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Abstract
Navigation and mapping in unknown environments is an important building
block for increased autonomy of unmanned vehicles, since external positioning
systems can be susceptible to interference or simply being inaccessible. Naviga-
tion and mapping require signal processing of vehicle sensor data to estimate
motion relative to the surrounding environment and to simultaneously estimate
various properties of the surrounding environment. Physical models of sensors,
vehicle motion and external influences are used in conjunction with statistically
motivated methods to solve these problems. This thesis mainly addresses three
navigation and mapping problems which are described below.

We study how a vessel with knownmagnetic signature and a sensor network with
magnetometers can be used to determine the sensor positions and simultaneously
determine the vessel’s route in an extended Kalman filter (EKF). This is a so-
called simultaneous localisation and mapping (SLAM) problem with a reversed
measurement relationship.

Previously determined hydrodynamic models for a remotely operated vehicle
(ROV) are used together with the vessel’s sensors to improve the navigation per-
formance using an EKF. Data from sea trials is used to evaluate the system and
the results show that especially the linear velocity relative to the water can be
accurately determined.

The third problem addressed is SLAM with inertial sensors, accelerometers and
gyroscopes, and an optical camera contained in a single sensor unit. This problem
spans over three publications.

We study how a SLAM estimate, consisting of a point cloudmap, the sensor unit’s
three dimensional trajectory and speed as well as its orientation, can be improved
by solving a nonlinear least-squares (NLS) problem. NLSminimisation of the pre-
dicted motion error and the predicted point cloud coordinates given all camera
measurements is initialised using EKF-SLAM.

We show how NLS-SLAM can be initialised as a sequence of almost uncoupled
problems with simple and often linear solutions. It also scales much better to
larger data sets than EKF-SLAM. The results obtained using NLS-SLAM are sig-
nificantly better using the proposed initialisation method than if started from
arbitrary points. A SLAM formulation using the expectation maximisation (EM)
algorithm is proposed. EM splits the original problem into two simpler problems
and solves them iteratively. Here the platform motion is one problem and the
landmark map is the other. The first problem is solved using an extended Rauch-
Tung-Striebel smoother while the second problem is solved with a quasi-Newton
method. The results using EM-SLAM are better than NLS-SLAM both in terms
of accuracy and complexity.
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Populärvetenskaplig sammanfattning

Vi människor utför dagligen en stor mängd navigerings- och karteringsrutiner
utan att ens reflektera över dessa. Allt ifrån att resa mellan hem och arbete till att
upptäcka nya spännande miljöer i en ny stad. För navigering i välbekanta miljöer
använder vi våra sinnen och den mentala karta av omvärlden som är uppbygd
av tidigare upplevelser. Att navigera i okända miljöer är svårare eftersom vi mås-
te strukturera en ny mental karta av alla intryck och samtidigt uppfatta var i
kartan vi befinner oss. Lyckligtvis finns en stor mängd hjälpmedel såsom, kartor,
kompasser, satellitpositioneringssystem, med mera, som underlättar för oss.

Navigering och kartering i okända miljöer är även en viktig byggsten för obeman-
nade farkosters ökade autonomi eftersom externa positioneringssystem kan vara
störningskänsliga eller helt enkelt otillgängliga. Navigering och kartering kräver,
ofta omfattande, signalbehandling av farkosternas sensordata för att uppskatta
hur den rör sig relativt omvärlden och att samtidigt uppskatta olika egenska-
per i omvärlden. Fysikaliska modeller av sensorer, farkosters rörelse och yttre
påverkan används tillsammans med statistiskt motiverade metoder för att lösa
dessa problem så bra som möjligt. Denna avhandling behandlar huvudsakligen
tre navigerings- och karteringsproblem som beskrivs nedan.

Säkerhetskritiska maritima miljöer, såsom hamnar, kylvattenanläggningar vid
kärnkraftverk och andra skyddsobjekt kräver ständig övervakning. För att de-
tektera och göra målföljning av främmande fartyg och undervattensfarkoster i
dessa miljöer kan man använda sig av sensorer placerade i ett nätverk på havs-
botten. Dessa nätverk fungerar endast tillförlitligt om sensorernas position och
orientering på havsbotten är känd. Vi studerar hur ett fartygmed kändmagnetisk
signatur och ett sensornätverk med tre-axliga magnetometrar kan användas för
att bestämma sensorernas position och samtidigt bestämma fartygets rutt med
ett så kallat extended Kalman filter (EKF). Detta är ett så kallat samtidig lokalise-
ring och karteringsproblem, på engelska simultaneous localisation and mapping
(SLAM), men med omvänd mätrelationen. Analys av hur noggrant sensorernas
position kan bestämmas för en given rutt redovisas och det omvända, alltså hur
noggrant en rutt kan bestämmas när sensorernas positioner är kända. Dessutom
visas med känslighetsanalys att om fartyget är utrustat med positioneringssystem
så kan fel i sensororientering och fel i den magnetiska signaturen undertryckas
och positonsnoggrannheten för sensorerna förbättras. Systemet utvärderas med
hjälp av simuleringar.

Det andra problemet som behandlas är modellering en fjärrstyrd obemannad
undervattensfarkost, på engelska remotely operated vehicle (ROV), och sensor-
fusion. ROVar används i en mängd krävande undervattenstillämpningar såsom
tunnel- och skrovinspektion, svetsning på oljeriggar där djupet är för stort för
vanliga dykare och arkeologiska expeditioner. ROVar har ett begränsat utrymme
för navigerings- och karterinssensorer och dessa måste även vara relativt billiga.
Dessutom saknas det ofta externa positioneringssystem under vattnet och därför
krävs oberoende robusta navigeringsmetoder. Vi studerar hur tidigare bestämda
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viii Populärvetenskaplig sammanfattning

hydrodynamiska delmodeller för en ROV kan användas tillsammans med farkos-
tens sensorer för att förbättra navigeringsprestanda. De hydrodynamiska model-
lerna beskriver farkostens rörelse i det omgivande vattnet där rörelsen genereras
av de fem propellrarna. Vi redovisar modeller för alla sensorer uttryckta i ett
kroppsfixt system och dessa används tillsammans med de hydrodynamiska mo-
dellerna i ett EKF. Experimentella data från sjökörningar i Vättern används för
att utvärdera systemet och resultaten visar att framför allt linjär hastighet relativt
vattnet kan bestämmas noggrant.

Det tredje problemet som behandlas är SLAM med tröghetssensorer (accelero-
metrar och gyroskop) och optisk kamera i en sammansatt sensormodul. Detta
problem sträcker sig över tre publikationer.

I den första publikationen studerar vi hur en SLAM-skattning, bestående av en
skalenligt punktmolnskarta, sensormodulens tre-dimensionella bana och hastig-
het samt dess orientering, kan förbättras genom att lösa ett olinjärt minstakvadrat-
problem. Den initiala SLAM-skattningen görs med EKF-SLAM och det förbättra-
de estimated fås genom att minimera det predikterade rörelsefelet över hela ba-
nan och de predikterade punktmolnskoordinaterna givet alla kameramätningar
och där tröghetssensorerna behandlas som en känd insignal. Resultaten är ut-
värderade med väldigt tillförlitliga data där sensormodulen är fastspänd i verk-
tygspositionen på en industrirobot och miljön uppmätt för hand.

I den andra publikationen visar vi hur det olinjära minstakvadratproblemet för
SLAM kan initialiseras med en sekvens av nästan frikopplade problem med enk-
la, och oftast linjära, lösningar. Fördelen med att använda denna metod, istället
för EKF-SLAM, är att den kan användas på mycket större dataset. Vi visar även
att resultatet från det olinjära minstakvadratproblemet blir bättre med den före-
slagna initialiseringsmetoden än om den startas från godtyckliga punkter. Flera
steg i metoden utvärderas med Monte Carlo simuleringar och experimentella da-
ta.

