functions (UF),
arrays (A), linear integer arithmetic (LIA), linear real arithmetic (LRA), com-
bined linear arithmetic (LIRA), integer difference logic (IDL), real difference

10 Sascha Böhme and Tjark Weber

logic (RDL). SMT-LIB logic names are formed by concatenation of the theory
abbreviations given in parentheses.

We obtained all figures4 on a Linux system with an Intel Core2 Duo T7700
processor, running at 2.4 GHz—the same machine that had been used to evalu-
ate ZI. Measurements were conducted with Z3 2.3 and CVC3 2.2. As underlying
ML environment, we used Poly/ML 5.3.0 for both Isabelle/HOL and HOL4. For
comparability with ZI, we restricted proof search to two minutes and proof recon-
struction to five minutes, and limited memory usage for both steps to 4 GB. All
measured times are CPU times (with garbage collection in Poly/ML excluded).

Run-times for Isabelle/HOL are typically within a factor of 1–2 of HOL4
run-times. This is because we have fully implemented some of the optimizations
described in this paper only for HOL4 so far. It should not be taken as an
indication that HOL4 is more efficient than Isabelle/HOL per se.

6.1 SMT-COMP Benchmarks

Table 2 shows our results for Isabelle/HOL. For every SMT-LIB logic, we mea-
sured for Z3 the average time to find a proof and the average proof size, and
for our implementation the average time to reconstruct a proof (timeouts are
counted as 300 s). Additionally, we give success and timeout rates for proof re-
construction and the ratio of reconstruction time to solving time (R-time).

Our reconstruction succeeds on 75% of all problems solved by Z3. Failures
are mostly due to timeouts (19%), but also due to shortcomings of Z3 and in
a few cases of our reconstruction.5 Note that low success rates, which are in
most cases caused by timeouts, occur mainly in logics dominated by arithmetic.
Closer analysis (of individual examples and profiling data, see Sect. 6.4) suggests
that the theory-specific proof rules rewrite and th-lemma are to blame for this
deficiency.

Proofs produced by Z3 may be extremely large. Our implementations are
nevertheless able to reconstruct huge proofs within the given timeout. The largest
proof successfully reconstructed had a size of 168 MB and comprised more than
3 million Z3 proof rules.

Reconstruction for individual logics is at least 2.7 times slower than proof
search; on average the ratio lies at 18.5 despite our extensive optimizations. A
thorough study of our measurements, however, reveals that for several problem
classes, the picture is different: e.g., in case of AUFLIA−p, AUFLIA+p and
AUFLIRA, our reconstruction is faster than Z3 on 11-34% of all problems.

6.2 Comparison with CH

In the implementation of CH we tested, proof reconstruction was tuned for log-
ics including uninterpreted functions, arrays and linear integer arithmetic. Thus,
4 Our data is available at http://www4.in.tum.de/~boehmes/fast_proof_rec.html.
5 Z3 discovers injectivity of functions and uses this property for rewriting; reconstruc-

tion would require yet another special case for the already complex rewrite rule,
which we have not implemented so far.

http://www4.in.tum.de/~boehmes/fast_proof_rec.html

Fast LCF-Style Proof Reconstruction for Z3 11

Logic Solved (Z3) Reconstructed Rates

Time Size # Time Success Timeout R-time

AUFLIA+p 187 0.095 s 64 KB 187 0.413 s 100% 0% 4.34
AUFLIA−p 192 0.117 s 81 KB 190 1.962 s 98% 0% 16.72
AUFLIRA 189 0.292 s 366 KB 144 0.794 s 76% 0% 2.72
QF AUFLIA 92 0.158 s 694 KB 49 136.498 s 53% 42% 863.85
QF IDL 40 2.322 s 12 MB 19 173.875 s 47% 52% 74.89
QF LIA 100 17.154 s 77 MB 26 208.713 s 26% 65% 12.17
QF LRA 88 4.849 s 10 MB 55 142.351 s 62% 36% 29.36
QF RDL 52 9.773 s 16 MB 26 173.953 s 50% 50% 17.80
QF UF 87 16.131 s 62 MB 73 73.242 s 83% 16% 4.54
QF UFIDL 55 4.511 s 12 MB 8 260.351 s 14% 85% 57.72
QF UFLIA 91 1.543 s 4 MB 85 29.086 s 93% 6% 18.85
QF UFLRA 100 0.086 s 914 KB 100 3.916 s 100% 0% 45.68

