
λ →

∀
=Isa

be
lle

β
α

HOL
Using a SAT Solver as a Fast Decision Procedure for
Propositional Logic in an LCF-style Theorem Prover

Tjark Weber webertj@in.tum.de

Institut für Informatik, Technische Universität München, Germany

Abstract

We describe the integration of a leading SAT solver with Isabelle/HOL, a popular interactive
theorem prover. The SAT solver generates resolution-style proofs for (instances of) proposi-
tional tautologies. These proofs are verified by the theorem prover. The presented approach
significantly improves Isabelle’s performance on propositional problems, and furthermore
exhibits counterexamples for unprovable conjectures.

Introduction

Interactive theorem provers like PVS, HOL or Isabelle traditionally support rich specification
logics. Proof search and automation for these logics however is difficult, and proving a non-
trivial theorem usually requires manual guidance by an expert user. Automated theorem
provers on the other hand, while often designed for simpler logics, have become increasingly
powerful over the past few years. New algorithms, improved heuristics and faster hardware
allow interesting theorems to be proved with little or no human interaction, sometimes within
seconds.
Formal verification is an important application area of interactive theorem proving. Prob-
lems in verification can often be reduced to Boolean satisfiability (SAT), and recent
SAT solver advances have made this approach feasible in practice. Hence the performance of
an interactive prover on propositional problems may be of significant practical importance.
Here we describe the integration of zChaff [MMZ+01], a leading SAT solver, with the Is-
abelle/HOL [NPW02] prover. We show that using zChaff to prove theorems of propositional
logic dramatically improves Isabelle’s performance on this class of formulas. Furthermore,
while Isabelle’s previous decision procedures simply fail on unprovable conjectures, zChaff is
able to produce concrete counterexamples.

System Description

To prove a propositional tautology φ in the Isabelle/HOL system with the help of zChaff, we
proceed in several steps. First φ is negated, and the negation is converted into an equivalent
formula φ∗ in conjunctive normal form. φ∗ is then written to a file in DIMACS CNF
format, the input format supported by zChaff (and many other SAT solvers). zChaff, when
run on this file, returns either “unsatisfiable”, or a satisfying assignment for φ∗.
In the latter case, the satisfying assignment is displayed to the user. The assignment con-
stitutes a counterexample to the original conjecture. When zChaff returns “unsatisfiable”
however, things are more complicated. The LCF-approach [Gor00] demands that we ver-
ify zChaff’s claim of unsatisfiability within Isabelle/HOL. While this is not as
simple as the validation of a satisfying assignment, the increasing complexity of SAT solvers
has before raised the question of support for independent verification of their results, and in
2003 zChaff has been extended by L. Zhang and S. Malik [ZM03] to generate resolution-style
proofs that can be verified by an independent checker. Hence our main task boils down to
using Isabelle/HOL as an independent checker for the resolution proof found by zChaff.

Preprocessing

Isabelle/HOL offers higher-order logic, whereas zChaff only supports formulas of proposi-
tional logic in conjunctive normal form. Therefore the (negated) input formula φ must be
preprocessed before it can be passed to zChaff. Note that it is not sufficient to convert
φ into an equivalent formula φ′ in CNF. Rather, we have to prove this equivalence inside
Isabelle/HOL. The result is not a single formula, but a theorem of the form φ = φ′. Our
main workhorse for the construction of this theorem is a generic function thm of:

thm of decomp t = let (ts, recomb) = decomp t in recomb (map (thm of decomp) ts)

All necessary preprocessing steps can then be handled with proper instantiations for decomp.
zChaff treats clauses as sets of literals, making implicit use of associativity, commutativity
and idempotence of disjunction. Therefore some further preprocessing is necessary,
aside from conversion to CNF: removal of parentheses, of duplicate literals, and of tau-
tological clauses. Each preprocessing step yields an equivalence theorem that was proved
in Isabelle/HOL, and transitivity of = allows us to combine these theorems into a single
theorem φ = φ∗, where φ∗ is the final result of our conversion.

Input
formula

Preprocessing

Theorem reconstruction
Proof

Trace

satisfiable?