I den tredje publikationen studeras en alternativ formulering till det olinjära
minstakvadratproblemet med hjälp av expectation maximisation (EM) algorit-
men. EM är en metod som används för att hantera komplexa problem genom
att dela upp det i två enklare problem och lösa dessa iterativt. I den föreslagna
metoden betraktas sensormodulens bana som det ena problemet och det andra
problemet utgörs av punktmolnskartan. EM metoden initialiseras med den ovan
beskrivna metoden och resultat på experimentell och simulerad data visar sig
ge mindre medel-fel än med den olinjära minstakvadratmetoden. Dessutom är
metoden beräkningsmässigt mer e↵ektiv.
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Notation

Abbreviations

Abbreviation Meaning
BA bundle adjustment

CRLB Cramér-Rao lower bound
CCD charge coupled devices
CMOS complementary metal oxide semiconductor
DOF degrees of freedom
DVL Doppler velocity log
EKF extended Kalman filter
EM expectation-maximisation

E-RTS extended Rauch-Tung-Striebel smoother
GNSS global navigations satellite system
GPS global positioning system
IMU inertial measurement unit
IDP inverse depth parametrisation
KF Kalman filter

LiDAR light detection and ranging
MAP maximum a posteriori
MEMS micro electrical mechanical systems
ML maximum likelihood
NLS nonlinear least square

RADAR radio detection and ranging
RANSAC random sampling consensus
ROV remotely operated vehicle
SLAM simultaneous localisation and mapping
SFM structure from motion
SIFT scale-invariant feature transform

SONAR sound navigation and ranging
UAV unmanned aerial vehicle
UUV unmanned underwater vehicle
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xvi Notation

Symbols and Operators

Notation Meaning
xt State vector
x0:t State trajectory up to time t
yt Measurement vector
y1:N Data batch of length N also denoted y1:N = Y =

{y1, . . . , yN }
ut Input vector
✓ Parameter vector
✓̂ Estimate of ✓
et Measurement noise
wt Process noise noise
Q Process noise variance
R Measurement variance

f (xt) Process model
h(xt) Measurement model
N (µ,⌃) Gaussian distribution with mean µ and variance ⌃

p(Y |✓), p✓(Y ) Data likelihood
p(✓|Y ) Posterior density

R Rotation matrix
! Angular velocity
p Position
v Velocity
a Acceleration
RT Transpose of matrix or vector
q Unit quaternion q = [q0, q1, q3, q4]

T

det Determinant
⇥ Cross product
r Gradient operator
R Set of real numbers

P([X, Y , Z]T ) Projection operator P([X, Y , Z]T ) = [X/Z, Y /Z]T

kxkP�1 =p
xT P�1x P-weighted norm of vector x

SO(3) Special Orthogonal Group
E Essential Matrix

argmax ✓ Maximising argument with respect to ✓
argmin ✓ Minimising argument with respect to ✓
⇠ Distributed according to. Or up to an unknown scale

� according to a ⇠ b () a = �b.



Part I

Background





1
Introduction

This thesis is about navigation, mapping and modeling for mobile robotics. The
specific applications studied are sensor network localisation, underwater vehicle
modeling and batched simultaneous localisation and mapping (SLAM) initialisa-
tion and estimation methods for inertial sensors and monocular cameras.

This chapter introduces and motivates the research topics in this thesis. It also
summarises the research contributions by the author of the appended publica-
tions and other publications.

1.1 Motivation
Autonomous systems are becoming increasingly important in today’s society. The
main drive for industrial automatisation is increased e�ciency leading to a larger
competitive advantage. In our homes we are enjoying the benefits of many au-
tomatised processes such as dishwashers, heat exchangers and robotic lawnmow-
ers. We use these systems because it allows us to do things that are more re-
warding, such as building autonomous systems. The design, construction and
evaluation of these systems is an iterative process which may involve machines,
computers, physical models, mathematical models and a fair bit of experience.

Today, autonomous systems are not only restricted to industries and our homes
but are becoming integrated into our normal day lives. For instance, yester-
day’s fantasies about self-driving cars are now becoming reality1. Autonomous
robotics see, Figure 1.1, is a special branch inmobile robotics in which the focus is
to automatise as many subsystems of the robot as possible. A research-intensive

1http://googleblog.blogspot.se/2014/04/the-latest-chapter-for-self-driving-car.
html

3

http://googleblog.blogspot.se/2014/04/the-latest-chapter-for-self-driving-car.html
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Figure 1.1: Parts of autonomous robotic systems.

Figure 1.2: Left: Combined camera and inertial sensors in a single unit.
Prototype made by XSens. Right: The Saab V-200 Skeldar helicopter. By
courtesy of Saab AB.

part of this subsystem is onboard sensor data interpretation which is a corner-
stone for making truly autonomous robots without the need for external support
systems. The processed sensor data is used for various purposes such as naviga-
tion, mapping, control and exploration.

SLAM emerged in the field of mobile robotics as a tool to enhance navigation
and to infer properties of the surrounding environment by means of the onboard
sensors. As the name suggests, SLAM is the joint problem of localisation and
mapping which, on their own, are active research fields. In Figure 1.2 a multisen-
sor unit and an unmanned autonomous vehicle are shown.

Localisation, or navigation, problems assume that the surrounding environment
is, to some extent, known a priori. Such information can for instance be; topo-
graphic maps, radio beacons, star constellations, magnetic fields, global naviga-
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Figure 1.3: Left: The Saab Seaeye Falcon ROV. By courtesy of Saab AB. Right:
Position trajectory based on fusion of the ROV hydrodynamic model and
magnetometer in magenta and the cyan curve marks the cable which the
ROV roughly followed.

tion satellite systems (GNSS) satellite ephemeris, which are integrated directly
on moving platforms. If localisation of moving objects, i.e., tracking, is done
using external systems such as; ground based radar, closed-circuit television, cel-
lular networks, and other types of sensor networks, the location of the sensor
nodes needs to be accurately known. In Figure 1.3 a navigation example using a
remotely operated vehicle (ROV) is shown.

Mapping problems consider estimation of the surrounding environment with ex-
amples such as; topographic maps, bathymetric maps, magnetic fields, object
shape. It is assumed that all necessary information about the moving platforms
is available such that the uncertainty w.r.t., to the estimated maps is negligible.
This also covers cases when moving platforms are measured by sensor networks
and the node locations need to be calibrated. In Figure 1.4 a small experimental
setup and the corresponding SLAM estimate are shown.

SLAM research initially spent a lot of e↵ort on indoor platforms typically equipped
with wheel encoders for odometry and line sweeping laser range scanners and
these are still common. Today, this field of research is huge and heterogeneous
with all kinds of platform and sensor combinations. A small table with some
sensors and platforms that have been used in SLAM applications are shown in
Table 1.1.

1.2 Contributions

Published and submitted publications which constitute the second part of this
thesis are listed below in chronological order together with a description and the
contribution of each paper.
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Figure 1.4: Left: Image of an environment used for SLAM experiments using
camera and inertial sensors. Right: SLAM results using EKF and (smoothed)
nonlinear least-squares.

Sensor\Platform Flying Ground Pedestrian Vessel Submarine
Camera 1 2 3 4 5
Stereo Camera 6 7 8 9
RADAR 10 11 12
SONAR 13 14 15
IMU 16 17 18 19 20
LiDAR 21 22 23

Table 1.1: Some SLAM publications using various platforms and sensors.
1 (Karlsson et al., 2008; Caballero et al., 2009; Bryson and Sukkarieh, 2009;
Lupton and Sukkarieh, 2009, 2008; Bryson and Sukkarieh, 2008), 2 (Wang
and Dissanayake, 2012; Thrun and Montemerlo, 2006; Callmer et al., 2008),
3 (Davison et al., 2007; Davison, 2003; Eade, 2008; Klein and Murray, 2007),
4 (Callmer et al., 2011), 5 (Kim, 2013), 6 (Jung and Lacroix, 2003), 7 (Kono-
lige and Agrawal, 2008; Cummins and Newman, 2010), 8 (Lupton and
Sukkarieh, 2012; Karlsson and Bjärkefur, 2010; Strasdat et al., 2011; Jung
and Taylor, 2001), 9 (Eustice et al., 2006; Mahon et al., 2008), 10 (Sjanic and
Gustafsson, 2010), 11 (Marck et al.; Gerossier et al., 2009), - (), 12 (Callmer
et al., 2011; Mullane et al., 2010), 13 (Choi et al., 2005), - (), 14 (Wrobel,
2014), 15 (Newman et al., 2003; Ribas et al., 2006), 16 (Bryson et al., 2010),
17 (Wijesoma et al., 2006), 18 (Lupton and Sukkarieh, 2012), 19 (Han and
Kim, 2013), 20 (Kim and Eustice, 2009), 21 (Fossel et al., 2013), 22 (Bosse
and Zlot, 2008), 23 (Han and Kim, 2013).
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1.2.1 Included Contributions

Silent Localization of Underwater Sensors Using Magnetometers

J. Callmer, M. Skoglund, and F. Gustafsson. Silent localization of
underwater sensors using magnetometers. EURASIP Journal on Ad-
vances in Signal Processing, 2010, 2010. doi: 10.1155/2010/709318.
URL http://dx.doi.org/10.1155/2010/709318. Article ID 709318.

Paper A presents a method for localisation of underwater sensors equipped with
triaxial magnetometers using a friendly vessel with known magnetic characteris-
tics.