Total 1273 3.656 s 13 MB 962 67.785 s 75% 19% 18.54

Table 2. Experimental results (Isabelle/HOL) for selected SMT-COMP logics

Logic Solved Reconstructed

Time Rate Time

Z3 CVC3 I H I H

AUFLIA+p 182 0.043 s 0.485 s 100% 84% 0.294 s 12.369 s
AUFLIA−p 173 0.050 s 0.149 s 99% 80% 0.165 s 5.791 s
QF AUFLIA 89 0.053 s 3.150 s 52% 68% 17.197 s 4.068 s
QF IDL 34 0.483 s 10.063 s 52% 41% 20.776 s 87.772 s
QF LIA 18 0.398 s 25.587 s 55% 0% 33.870 s n/a
QF UF 58 1.531 s 7.920 s 100% 86% 13.465 s 14.645 s
QF UFIDL 38 0.301 s 6.525 s 18% 18% 13.017 s 27.120 s
QF UFLIA 82 0.034 s 4.114 s 100% 9% 4.897 s 18.866 s

Total 674 0.219 s 3.326 s 85% 64% 4.994 s 12.147 s

Table 3. Comparison between Z3/Isabelle/HOL and CVC3/HOL Light

Logic Solved (Z3) Reconstructed Failed Ratio

Time # Time Size #T #Z R-time

AUFLIA 100 0.180 s 100 0.450 s 206 KB 0 0 2.5
AUFLIRA 100 0.051 s 97 0.034 s 16 KB 0 3 0.7
QF UF 96 2.992 s 74 16.199 s 16 MB 1 21 5.4
QF UFLIA 99 0.534 s 92 6.948 s 194 KB 7 0 13.0
QF UFLRA 100 0.189 s 100 1.705 s 1 MB 0 0 9.0

Table 4. Experimental results (HOL4) for selected SMT-LIB logics

12 Sascha Böhme and Tjark Weber

we only compare relevant results of the previous section with CH. Table 3 shows
for each considered logic the number of problems solved by both Z3 and CVC3,
their average run-time, the success rate of reconstruction for Isabelle/HOL (I)
and HOL Light (H), and the average run-time of reconstruction (timeouts are
counted as 300 s). Measuring these figures stimulated improvements to the im-
plementation of CH; we only give the newest (and best) results for CH.

Clearly, our implementations can reconstruct more problems. More impor-
tantly, our reconstruction is on average more than two times faster than CH (and
up to 42 times faster in the case of AUFLIA+p), even though CH does not have
any parsing overhead (it uses a binary interface to CVC3, not a file-based one
like our implementations).

6.3 Comparison with ZI

For comparability, we evaluated our implementations on the same set of SMT-
LIB benchmarks (and, in fact, on the very same Z3 proofs) that were used to
evaluate ZI [15]. Table 4 summarizes our experimental results for HOL4. For each
SMT-LIB logic, the table shows the number of problems that Z3 determined to
be unsatisfiable, the average run-time of Z3 (as reported in [15]), the number of
successful proof reconstructions along with average HOL4 run-time and average
Z3 proof size, and the number of failed proof reconstructions (due to timeouts #T
and confirmed (and by now fixed) Z3 bugs #Z). The rightmost column of Tab. 4
shows the ratio of reconstruction time to solving time (R-time, cf. Sect. 6.1). We
observe that this ratio is less than 1 for the AUFLIRA logic: LCF-style proof
reconstruction for this logic is faster than proof search in Z3.

A more detailed comparison revealed that our highly optimized implementa-
tions (both in Isabelle/HOL and HOL4) outperform ZI on every problem of the
AUFLIA, AUFLIRA, QF UF and QF UFLRA logics. Often, the performance
gain is several orders of magnitude. Only the QF UFLIA logic contains 18 prob-
lems for which reconstruction in HOL4, despite our optimizations, is slower than
reported in [15]. We conclude that there is still potential for optimization in
HOL4’s decision procedure for integer arithmetic [21].