DIMACS CNF

Assignment

Counterexample

zChaff

yes no

Isabelle

Figure 1: System Architecture

Proof Reconstruction

Proof reconstruction in Isabelle is based on two simple functions: one that uses resolution
to derive new theorems of the form φ∗ −→ c from existing theorems φ∗ −→ c1, . . . ,
φ∗ −→ cn (where c and c1, . . . , cn are single clauses), and another function that proves
φ∗ −→ l (where l is a single literal) from l’s antecedent φ∗ −→ c. Here c must be a clause
that contains l, and for all other literals l′ in c a theorem of the form φ∗ −→ ¬l′ must be
provable. These functions correspond to the first and second section, respectively, of the text
file generated by zChaff.

prove clause clause id = resolution (map prove clause (resolvents of

clause id))

prove literal var id = let th ante = prove clause (antecedent of var id) in

let var ids = filter (fn i => i <> var id) (var ids in clause th ante) in

resolution (th ante :: map prove literal var ids)

Proof reconstruction then proceeds in three steps. First the conflict clause is proved by a
call to prove clause. Then prove literal is called for every literal in the conflict clause,
to show that the literal must be false. Finally resolving the conflict clause with these negated
literals yields the theorem φ∗ −→ False.
For efficiency reasons, the actual implementation is slightly different from what is shown
above. Theorems that were proved once are stored in two arrays (one for clauses, one for
literals), and simply looked up – rather than reproved – should they be needed again.
Hence our implementation is not purely functional.

Evaluation

Isabelle/HOL offers three major automatic proof procedures: auto, blast, and fast. Details
can be found in [NPW02]. We compared the performance of our approach to that of Is-
abelle’s existing proof procedures on all 42 problems contained in version 2.6.0 of the TPTP
library that have a representation in propositional logic. The problems were negated, so
that unsatisfiable problems became provable. All benchmarks were run on a machine with
a 3 GHz Intel Xeon CPU and 1 GB of main memory.
19 of these 42 problems are rather easy, and were solved in less than a second each by both
the existing procedures and the SAT solver approach. Figure 2 shows the times in seconds
required to solve the remaining 23 problems. An x indicates that the procedure ran out of
memory or failed to terminate within an hour.

Problem Status auto blast fast zChaff
MSC007-1.008 unsat. x x x 726.5
NUM285-1 sat. x x x 0.2
PUZ013-1 unsat. 0.5 x 5.0 0.1
PUZ014-1 unsat. 1.4 x 6.1 0.1
PUZ015-2.006 unsat. x x x 10.5
PUZ016-2.004 sat. x x x 0.3
PUZ016-2.005 unsat. x x x 1.6
PUZ030-2 unsat. x x x 0.7
PUZ033-1 unsat. 0.2 6.4 0.1 0.1
SYN001-1.005 unsat. x x x 0.4
SYN003-1.006 unsat. 0.9 x 1.6 0.1
SYN004-1.007 unsat. 0.3 822.2 2.8 0.1
SYN010-1.005.005 unsat. x x x 0.4
SYN086-1.003 sat. x x x 0.1
SYN087-1.003 sat. x x x 0.1
SYN090-1.008 unsat. 13.8 x x 0.5
SYN091-1.003 sat. x x x 0.1
SYN092-1.003 sat. x x x 0.1
SYN093-1.002 unsat. 1290.8 16.2 1126.6 0.1
SYN094-1.005 unsat. x x x 0.8
SYN097-1.002 unsat. x 19.2 x 0.2
SYN098-1.002 unsat. x x x 0.4
SYN302-1.003 sat. x x x 0.4

Figure 2: Running times (in seconds) for TPTP problems

Conclusions and Future Work

Our results show that the zChaff-based tactic is clearly superior to Isabelle’s built-in tac-
tics for propositional formulas. With the help of zChaff, many formulas that were previously
out of the scope of Isabelle’s built-in tactics can now be proved – or refuted – automatically,
often within seconds. Isabelle’s applicability as a tool for formal verification, where large
propositional problems occur in practice, has thereby improved considerably, even though
its performance is not yet sufficient to treat huge SAT problems with thousands of clauses.
The approach presented in this paper has applications beyond propositional rea-
soning. The decision problem for (fragments of) richer logics can be reduced to SAT.
Consequently, proof reconstruction for propositional logic can serve as a foundation for
proof reconstruction for other logics. Based on our work, one only needs a proof-generating
implementation of the reduction to integrate the whole SAT-based decision procedure with
an LCF-style theorem prover.

Acknowledgments The author would like to thank Sharad Malik and Zhaohui Fu for their
help with zChaff, and Tobias Nipkow for his valuable suggestions.

References

[Gor00] M. J. C. Gordon. From LCF to HOL: a short history. In G. Plotkin, Colin P.
Stirling, and Mads Tofte, editors, Proof, Language, and Interaction. MIT Press,
2000.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineer-
ing an efficient SAT solver. In Proceedings of the 38th Design Automation
Conference, Las Vegas, June 2001.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL –
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[ZM03] Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applications. In
Design, Automation and Test in Europe (DATE 2003), pages 10880–10885.
IEEE Computer Society, 2003.

c© Tjark Weber. Presented at TPHOLs 2005.