Underwater sensor networks can be used to detect and track surface vessels but
more importantly, underwater vessels which may pose threats in security critical
maritime environments. For these networks to function properly the location of
each sensor need to be accurately known which can be di�cult to obtain in fast
deployment scenarios. We here demonstrate how the sensor positions and the
vessel trajectory can be estimated simultaneously in an extended Kalman filter
(EKF) using only magnetometer measurements from the sensors. Cramér-Rao
lower bound (CRLB) analysis shows the attainable node localisation accuracy for
a given trajectory and the attainable tracking performance for a given network.
The CRLB analysis could thus serve as a guide on sensor network design. Sensitiv-
ity analysis indicates that when using GNSS measurement of the vessel trajectory,
errors in sensor orientation and magnetic dipole strength are suppressed and the
localisation accuracy is enhanced.

The results are evaluated using simulated data. This is also the only publication
in this thesis without real, experimental, data. This inexpensive solution to the
di�cult sensor localisation problem may also be used for re-localisation of sen-
sors if conditions have changed.

This is joint work primarily between the first and the second author who pro-
duced the ideas, theory, implementation and most of the writing.

A Nonlinear Least Squares Approach to the SLAM Problem

Z. Sjanic, M. A. Skoglund, F. Gustafsson, and T. B. Schön. A nonlinear
least squares approach to the SLAM problem. In Proceedings of the
IFAC World Congress, volume 18, Milan, Italy, 28-2 Aug./Sept. 2011.

Paper B presents an algorithm for visual/inertial SLAM based on the maximum
a posterior (MAP) estimate of the whole 6 degrees-of-freedom (DOF) trajectory
(including velocities) and 3D map, solved using nonlinear least-squares (NLS)
optimisation.

An initial estimate is acquired using EKF-SLAMwith inertial data as input to the
motion model. Scale invariant feature transform (SIFT) image features are used
for tracking and data association and the inverse depth parametrisation (IDP) is
used for landmark parametrisation since it is known to handle depth uncertainty,
due to EKF linearisation errors, better than using the direct 3D parametrisation.

http://dx.doi.org/10.1155/2010/709318
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The inherent sparsity structure of the full SLAM problem is e�ciently utilised in
the NLS solver and the result is a metrically correct position, orientation, velocity
and landmark map estimate. The proposed algorithm is evaluated on experi-
mental data using a sensor platform mounted on an industrial robot enabling
accurate ground truth reference.

The results from this algorithm can, for instance, be used on unmanned aerial
vehicles to compute detailed terrain maps necessary for safe landing or in under-
water localisation and mapping and other GNSS denied environments.

This is joint work primarily between the first and the second author who pro-
duced the ideas, theory, experiments, implementation and most of the writing.

Parts of this work has also been used in Nilsson (2010); Nilsson et al. (2011)
where the sensor is a forward looking infrared (IR) camera attached to a car, and
in Karlsson and Bjärkefur (2010) where the authors use stereo camera and laser
camera in an indoor environment.

Modeling and Sensor Fusion of a Remotely Operated Underwater Vehicle

M. A. Skoglund, K. Jönsson, and F. Gustafsson. Modeling and sensor
fusion of a remotely operated underwater vehicle. In Proceedings of
the 15th International Conference on Information Fusion (FUSION),
Singapore, 9-12 July 2012, pages 947–954. IEEE, 2012.

Paper C presents how a complex hydrodynamic model for a remotely operated
vehicle (ROV) can be used to robustify navigation based on onboard sensors.

ROV’s are small and relatively cheap unmanned underwater vehicles (UUV).
They are used in situations such as: tunnel or hull inspections; deep sea missions
beyond human diver depths; mine hunting and mine disposal. Due to their lim-
ited payload capacity, and lack of external underwater localisation support, the
onboard navigation systems have to be robust. The paper shows how previously
estimated model structures are put together in a large model describing the full
6-DOF motion of the ROV, including angular and linear velocities. The model
potentially provides an independent source of vehicle speed and angular rate.
We also provide models for all the onboard sensors, expressed in the body frame
of the ROV, which are fused with the hydrodynamic model in an EKF. The re-
sults are based on data from the field tests performed in the Master’s thesis work
of Jönsson (2010) which the first author supervised. We show that, in particu-
lar, the vehicle speed can be accurately predicted as compared with the doppler
speedometer.

This is joint work primarily between the first and the second author. The second
author provided initial models and experiments. The first author did most of the
implementation and most the writing.
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Initialisation and Estimation Methods for Batch Optimisation of Inertial/Visual
SLAM

M. A. Skoglund, Z. Sjanic, and F. Gustafsson. Initialisation and estima-
tion methods for batch optimisation of inertial/visual SLAM. Submit-
ted to IEEE Transactions on Aerospace and Electronic Systems, June
2014.

Paper D presents a complete initialisation method for inertial/visual batch SLAM
which can be used to obtain metrically correct map and navigation state esti-
mates.

Batch formulations of inertial/visual SLAM are nonlinear and nonconvex prob-
lems which need a good initial estimate to converge to the global optimum. In Pa-
per B the full SLAM problem was initialised using EKF-SLAM which is not a fea-
sible solution for large data sets. In this paper we present a multi-step algorithm
that solves a series of almost uncoupled problems. The combination of rotation
estimation and appearance based data association using only vision together with
visual/inertial methods leads to almost linear formulations which can be solved
easily. The initialisation method is demonstrated on both simulated data and
a small feasibility study on experimental data using an industrial robot, to get
access to ground truth, is also performed.

This is joint work primarily between the first and the second author who pro-
duced the ideas, theory, experiments, implementation and most of the writing.

EM-SLAM with Inertial/Visual Applications

Z. Sjanic, M. A. Skoglund, and F. Gustafsson. EM-SLAM with iner-
tial/visual applications. Submitted to IEEE Transactions on Aerospace
and Electronic Systems, June 2014.

Paper E presents an expectation-maximisation (EM) approach to a maximum
likelihood (ML) batch formulation of inertial/visual SLAM.

The EM algorithm introduces a set of so-called latent, or hidden, variables. By do-
ing so, the problem can be split into two, hopefully, simpler problems. The first
problem is the expectation, the so-called E-step, with respect to the conditional
density of the hidden variables. The second problem, known as the M-step, is to
maximise the result obtained in the E-step with respect to the unknown parame-
ters. These two problems are solved iteratively until some convergence criterion
is met. The EM-SLAM algorithm proposed here considers the platform motion
as hidden variables and the landmark map as the unknown parameters. The
E-step is solved using an extended Rauch-Tung-Striebel smoother (E-RTS) with
constant size state vector which becomes computationally cheap. The M-step is
solved e�ciently with a quasi-Newton method having fewer variables than the
full NLS formulation in which both the state sequence and the map are seen
as parameters in an ML fashion. EM-SLAM is compared with NLS-SLAM both
in terms of performance and complexity. The proposed method is evaluated in
real experiments and also in simulations on a platform with a monocular cam-
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era attached to an inertial measurement unit. The initial estimate for both the
parameters and the hidden variables are obtained using the method in Paper D.
It is demonstrated to produce lower root mean square error (RMSE) than with a
standard Levenberg-Marquardt solver of NLS problem, at a computational cost
that increases considerably slower.

This is joint work primarily between the first and the second author who pro-
duced the ideas, theory, experiments, implementation and most of the writing.

1.2.2 Additional Publications

This section contains published work not included in this thesis.

1.2.3 Optical See-Through Head Mounted Display Calibration

Augmented reality (AR) is used to denote visual information overlaid, augmented,
on human vision. Optical see-through head mounted displays (OSTHMD) are
wearable AR systems, which means that the OSTHMD displayed graphics moves
with the user, see Figure 1.5. To augment the real world with graphics in such a
system three main problems need to be solved. First, the pose (position and ori-
entation) of the OSTHMD with respect to the inertial frame needs to be known.
Second, the calibration problem which constitutes the static transformations of
the relative position and rotation of the semitransparent graphics screen with
respect to the user’s eye and an inertial frame. Finally, models of the environ-
ment where the graphics should be superimposed have to be created. In the
two articles, the first two of the three problems are addressed. The pose of the
user’s head, and consequently the OSTHMD, is provided using a visual track-
ing system along with a visual landmark coordinate. The calibration problem is
solved using the data from the tracking system and measurements acquired by
the subject through a bore-sighting exercise. The user aligns graphics (a cross-
hair) displayed on the screen with a measured point (a diode) in the inertial
frame, see Figure 1.5, and several such alignments are collected from di↵erent
screen points and the subject’s locations in order to excite the parameter space.

We adopt the theoretical framework for camera calibration founded in the com-
puter vision and photogrammetry domains to OSTHMD calibration. The calibra-
tion problem itself is rather ill-posed since the measurements are few compared
to the parameter space and the signal-to-noise ratio (SNR) is low. The work in
these two publications reflects some labour intense engineering/research where
several months were spent on the AR system which consists of several hardware
components interacting through several software layers.

This is joint work primarily between the first and the second author who pro-
duced the ideas, theory, experiments and implementation. While the first author
did most of the writing.
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Figure 1.5: Left: A Kaiser ProView 50ST Optical see-through head mounted
display equipped with IR diodes for the PhaseSpace IMPULSE motion track-
ing system placed on a mannequin. Right: Example of a bore-sighting exer-
cise with the reindeer-looking OSTHMD system. Note the diode in the far
back of the room which the subject (myself) aims at.