1

10

100

1,000

10,000

AUFLIA AUFLIRA QF UF QF UFLIA QF UFLRA

Fig. 1. Speedup factors

The figure to the right shows
the average speedups of Isabelle/HOL
(left) and HOL4 (right) over the run-
times measured in [15]. Shaded bars
give the maximum speedups achieved
on individual problems (3,437 in the
case of AUFLIRA for our HOL4 im-
plementation!). Note that the figure
uses a logarithmic scale. The overall
speedup is 13.9 for HOL4 and 11.7 for
Isabelle/HOL.

Fast LCF-Style Proof Reconstruction for Z3 13

6.4 Profiling

To further understand these results and to identify potential for future opti-
mization, we present relevant profiling data for our HOL4 implementation. (Is-
abelle/HOL profiling data is roughly similar.) Figures 2 to 6 show bar graphs
that indicate the four6 most time-consuming proof rules of Z3 for the respec-
tive SMT-LIB logic, and their percentaged shares of total run-time (dark bars).
Additionally, time spent on parsing proof files is shown as well (see Tab. 4 for
average proof sizes). We contrast each proof rule’s relative run-time with the
mean frequency of that rule (light bars).

0 10 20 30 40 50

parsing

other rules

monotonicity

th-lemma

def-axiom

rewrite

Fig. 2. AUFLIA

0 10 20 30 40 50

parsing

other rules

monotonicity

quant-intro

sk

rewrite

Fig. 3. AUFLIRA

0 10 20 30 40 50

parsing

other rules

trans

monotonicity

lemma

unit-resolution

Fig. 4. QF UF

0 20 40 60 80 100

parsing

other rules

th-lemma

Fig. 5. QF UFLIA

0 10 20 30 40 50

parsing

other rules

and-elim

th-lemma

monotonicity

rewrite

Fig. 6. QF UFLRA

We see that after extensive optimization, proof reconstruction times are rel-
atively well-balanced between Z3’s different proof rules for most logics, although
the rewrite rule still accounts for almost half of the total run-time on the AU-
FLIA, AUFLIRA, and QF UFLRA benchmarks. For QF UF, on the other hand,
rewriting is relatively unimportant, but proofs contain many (in fact, over 5 mil-
lion) unit-resolution inferences. Checking these consequently requires more
than 41% of the run-time.

For these four logics, merely parsing Z3’s proof files accounts for 11% (AU-
FLIA) to 19% (QF UF) of the total run-time. Note that parsing does not involve
the LCF-style inference kernel. Hence, there are limits to future performance
gains that can be achieved through further optimization of LCF-style reasoning.

The picture looks different for the QF UFLIA logic, where run-time is dom-
inated almost entirely by the th-lemma rule. Parsing and other proof rules
6 For QF UFLIA, we only show th-lemma separately and combine all other rules.

14 Sascha Böhme and Tjark Weber

of Z3 account for less than 2% of reconstruction time. Z3 internally uses the
Simplex algorithm to decide linear arithmetic [9] and applies a branch and cut
strategy for integers [22]. However, any information about how a decision is
found is kept private: the th-lemma rule only represents the statement that
a system of linear inequations is inconsistent. Consequently, reconstructing this
proof rule amounts to finding the refutation again, with (probably) far less op-
timized decision procedures in the case of Isabelle/HOL and HOL4. Instead of
making those faster, we conjecture that enriching th-lemma with the necessary
information (which is already available in Z3) would improve efficiency of proof
reconstruction considerably.

7 Conclusions

We have presented LCF-style proof reconstruction for Z3 in the theorem provers
Isabelle/HOL and HOL4. In comparison to a recent implementation in Isabelle/
HOL [15], our implementations are significantly faster on most benchmarks,
often by orders of magnitude. Moreover, we have modeled the proof rules of Z3 in
Isabelle/HOL and HOL4 with unprecedented accuracy, thereby achieving almost
full (except for very few exotic corner cases) proof coverage. We also outperform
a related implementation of proof reconstruction for CVC3 in HOL Light [12].
We have three main conclusions.

LCF-style proof checking for SMT is feasible. Our implementations give evidence
that LCF-style proof checking for SMT solvers is not only possible in principle,
but also that it is feasible. Clearly there is a steep price (in terms of performance)
that one has to pay for checking proofs in a general-purpose LCF-style theorem
prover. However, even for proofs with millions of inferences, LCF-style proof
checking can be as fast as (or even faster than) proof search in Z3. This confirms
a similar observation made in [16] regarding the feasibility of LCF-style proof
checking for large SAT-solver generated proofs.