Optical See-Through Head Mounted Display Direct Linear Transformation
Calibration Robustness in the Presence of User Alignment Noise

M. Axholt, M. Skoglund, S. D. Peterson, M. D. Cooper, T. B. Schön,
F. Gustafsson, A. Ynnerman, and S. R. Ellis. Optical see-through head
mounted display direct linear transformation calibration robustness
in the presence of user alignment noise. In Proceedings of the 54th
Annual Meeting of the Human Factors and Ergonomics Society, vol-
ume 54, pages 2427–2431, San Francisco, CA, USA, 27-1 Sept./Oct.
2010. Human Factors and Ergonomics Society.

The abstract from the paper is included below.

The correct spatial registration between virtual and real objects in optical see-
through augmented reality implies accurate estimates of the user’s eyepoint rela-
tive to the location and orientation of the display surface. A common approach
is to estimate the display parameters through a calibration procedure involving a
subjective alignment exercise. Human postural sway and targeting precision con-
tribute to imprecise alignments, which in turn adversely a↵ect the display param-
eter estimation resulting in registration errors between virtual and real objects.
The technique commonly used has its origin in computer vision, and calibrates
stationary cameras using hundreds of correspondence points collected instanta-
neously in one video frame where precision is limited only by pixel quantization
and image blur. Subsequently the input noise level is several order of magnitudes
greater when a human operator manually collects correspondence points one by
one. This paper investigates the e↵ect of human alignment noise on view parame-
ter estimation in an optical see-through head mounted display to determine how
well astandard camera calibration method performs at greater noise levels than
documented in computer vision literature. Through Monte-Carlo simulations we
show that it is particularly di�cult to estimate the user’s eyepoint in depth, but
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that a greater distribution of correspondence points in depth help mitigate the
e↵ects of human alignment noise

Parameter Estimation Variance of the Single Point Active Alignment Method in
Optical See-Through Head Mounted Display Calibration

M. Axholt, M. A. Skoglund, S. D. O’Connell, M. D. Cooper, S. R. El-
lis, and A. Ynnerman. Parameter estimation variance of the single
point active alignment method in optical see-through head mounted
display calibration. In Proceedings of the IEEE Virtual Reality Con-
ference, pages 27–34, Singapore, Republic of Singapore, Mar. 2011.

The abstract from the paper is included below.

The parameter estimation variance of the single point active alignment method
(SPAAM) is studied through an experiment where 11 subjects are instructed to
create alignments using an optical see-through headmounted display (OSTHMD)
such that three separate correspondence point distributions are acquired. Mod-
eling the OSTHMD and the subject’s dominant eye as a pinhole camera, findings
show that a correspondence point distribution well distributed along the user’s
line of sight yields less variant parameter estimates. The estimated eye point lo-
cation is studied in particular detail. The findings of the experiment are comple-
mented with simulated data which show that image plane orientation is sensitive
to the number of correspondence points. The simulated data also illustrates some
interesting properties on the numerical stability of the calibration problem as a
function of alignment noise, number of correspondence points, and correspon-
dence point distribution.

Insights from Implementing a System for Peer-Review

C. Lundquist, M. A. Skoglund, K. Granström, and T. Glad. Insights
from implementing a system for peer-review. IEEE Transactions on
Education, 56(3):261–267, 2013.

Finally, the following paper about undergraduate teaching and peer-review has
been published.

1.3 Thesis Outline

The thesis is divided into two parts, with background material in the first part
and with edited versions of published papers in the second part. The first part
consists of material introducing and explaining the background to the publica-
tions. The publications on their own include detailed background material.

The first part of the thesis is organised as follows. Chapter 2 presents model struc-
tures for motion, sensors and computer vision. Chapter 3 introduces the sensor
fusion concept which is used for both filtering and smoothing. The connection
to optimisation is also explained. Chapter 4 gives a brief overview of SLAM es-
timation methods and explains the concepts used in the publications. The first
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part of the thesis ends with Chapter 5, which presents conclusions and discusses
future work.

The second part of the thesis consist of edited versions of the papers. The papers
are only edited to comply with the layout of the thesis template.





2
Models

In this chapter the most important model structures which are used in the pub-
lications in Part II are outlined. The models describe rigid body kinematics and
dynamics, the pinhole camera, inertial measurements, magnetometers and three
di↵erent landmark parametrisations for camera measurement models. This is
the basis for inference in state-space, and other parametric, models which are
described in the next chapter.

In a navigation context the state vector may include:

• Position p, velocity v, acceleration a and possibly higher order derivatives.

• Unit quaternion q parametrising orientation, angular velocity ! and higher
order derivatives.

For localisation and tracking problems the state vector may include:

• Stationary point targets as landmark coordinates m.

• Stationary sensors p which may also include sensor orientation q and other
quantities.

• Non-stationary targets possibly constrained to di↵erent motion models.

• Extended targets, stationary or non-stationary.

• Binary correspondence variables c relating measurements to target identi-
ties and possibly other metadata.

In case navigation and localisation are estimated jointly it is natural to include
the appropriate quantities mentioned above in a large state vector.

15



16 2 Models

2.1 Kinematics

Kinematics describes the motion of bodies without considering the forces caus-
ing the motion. Kinematic transformations between coordinate frames consist of
length preserving translations and rotations as illustrated in Figure 2.1.
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Figure 2.1: Rigid body transformations.

2.1.1 Translational Kinematics

A translation is a displacement of the body origin p while the axes are kept
aligned. The translation is a vector, pw, from the origin of the frame w to the
coordinate p expressed in the w-frame and it is also called the position. The
translational motion equations can be derived from the time-derivative of a trans-
lation

p̈ = v̇ = a, (2.1)

where v is the velocity and a is the acceleration. It is of course possible, and some-
times necessary, to introduce higher order terms such as ȧwhich is known as jerk,
but most often it can be considered to be noise i.e., ȧ = wa. In (2.1) there is no
indication of the dimension in which the motion occurs. This is however no re-
striction since the motion is independent in each dimension. The corresponding
matrix form is
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wa, (2.2a)

()
ẋ = Ax + Bwa, (2.2b)

where the matrices 0 and I are of appropriate dimensions. Assuming that the
input wa is constant over the sampling interval, T , the ordinary di↵erential equa-
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tion (2.2) is solved as

xt+1 = eAT xt +

T
Z

0

eA⌧ d⌧Bwa, (2.3)

which results in
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2.1.2 Rotational Kinematics

Rotational kinematics is more complicated than its translational counterpart and
this is due to the fact that rotation representations are nonlinear. This means
that some ordinary operations defined on vector spaces, such as addition, are
not defined here. Proper rotations are linear maps that preserve length and the
handedness of the basis. There are many parametrisation alternatives to rota-
tion matrices and perhaps the most common ones are Euler angles and the unit
quaternion. For a thorough overview of rotation parameterisations see e.g., Shus-
ter (1993). In this thesis, rotation in 3D is the typical case considered and as a
common denominator for all parameterisations is that they can be transformed
into a corresponding rotation matrix R 2 SO(3).

Definition 2.1 (Special Orthogonal Group SO(3)). A matrix R 2 R3⇥3 belongs
to the special orthogonal group SO(3) if and only if it holds

RTR = I , (2.5a)
detR = 1. (2.5b)

Figure 2.1a describes a rotation from the w frame to the c frame. This can
be parametrised by the rotation matrix Rcw. The inverse rotation direction us-
ing (2.5a) is (Rcw)�1 = (Rcw)T , hence (Rcw)T = Rwc.

Spatial rotations intuitively only have three degrees of freedom yet they still need
at least five parameters (Hopf, 1940) in order to represent a global description
see Stuelpnagel (1964) for a discussion. Rotations matrices are impractical for
several reasons e.g., when rotations are estimated since it is di�cult to design
estimators directly on SO(3) and it is costly to use nine parameters. Luckily there
are many alternatives for rotation parametrisation and an appealing option is
the unit quaternion. Quaternions were invented by Hamilton (1844) as a tool
to extend the imaginary numbers. The unit length quaternion is widely used in
aerospace industry, mechanics, computer graphics, among others, since it allows
a computationally e�cient and singularity free rotation representation. The unit
quaternion is a vector of real numbers q 2 R4. A definition is given in Kuipers
(2002, page 104), who splits the vector a scalar part, q0, and a vector, q = e1q1 +
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e2q2 + e3q3, where e1, e2, e3 is the standard orthonormal basis in R3. With Kuipers
definition the full vector representation is

q =
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Quaternions can be used to represent a rotation in R3 but in order to do so they
must be constrained to the unit sphere q 2 S3, i.e., qT q = 1 , hence the name unit
quaternion. Let

q =
"

cos �
sin �n

#

(2.7)

which is a unit quaternion describing a rotation of an angle 2� around the unit
vector n 2 R3. Then a rotation using a unit quaternion is

x̃b = qba � x̃a � qab (2.8)

where x̃? = [0, x?] are the vectors’ quaternion equivalents and � denotes the
quaternion multiplication, see e.g., Törnqvist (2008); Hol (2011). The unit quater-
nion can also be used to construct a rotation matrix, see for instance Shuster
(1993, page 462), where the superscript ab is omitted for the sake of readability,
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where the last equality is established using q20 +q
2
1 +q

2
2 +q

2
3 = 1. It should be noted

that the unit quaternion is not a global parametrisation because the q and �q de-
scribe the same rotation i.e., R(q) = R(�q) which is easily verified from (2.9). This
is seldom a practical problem since a solution with e.g., positive q0 component
can be chosen.

A local parametrisation which is popular within the computer vision community
is the so-called exponential coordinates, see e.g., Ma et al. (2003). It uses a three-
dimensional vector ! 2 R3 such that for any R 2 SO(3) there exists R = e[!]⇥
where

[!]⇥ =
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is the matrix form of the cross product. It is should be noted that any vector
of the form ! + 2⇡k!, where k being an integer, have the same rotation matrix
which also means that for a given rotation matrix there are infinitely many ex-
ponential coordinates. The rotation matrix can be e�ciently computed from the
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exponential parameters using Rodrigues’ formula

R = e[!]⇥ = I +
[!]⇥
k!k sin(k!k) +

[!]2⇥
k!k2 (1 � cos(k!k)) , (2.12)

which follows from the Taylor expansion of the exponential function, see Ma et al.
(2003, Therorem 2.9) for a proof.

A di↵erential equation for rotations can be established by using some properties
of rotation matrices. Using the definition of SO(3) and taking the time derivative
of both sides of (2.5a) as

d
dt

(RRT ) =
d
dt

I , () (2.13)

Ṙ RT +R ṘT = 0, (2.14)

which implies that the matrix products are skew-symmetric

Ṙ RT = �(Ṙ RT )T . (2.15)

We can thus define the right hand side as

Ṙ RT = [!]⇥, (2.16)

and since RT R = I we have that

Ṙ = [!]⇥ R . (2.17)

By solving the di↵erential equation (2.17) with ! constant

R(t) = e[!]⇥t R(0). (2.18)

the exponential coordinates are obtained. Similarly, the di↵erential form of the
unit quaternion parametrisation is given by
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which has the nice property of being bilinear. Note that due to the algebraic
constraint the di↵erential form of the unit quaternion is a di↵erential algebraic
equation (DAE). For a complete derivation of these relations see e.g., Törnqvist
(2008); Hol (2011). The unit quaternion is thus solved as

q̇ =
1
2
S(!)q =) (2.20)

q(t) = e
1
2 S(!)tq(0) (2.21)

where it is assumed that the angular velocity is constant. Defining the skew-
symmetric matrix S = 1

2S(!)t, q1 = q(t) and q0 = q(0) the quaternion length
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remains unchanged

kq1k22 = keSq0k22 = qT0 (e
S )T eSq0 = qT0 e

ST+Sq0 = qT0 q0 = kq0k22, (2.22)

since S = �ST . The matrix exponential of the orientation dynamics can further
be simplified

qt = e
1
2 S(!)Ts q0 =

0
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 ||!||Ts
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2
S(!)

◆

q0 (2.23)

where the approximation is based on the small angle approximation which is
good if the sampling rate Ts is high. It is now simple to introduce noise and bias
as

qt =
✓

I +
Ts
2
S(! + b! + w!)

◆

q0 =
✓

I +
Ts
2
S(! + b!)

◆

q0 +
Ts
2

eS(q0)w! (2.24)

using the relation (2.19). It is important to note that the nonlinear constraint
qT q = 1 need to be handled correctly in any estimator. In the case of filtering
there are mainly two options. The first is to introduce a fictitious measurement
y = 1 � qT q which should be zero and the second option is to normalise the
updated quaternion as q := q/ ||q|| which is a projection onto the unit sphere.

Using unit quaternions for filtering may turn out problematic since the process
noise covariance and the true state covariance is singular due to the over-parametri-
sation. Also, if a smoothed estimate is sought problems are unavoidable using un-
constrained formulations, see Shuster (2003). Thus, there is room for improving
the smoothing approach using unit quaternions as in Paper B.

A practical option when quaternions are simulated in continuous time is to intro-
duce a feedback

q̇ =
1
2
S(!)q +

�
2
(1 � qT q)q, (2.25)

which drives the quaternion to unit length, here � is a proportional positive gain.
This approach was used in the hydrodynamic model in Paper C.

2.1.3 Rigid Body Kinematics
Combining translational and rotational kinematics can be done in several ways
and is very much a design task that depends on the system at hand. A straight-
forward model is given by the combination of the constant acceleration model
and (2.2) and the unit quaternion (2.19) as
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ȧ
q̇

3

7

7

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

6

6

4

0 I 0 0
0 0 I 0
0 0 0 0
0 0 0 1

2S(!)

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

4

p
v
a
q

3

7

7

7

7

7

7

7

7

7

7

5

+

2

6

6

6

6

6

6

6

6

6

6

4

0
0
I
0

3

7

7

7

7

7

7

7

7

7

7

5

wa, (2.26)

and it is also quite common to extend the model with states for angular accelera-
tion, and possibly bias states for gyroscopes and accelerometers and this is done
in Paper D.
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Another model is obtained by considering acceleration and angular rates to be
input to the system
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This significantly reduces the state space at the cost of limited noisemodeling and
fault detection capabilities. It should be noted that the biases are not observable
using only accelerometers and gyroscopes in here, but must be inferred from
other observations, e.g., camera measurements. Models with inertial sensors as
input signals are used in Paper B and Paper E. In Paper A the kinematics of a
vessel is described by a coordinated turn model which essentially constrains the
object to follow a circular path. Such models are rather flexible and may be used
to simulate more advanced models. It may be convenient to express some parts
of a motion model in the body fixed frame since forces and torques are often
naturally represented in this frame. This is the case in Paper C when modelling
of a ROV is considered since the expressions for linear and rotational velocities
due to external forces become much simpler.

2.2 Rigid Body Dynamics

Rigid body dynamics in classical mechanics investigates the motion of objects
as caused by forces and torques. The fundamental equations describing these
relations are given by Euler’s axioms of motion. The first axiom is

 

d (mṗ)
dt

!

i
=

N
X

j=1

Fj , (2.28)

which gives the relation of a body’s acceleration p̈ in an inertial frame i with
mass m which is due to external forces Fj and p is the centre of mass. This is the
straightforward extension of Newton’s second law of motion for particles to rigid
bodies expressed as conservation of linear momentum. The corresponding law
for angular momentum, known as Euler’s second law, states that the change of
angular momentum of the body is equal to all external torques about the origin

 

d (J!)
dt

!

i
=

N
X

j=1

rj ⇥ Fj , (2.29)

where J is the inertia matrix, ! is the angular velocity of the rigid body, rj are vec-
tors that point from the center of rotation to the points where the external forces
Fj are applied. It is useful to express Euler’s laws in body referenced velocities
since the mass and inertia are then constant. This can be done considering the
derivative of vectors in a rotating reference frame, b, using the relation

 

dr
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dt

!

b
+ ! ⇥ r. (2.30)
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in which the body referenced derivative is the same if the inertial frame is not
rotating, i.e., ! = 0. Applying (2.30) to (2.28) results in

mp̈b =
N
X

j=1

Fj � ! ⇥ mṗb, (2.31)

where it is assumed that the mass is constant. Similarly, the expression for angu-
lar velocity (2.29) is

J !̇b =
N
X

j=1

rj ⇥ Fj � !b ⇥ J!b. (2.32)

For a complete derivation, see e.g., Fossen (2011).

2.3 Inertial Sensors

Inertial sensors measure specific force and angular velocity. These have great im-
portance for many navigation systems since they provide an independent source
for computing the position and orientation of a moving platform relative to some
initial pose by integrating the accelerations twice and the angular velocity once,
respectively. It may sometimes be the only means of navigation when other sys-
tems are unavailable. For instance, GNSS are prohibitive in many places such
as underwater environments or indoors, and are also subject to jamming and
spoofing. Magnetometers are passive sensors that can be used to calculate the
orientation w.r.t., the local magnetic field. However, this field is rather weak and
easily disturbed by ferrous objects. Inertial sensors are not subject to such exter-
nal errors but rather errors due to the internal workings of the sensors. These
contribute to the integration drift which means that the true pose of the sensor
will deteriorate when the measurements are integrated. This drift is roughly in-
versely proportional to the price of the sensors. In this work we will only consider
micro electrical mechanical systems (MEMS) type IMUs due to their relatively
low cost and small size. There is a rich body of literature on navigation in gen-
eral and modeling of IMU’s in particular, see for instance Titterton and Weston
(1997); Britting (1971). In all applications here the IMU’s are rigidly mounted to
the moving platform, in a so-called strap-down configuration, and hence sensor
readings are naturally referenced in this frame.