Specialized implementations can be significantly faster than generic proof proce-
dures in LCF-style provers. The speedup that we achieved over [15] shows the
importance of profiling when performance is an issue. We achieved speedups of
several orders of magnitude by replacing calls to generic automated proof pro-
cedures with specialized implementations that perform the specific inferences
required to check Z3’s proof rules. This is despite the fact that some of these
automated procedures employ state-of-the-art algorithms internally. Of course,
writing fast specialized proof procedures requires much more familiarity with
the theorem prover than simply calling automated proof procedures.

Z3’s proof format could be easier to check. Conceptually, we only had to over-
come minor hurdles to implement proof reconstruction for Z3’s natural-deduction
style proofs in the considered LCF-style theorem provers. That the conclusion of
each inference step is given explicitly proved tremendously helpful. Proof rules
rewrite and th-lemma, however, seem overly complex, and despite substan-
tial optimization efforts, they still dominate run-time in our implementations.

Fast LCF-Style Proof Reconstruction for Z3 15

We encourage the Z3 authors to (1) replace rewrite by a collection of sim-
pler rules with clear semantics and less reconstruction effort, ideally covering
specific rewriting steps of at most one theory, and (2) enrich th-lemma with
additional easily-checkable certificates or trace information guiding refutations
to avoid invocations of expensive (arithmetic) decision procedures. Currently the
theoretical complexity of proof checking for background theories is the same as
for proof search. We also hope that our experience will influence the design of a
future SMT proof standard.

We have integrated proof reconstruction as an automated proof procedure
in both HOL4 and Isabelle/HOL. If ϕ is an SMT formula, the user can invoke
this proof procedure to have it pass ¬ϕ to Z3, reconstruct Z3’s proof of unsat-
isfiability (if one is found) to obtain {¬ϕ} ` ⊥, and from this ` ϕ is derived by
contradiction. Our implementations are freely available7 and already in use.

There are numerous differences in internal data structures between HOL4,
Isabelle/HOL and other LCF-style theorem provers, but based on previous ex-
perience [16] we have little doubt that the optimization techniques presented in
this paper can be used to achieve similar performance in other theorem provers.

Future work includes (1) proof reconstruction for other SMT-LIB theories,
e.g., bit vectors, (2) evaluation of proof reconstruction for typical goals of Is-
abelle/HOL or HOL4, (3) parallel proof reconstruction [23], by checking inde-
pendent paths in the proof DAG concurrently, and (4) investigations into proof
compression [24] for SMT proofs.

Acknowledgments

The authors are grateful to Nikolaj Bjørner and Leonardo de Moura for their
help with Z3, to Yeting Ge for his help on proof reconstruction for CVC3, and
to Alexander Krauss and Lukas Bulwahn for commenting on an earlier draft of
this paper. Additionally, the second author would like to thank Hasan Amjad
and Mike Gordon for their support.

References

1. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of Lect. Notes in Comp. Sci. Springer (2002)

2. Gordon, M.J.C., Pitts, A.M.: The HOL logic and system. In: Towards Verified
Systems. Volume 2 of Real-Time Safety Critical Systems Series. Elsevier (1994)
49–70

3. Kroening, D., Strichman, O.: Decision Procedures – An Algorithmic Point of View.
Springer (2008)

4. Collavizza, H., Gordon, M.: Integration of theorem-proving and constraint pro-
gramming for software verification. Technical report, Laboratoire d’Informatique,
Signaux et Systèmes de Sophia-Antipolis (2008)

5. Böhme, S., Moskal, M., Schulte, W., Wolff, B.: HOL-Boogie — An Interactive
Prover-Backend for the Verifying C Compiler. J. Automated Reasoning 44(1–2)
(February 2010) 111–114

7 See http://hol.sourceforge.net and http://isabelle.in.tum.de.

http://hol.sourceforge.net
http://isabelle.in.tum.de

16 Sascha Böhme and Tjark Weber

6. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: 7th
International Workshop on Satisfiability Modulo Theories (SMT ’09). (2009)

7. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems (TACAS ’08). Volume 4963 of Lect.
Notes in Comp. Sci., Springer (2008) 337–340