2.3.1 Gyroscopes

Commonly, MEMS gyroscopes are based on measuring the rotation induced Cori-
olis force acting on a vibrating structure. A gyroscope mounted on a moving
body, outputs gyroscope signals

y!t
= !t + e!t

, (2.33)

where !t is the angular velocity of the body w.r.t., an inertial frame and e!t
is noise. Due to unmodeled e↵ects in the sensors, a bias, b!t

, could be added
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to (2.33) giving

y!t
= !t + b!t

+ e!t
, (2.34)

and b!t
could also be included in the state vector with slowly varying dynamics.

It is here assumed that the local, flat, navigation frame is inertial since other-
wise (2.33) has to include another two components for the earth rotation rate and
the turn rate of the navigation frame w.r.t., to earth. This assumption is good
only if navigation is not performed over large distances over earth and that the
earth rotation rate, !ei = 2⇡

24 h
�1 ⇡ 7.27 · 10�5rad/s, is small compared to the sen-

sor noise. Furthermore, sensor alignment, orthogonality of sensor axes, sensor
gain and other parameters are assumed known and accounted for by a factory
calibration.

2.3.2 Accelerometers

Accelerometers using MEMS technology are based uponmeasuring deflections of
a cantilever beam to which a so-called proof mass is attached. The mass deflects
the beam when external acceleration along the sensitivity axis is applied to the
sensor. Accelerometers do not only measure acceleration when used on earth,
since they are subject to the gravitational field. Hence, accelerometers measure
the specific force which is a sum of the free acceleration and the gravity field. A
measurement model is then

ya = abt � gb + eat = Rbe
t (aet � ge) + eat , (2.35)

where aet is the acceleration in the navigation frame ge is the local gravity vector
and eat is measurement noise. Since the local navigation frame is considered to
be inertial, Coriolis and centripetal acceleration can be neglected. It is clear that
the measured specific force depends on the attitude Rbe of the platform and as a
consequence, errors in attitude will introduce so-called gravity leakage into the
measurements. In case the body frame does not coincide with the sensor a Corio-
lis term !⇥!⇥ rIMUb have to be added to (2.35) as done in Paper C, where rIMUb

is the o↵set vector, and the result must also be rotated by the relative rotation be-
tween these two systems. In the papers considering IMU and monocular vision
the body center is in the origin of the IMU thus the o↵set and rotation between
the frames are needed in the camera measurement equation.

2.4 Magnetometers

A simple magnetometer measurements model is

ym = Rbe
t me + emt

, (2.36)

where me is the local earth magnetic field vector and emt
is the measurement

noise. This model can be used for computing the magnetic north if me is known.
In Paper A magnetometers are used slightly di↵erently. Here the objective is
to track a magnetic object in order to determine locations of the sensor-nodes
containing magnetometers in a sensor network. In this case the object is a vessel
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with known magnetic signature and it is modelled as a single dipole m = Rebmb

giving rise to the magnetic flux density

ym =
µ0

4⇡|r|5 (3r(m
T r) � |r|2m), (2.37)

where µ0 is the permeability of the medium and r is the distance from the sensor
to the vessel. The magnetic flux due to the dipole strength decays cubically with
the distance. It is here assumed that the e↵ect of the local magnetic field is mea-
sured and accounted for before the vessel enters the survey area. For a thorough
description on tracking of metallic objects Wahlström (2013) is recommended.

2.5 Vision Sensors

Digital vision sensors capture incident rays of light from the scene onto a sensor
array through an optical system. Light reflected by objects in a scene can be math-
ematically described by bidirectional reflectance distribution functions (BRDF).
The physical nature of light and image formation is a complex topic which is well
beyond the scope of this thesis. There are mainly two manufacturing techniques
for digital vision sensors. The first is semiconductor charge coupled device (CCD)
in which each analog photo sensor (pixel) produces an electrical charge from the
incoming light. The second sensor is complementary metal oxide semiconduc-
tor (CMOS) which directly converts light into voltage. CCD sensors are usually
of global shutter type meaning that image is sampled at one time instant. In
contrast, CMOS sensors usually sample row by row in a so-called rolling shutter
fashion. Rolling shutters are far more complicated to use in geometrical vision
problems when either the camera or scene is moving and we will therefore only
consider global shutter cameras.

2.5.1 The Pinhole Camera

The by far most commonly used camera model is the pinhole camera. It is a math-
ematical model describing how points in R3 relate to points in R2 on the image
plane through a central projection. The model has five intrinsic, or internal, pa-
rameters, and for most systems it is an approximation. Additionally, the position
and orientation of the camera centre with respect to some other reference frame
is also needed if the camera is part of a system, e.g., a stereo rig. Furthermore,
most lenses introduce artifacts such as radial and tangential distortion which are
important to compensate for.

Figure 2.2 illustrates a frontal pinhole projection. In the pinhole camera model
the coordinate frames are:

• c � Camera frame with the optical centre as the origin where its z � axis
coincides with the optical axis, also known as the principal axis.

• w �World frame.

• i � Image frame. The image plane is orthogonal to the optical axis and has
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Figure 2.2: Pinhole projection with image the plane placed in front of the
camera centre.

the principal point h as its origin. The distance between the c and the i
frame is called the focal length f .

• n � Normalised image frame.

• p � Pixel frame with center in the upper left corner as viewed from the
optical centre c.

A point mc = [xc, yc, zc]T in the c-frame relates to a point mn = [xn, yn]T in the
n-frame as
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f
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#

. (2.38)

It is convenient to write (2.38) as a linear systemwhich can be done by appending
unit elements to the vectors giving the homogeneous coordinate representation
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With focal length f = 1 the normalised image frame n and the image frame i
coincides. The projection (2.39) can be expressed as

�mn = ⇧0m
c, (2.40)

where � 2 R+ is an arbitrary scale factor. It is also convenient to define the pro-
jection as a function P([X, Y , Z]T ) = [X/Z, Y /Z]T which is as a map in Euclidean
space P : R3 ! R2. A projection model which is suitable for omnidirectional
cameras is the spherical perspective projection which has a scale described by
� =

p
X2 + Y 2 + Z2, whereas in a planar perspective projection � = Z . This

means that same equations can be used for both cases and only the depth is
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described di↵erently. More advanced models for omnidirectional cameras are
accounted for in Scaramuzza et al. (2006)

The digitalisalisation of the image plane i is the pixel plane p
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or in homogeneous coordinates
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where K is referred to as the intrinsic parameter matrix or simply the calibration
matrix. The parameters of the calibration matrix are the focal lengths in pixel
units fx = sx/f and fy = sy/f where f is the focal length expressed in meters
per pixel and sx, sy are the pixel sizes in metric units. The center of the image
plane h = [hx hy]T , is the principal point coordinate which is shifted w.r.t., to
the pixel frame which has its origin in the upper left corner, see Figure 2.2. The
location of the optical center is not needed for pure computer vision problems
but it is important when vision sensor are combined with, for instance, inertial
sensors. The skew parameter s↵ = fx tan ↵ can safely be assumed s↵ ⇡ 0 (Hartley
and Zisserman, 2004) in most cameras.

Cameras, especially in the lower price-range, su↵er from non-negligible distor-
tion due to the optical lenses involved and the mounting of the sensor. This
can to some extent be compensated for by tangential-, radial- and pincushion
distortion models (Ma et al., 2003). Camera matrices and distortion models can
be estimated in standard camera calibration software, see e.g., Bouguet (2010);
Zhang (2000).

(

Rcw , cw
)

mw

Rwcmcm

w

c

Figure 2.3: Camera to world transformation.

Points in another frame, say w, can be expressed in the camera frame c. In the
pinhole camera model, such transformation is called extrinsic since it does not
depend on the intrinsic camera calibration matrix K . Figure 2.3 describes the
relation between a point mw in world coordinates w expressed in camera coordi-
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nates c

mc = Rcw(mw � cw) = Rcwmw � Rcwcw, (2.43)

which can be written in homogeneous coordinates as
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Combining the extrinsic end intrinsic parameters, coordinates in the world frame
can be expressed in pixel coordinates as

2

6

6

6

6

6

6

4

xp

yp

1

3

7

7

7

7

7

7

5

/ zc

2

6

6

6

6

6

6

4

xp

yp

1

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

fx s↵ hx
0 fy hy
0 0 1

3

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

1 0 0 0
0 1 0 0
0 0 1 0

3

7

7

7

7

7

7

5

"

Rcw �Rcwcw

0 1

#

2

6

6

6

6

6

6

6

6

6

6

4

xw

yw

zw

1

3

7

7

7

7

7

7

7

7

7

7

5

. (2.45)

In compact notation (2.45) can be written as

xp = Pxw, (2.46)

and the matrix P is often just called the camera. In the problems studied the
calibration matrix and distortion models are known which allows to working
directly on normalised camera measurements mn and thus the pinhole camera
works as a projective map in Euclidean space.

2.6 Camera Measurement Models

Parametrisation of camera measurements can be done in several ways and the
most suitable choice typically depends on the application at hand. For instance,
in a filtering context with explicit landmark coordinates included in the state vec-
tor measurement models are naturally expressed using the state. Geometrical
properties, such as the epipolar constraint, can be used to define implicit mea-
surement models. In this section three di↵erent parameterisations that are used
in the publications are described.

2.6.1 Direct Parametrisation

From the rigid body transformation in (2.43), the projection of a single measure-
ment of a landmark mw onto the normalised image plane is on the form

ym = P(mc
t ) + emt = P(Rcw

t (mw � cwt )) + emt (2.47)

where cwt is the position of the moving camera in the world frame and emt is the
so-called re-projection error. This is the preferred error being minimised since
it has a sound interpretation and it is straightforward to include intrinsic and
extrinsic parameters. We call this the direct parametrisation and it generalises
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to n landmark measurements as
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which is the common situation in most practical applications. Depending on
which parameters are sought the model can be used in di↵erent ways. If, for
instance, only landmarks are unknown, then the problem is referred to as map-
ping or reconstruction and if only the camera pose is unknown the corresponding
problem is called localisation or navigation.

2.6.2 Inverse Depth

In (2.47) the measured world point is represented naturally by its Euclidean co-
ordinate. This may however be a poor choice if some points are at a much greater
distance from the camera than other points in the scene. This is because the
re-projection error cost function becomes very flat in the XYZ-space (Torr and
Zisserman, 2000) since the XY coordinates are divided by a large number. This
is partly the motivation for using so-called key-frames where only images with
su�cient baseline are used for triangulation, see e.g., (Nistér, 2000) for a dis-
cussion. The relation to stereo cameras is that range resolution is inversely pro-
portional to the baseline between the cameras and the corresponding change in
disparity (image di↵erence for a stereo pair). This phenomena have severe e↵ect
in the context of filtering since linearisation errors will be large and may cause
the filter to diverge. Bryson et al. (2010) tackles this by tracking landmark co-
ordinates to find the two views with maximal angular separation, parallax, for
each landmark and then triangulate the landmark depth based on these two ob-
servations alone, known as delayed initialisation. A slightly di↵erent approach
was proposed in Montiel and Davison (2006) who introduced the Inverse Depth
Parametrisation (IDP). It uses six parameters where the first three are the coordi-
nate of the camera from which the landmark was first observed cwt and the three
parameters describing the vector from the camera to the landmark encoded by
two angles 'w, ✓w and the inverse depth ⇢w

mw = cwt +
1
⇢w

d('w, ✓w), (2.49a)

d('w, ✓w) =
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The angles are computed from the normalized pixel coordinates as

gw = Rwc
t mn, (2.50)

'w = arctan2(gwy , g
w
x ), (2.51)

✓w = arctan2
⇣

||[gwx gwy ]
T ||2, gwz

⌘

, (2.52)



2.6 Camera Measurement Models 29

where arctan2 is the four-quadrant arctangent function and the inverse depth is
initiated with an educated guess. IDP has a small linearisation error even for
large uncertainty in depth and it is easy to represent the range of depth uncer-
tainty including infinity in a confidence region. Also, using IDP delayed land-
mark initialisation is no longer necessary. Obviously more states are needed,
however, as soon as depth uncertainty is small enough the IDP landmarks can
be converted into standard Euclidean coordinates. The corresponding measure-
ment equation at time t for a landmark initiated at time j in the camera frame is

mc
t = Rcw

t

⇣

⇢wt
⇣

cwt � cwj
⌘

+ d('w
t , ✓

w
t )

⌘

, (2.53a)

yct = P(mc
t ). (2.53b)

The IDP model, including sensor frame o↵set, was used for fusion with IMUmea-
surements in Paper B. The same sensor setup was used in (Pinies et al., 2007)
showing that feature initialisation and prediction in di�cult cases, such as for-
ward motion, can be handled better using IDP with support of IMU.

2.6.3 Epipolar Geometry

An important concept in computer vision is how to relate the relative pose of two
cameras through point observations. This is called the epipolar constraint and is
usually credited to the publication of Longuet-Higgins (1981) and is described in
most books on computer vision, see e.g., Ma et al. (2003) or Hartley and Zisser-
man (2004). Given two images acquired from di↵erent vantage points and let R
and c denote the rotation and translation from camera from the first to the sec-
ond camera, respectively. Without loss of generality the first camera is located
at the origin with no rotation. Thus, a world coordinate expressed in the first
camera is simply mw = mc

1. The same point in the second camera is then related
by a rigid body transformation

mc
2 = Rmc

1 + c. (2.54)

Since camera coordinates are related to homogeneous image coordinates through
their unknown depths � as mc = �mn we have

�2m
n
2 = R �1m

n
1 + c. (2.55)

The intuition is that the three vectors connecting the two cameras and the point
all lie in the same plane and therefore the triple product of the vectors is zero.
The triple product is the inner product of one vector with the cross product of the
other two. In this case it can be constructed by first eliminating the translation
from the right hand side of (2.55) using

c ⇥ c = 0 (2.56)

from left. Then multiply from left with
⇣

mn
2

⌘T
to construct the two triple prod-

ucts

(mn
2)

T c ⇥ �2m
n
2 = (mn

2)
T c ⇥ R �1m

n
1 . (2.57)
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in which the left hand side is zero since c ⇥ �2m
n
2 is perpendicular to mn

2. Now
the epipolar (or bilinear) constraint, is obtained

(mn
2)

T c ⇥ R �1m
n
1 = 0, =) (mn

2)
T c ⇥ Rmn

1 = 0, (2.58)

since �1 is non-zero. The product of the translation and the rotation is called the
essential matrix

E = c ⇥ R = [c]⇥ R (2.59)

where [c]⇥ is the matrix form of the cross product
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This means that each correspondence gives an equation

mT
2 Em1 = 0, (2.61)

where the n superscript has been dropped for notational convenience. Note that
E is homogeneous meaning that it is only defined up to an unknown scale. It has
5 or 6 degrees of freedom, depending on how it is constructed. If the translation is
only known up to an unknown positive scale, i.e., it is also a homogeneous quan-
tity, then E will have 5 DOF. This is typically the case when E is estimated from
image data since the absolute scale of the scene is unknown without other infor-
mation. If the scaling is known then E have 6 DOF. In case the calibration of the
cameras are unknown the normalised image coordinates will also be unknown
and the epipolar constraint then encodes the fundamental matrix F = K�T2 EK�11
where K1 and K2 denote the calibration of the cameras at the two views. The
epipolar constraint is a generic property which may hold for any two vantage
points if there are correspondences. It can therefore be used to compactly rep-
resent information in terms of a rigid body transformation up to a scale of the
translation.

Epipolar geometry can also be used for simplifying correspondence search and
verification. If the relative pose is known, a point in the first frame corresponds
to a line in the other one, and vice versa, according to

l2 ⇠ Em1, (2.62a)

l1 ⇠ ETm2, (2.62b)

where ⇠ account for the unknown scale. This also highlights that cameras are
bearing sensors. Thus, one may search for the correspondence along a line in the
other image, see Figure 2.4. With uncertainty in the relative pose a band is the
typical search region. Correspondence candidates may also be deemed correct or
false by evaluating a cost defined by the point’s distance to the line klT2 m2kwhere
l2 is normalised. This is also the basis for e�cient correspondence search using
stereo cameras.
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Figure 2.4: The two top figures show five of the SIFT matches between the
two frames which are were used to compute the essential matrix. The bottom
left image shows the matchs in the first frame and the bottom right figure
epipolar lines with matches in the second frame.
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Essential Matrix Estimation

Essential matrix estimation is used to find the relative pose between cameras
from image correspondences such that the epipolar constraint is (2.61) is satis-
fied for all correspondences. The linear eight-point algorithm, see e.g., (Ma et al.,
2003)[p. 121] is a simple essential matrix estimation algorithm. The algorithm
computes an estimate of the essential matrix from a minimum of eight corre-
spondences by computing a singular value decomposition (SVD). This starts from
noting that the epipolar constraint can be transformed

mT
2 Em1 = 0() (m1 ⌦m2)

T Es = 0 (2.63)

where Es 2 R9⇥1 is the stacked matrix of column vectors of E and ⌦ denotes the
Kronecker product. Using n correspondences results in

2

6

6

6

6

6

6

6

6

6

6

6

6

4

⇣

m1
1 ⌦m1

2

⌘T

...
⇣

mn
1 ⌦mn

2

⌘T

3

7

7

7

7

7

7

7

7

7

7

7

7

5

|           {z           }

A

Es = 0 (2.64)

which is linear in the unknown Es. An approximation of the unit length Es is the
solution to (2.64) which is given by minimising ||AEs ||. This is done by computing
the SVD of A and define Es as the singular vector corresponding to the smallest
singular value. The required number of correspondences is eight since E has nine
entries which are only defined up to scale which means that there are only eight
unknowns. Due to noise, the recovered matrix will often not lie in the essential
space, however, a solution is to project the matrix onto this space. To further
suppress noise the number of correspondences should be more than eight.