8. Gordon, M., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic
of Computation. Volume 78 of Lect. Notes in Comp. Sci. Springer (1979)

9. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Proceedings of
the LPAR 2008 Workshops, Knowledge Exchange: Automated Provers and Proof
Assistants, and the 7th International Workshop on the Implementation of Logics.
Volume 418 of CEUR Workshop Proceedings., CEUR-WS.org (2008)

10. Ranise, S., Tinelli, C.: The SMT-LIB standard: Version 1.2 (August 2006)
Retrieved January 21, 2010 from http://combination.cs.uiowa.edu/smtlib/

papers/format-v1.2-r06.08.30.pdf.
11. McLaughlin, S., Barrett, C., Ge, Y.: Cooperating theorem provers: A case study

combining HOL-Light and CVC Lite. Electronic Notes in Theoretical Computer
Science 144(2) (2006) 43–51

12. Ge, Y., Barrett, C.: Proof translation and SMT-LIB benchmark certification:
A preliminary report. In: 6th International Workshop on Satisfiability Modulo
Theories (SMT ’08). (2008)

13. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automa-
tion + soundness: Towards combining SMT solvers and interactive proof assistants.
In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS
’06). Volume 3920 of Lect. Notes in Comp. Sci., Springer (2006) 167–181

14. Hurlin, C., Chaieb, A., Fontaine, P., Merz, S., Weber, T.: Practical proof recon-
struction for first-order logic and set-theoretical constructions. In: Proceedings of
the Isabelle Workshop 2007, Bremen, Germany (July 2007) 2–13

15. Böhme, S.: Proof reconstruction for Z3 in Isabelle/HOL. In: 7th International
Workshop on Satisfiability Modulo Theories (SMT ’09). (2009)

16. Weber, T., Amjad, H.: Efficiently checking propositional refutations in HOL the-
orem provers. J. Applied Logic 7(1) (March 2009) 26–40

17. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: De-
sign and Application of Strategies/Tactics in Higher Order Logics (STRATA ’03).
Number NASA/CP-2003-212448 in NASA Technical Reports (2003) 56–68

18. Hurd, J.: Metis performance benchmarks (Retrieved January 21, 2010) http:

//www.gilith.com/software/metis/performance.html.
19. HOL88 contributors: HOL88 source code (Retrieved January 21, 2010) http:

//www.ftp.cl.cam.ac.uk/ftp/hvg/hol88/holsys.tar.gz.
20. Barrett, C., Deters, M., Oliveras, A., Stump, A.: 5th Annual Satisfiability Modulo

Theories Competition (SMT-COMP ’09) (2009) http://www.smtcomp.org/2009/.
21. Norrish, M.: Complete integer decision procedures as derived rules in HOL. In:

Theorem Proving in Higher Order Logics (TPHOLs 2003). Volume 2758 of Lect.
Notes in Comp. Sci., Springer (2003) 71–86

22. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
Conference on Computer Aided Verification (CAV). Volume 4144 of Lect. Notes
in Comp. Sci., Springer (2006) 81–94

23. Wenzel, M.: Parallel proof checking in Isabelle/Isar. In: ACM SIGSAM 2009
International Workshop on Programming Languages for Mechanized Mathematics
Systems. (2009)

24. Amjad, H.: Data compression for proof replay. J. Automated Reasoning 41(3–4)
(2008) 193–218

http://combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
http://combination.cs.uiowa.edu/smtlib/papers/format-v1.2-r06.08.30.pdf
http://www.gilith.com/software/metis/performance.html
http://www.gilith.com/software/metis/performance.html
http://www.ftp.cl.cam.ac.uk/ftp/hvg/hol88/holsys.tar.gz
http://www.ftp.cl.cam.ac.uk/ftp/hvg/hol88/holsys.tar.gz
http://www.smtcomp.org/2009/

	Fast LCF-Style Proof Reconstruction for Z3
	Sascha Böhme and Tjark Weber
	Introduction
	Related Work
	LCF-Style Theorem Proving
	Z3: Language and Proof Terms
	Proof Reconstruction
	Reconstruction Techniques
	Propositional and First-Order Reasoning
	Theory-Specific Reasoning

	Experimental Results
	SMT-COMP Benchmarks
	Comparison with CH
	Comparison with ZI
	Profiling

	Conclusions