There are however situations where the solution to the algorithm is not well de-
fined if e.g., all correspondence points lie in the same plane or the baseline c ⇡ 0.
This is partly because the actual degrees of freedom are not taken into account
in the algorithm since it considers eight unknowns. Another weakness is the
sensitivity to outliers since there is no mechanism for handling these directly.
Despite these limitations, the eight-point algorithm was successfully used in Pa-
per D and Paper E for initialisation of rotations without considering potential
outliers. However, outliers was later removed in an iterative fashion using IMU
data.

The result from eight-point-like methods can be improved by minimising the re-
projection error (2.47) using nonlinear optimisation. This requires the landmark
coordinates to be known. Instead a suitable error which is only parametrised by
the essential matrix is a so-called Sampson error. For n correspondence {mi

1 $
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mi
2}ni=1 it looks like
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, (2.65)

where (Em)i picks out the i-th entry of the epipolar line Em. This Sampson
error is a first order approximation of the re-projection error, see e.g., Hartley
and Zisserman (2004), and it is extensively used in geometric computer vision
problems.

An approach which exploits the 5 DOF imposed by the construction of the essen-
tial matrix is the five-point algorithm proposed by (Nistér, 2004). The idea Nister
used was that the essential matrix has two non-zero eigenvalues which are equal
and this gives rise to a cubical matrix constraint. The algorithm computes the
coe�cients of a tenth degree polynomial and finds its roots. A perhaps simpler
implementation can be found in (Li and Hartley, 2006) which solves the tenth de-
gree polynomial using a hidden variable resultant. An important observation is
that the five point method seems less sensitive than the eight-point algorithm to
cases when e.g., all points lie on a plane. It also attains higher accuracy because
a minimal solver may better exploit the geometric constraints (Li and Hartley,
2006).

RANSAC

E�cient parameterisation which allows fast and/or closed form solutions plays
an important role in computer vision algorithms. This is because the set of cor-
respondences between any two images will often contain gross outliers due to
association errors which need to be handled. This is usually done by evaluating
several candidate models in a RANSAC loop (Fischler and Bolles, 1981). In prac-
tice, higher accuracy is obtained by evaluating as many candidates as possible
and this is why fast solutions are important since it allows more trials given the
computational resources. The acronymRANSAC comes from RANdom Sampling
And Consensus Fischler and Bolles (1981) and its paradigm has had a remark-
able impact in computer vision. It is an iterative method which aims at finding a
model such that the number of inliers is maximised. All that is needed in its basic
form is a set of correspondence candidates and some error metric to evaluate the
model.

The RANSAC algorithm starts by randomly selecting the minimal set needed to
compute a model and then all the other correspondences are evaluated by the
error metric. A correspondence pair is labeled as an inlier if it falls below a pre-
defined threshold and is otherwise considered to be an outlier. For each model
the number of inliers is saved and this is often referred to as scoring. The Samp-
son error (2.65) is a popular candidate for scoring the essential matrices within
the RANSAC loop. The model with the maximum number of inliers, i.e., the
largest consensus set, is considered to be the best. Optionally, a final step is to
estimate the model again using all the inliers by e.g., minimising (2.65).
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The greatest advantage of RANSAC is the ability to robustly estimate the param-
eters of a model when the measurements are contaminated with outliers while
simultaneously finding an inlier set. The number of samples needed for a robust
estimate also depends on the number of correspondences needed to estimate the
model. It is therefore desirable to have a minimal parametrisation since it is then
more likely that samples only contains inliers. It can also be used only as a sam-
pling based method for outlier rejection. A clear limitation is that there is no
bound on how many times the loop has to be run in order meet some stopping
criterion such as a specific inlier/outlier ratio. RANSAC typically works poorly
if there are less than fifty percent of inliers. Despite (or due to) these limita-
tions there are probably hundreds of RANSAC versions published which have
di↵erent characteristics. For instance, the Maximum Likelihood version called
MLESAC (Torr and Zisserman, 2000) is a good option which modifies the score
by penalizing outliers.

An example of essential matrix estimation using RANSAC is shown in Figure 2.5
where the integrated yaw angle of the estimated rotation matrices is compared
with the yaw angle obtained by integrating the gyroscope signal. The yaw angle
estimate from the camera works well for the first 15 seconds and then deteriorates
rapidly from the integrated yaw angle of the gyroscope. The gyroscope can be
considered a reliable ground truth for this short experiment. This highlight some
of the di↵erent characteristics of the two sensors. Gyroscopes can handle fast
dynamics but may deteriorate over time, due to noise integration, while cameras
may have problems with fast dynamics they can be used to estimate orientation
accurately for moderate dynamics over long time.

2.7 Computer Vision
The intention with this section is only to provide some basic concepts of computer
vision. The interested reader is referred to the two survey papers by Fraundor-
fer and Scaramuzza (2012); Scaramuzza and Fraundorfer (2011) and references
therein, for a modern and detailed exposition.

In order to use the camerameasurementmodels some image processing is needed.
Image characteristics having strong response in a detector are used to define so-
called interest points. For this to work, the scene has to have some structure. The
most commonly used detectors are so-called blob-detectors based on di↵erence
of Gaussians (DoG) such as the scale invariant feature transform (SIFT) (Lowe,
1999) or based on distinctive corners such as the Harris detector (Harris and
Stephens, 1988).

The process of tracking interest points over several image frames, also known
as correspondence generation, relies on selecting well localised interest points
and some local interest point description which can be located in the following
frames. Although we have not used patch based methods for tracking in the
publications a brief description is given here for completeness. For Harris-like
features a patch U around the interest point x can be used to search for its cor-
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Figure 2.5: Integrated yaw angle from the 5-point algorithm using RANSAC
on the Sampson error compared with the integrated gyroscope measure-
ments on data from a flying platform.

responding location in the next frame J only assuming a simple displacement
model in the image

J(x + d) = U(x). (2.66)

This is a popular model which usually works well for small perspective changes
and it is used in most Kanade-Lucas-Tomasi (KLT) trackers as explained in Shi
and Tomasi (1994). More advanced transformation models for patch matching
allowing for rotation, scaling and deformation as

J(x + Dx + d) = U(x), (2.67)

where D 2 R2⇥2 is a deformation matrix, is particularly useful in longer se-
quences.

The SIFT detector also stores a feature descriptor for each detected interest point,
see Figure 2.6. In the standard setting the descriptor vector has 128 values corre-
sponding to an 8-bin histogram of gradient orientations for each of the 16 local
sub-regions around the feature point. The SIFT descriptor can be used for gener-
ating correspondences without using any transformation model simply by com-
paring descriptors using any suitable metric, e.g., the Euclidean distance. This
way, matches are found using the appearance of feature descriptors and not their
locations. Thus, the set of matches which corresponds to the same feature is
called a feature track (Thormählen et al., 2008). Such methods are particularly
useful if there is a great deal of uncertainty about motion and/or structure or
at loop-closing. In Paper D a purely appearance based approach is used for an
initial correspondence search. That is, without assuming anything about the mo-
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Figure 2.6: Ten SIFT features are shown with their center location given by
the circles. Descriptors computed at di↵erent scales with sixteen histograms
of gradient orientations indicated by the arrows in each square. Thus, a
feature may have multiple orientations depending on their local appearance.

tion between frames correspondences are found only by matching SIFT feature
descriptors and not using their point location information. SIFT descriptors and
their predicted locations can also be used directly for tracking which was done
in Paper B. A key advantage of SIFT is that feature descriptors are rather insensi-
tive w.r.t., changes in scale, illumination, rotation and even viewpoint changes up
to 60� (Fraundorfer and Scaramuzza, 2012). These properties make SIFT suitable
for matching over wide baselines which also implies that good tracking results
and essential matrix estimates can be obtained using a lower sampling frequency
compared to KLT-like trackers.



3
Estimation

Estimation is the problem of taking measured data, yt , to reveal properties, xt
and ✓, of systems which are of interest. Basic ingredients are model structures
representing the assumptions made on the interaction and time evolution of xt, ✓
and yt . As tools for solving estimation problems, state space models

xt = f (xt�1, ut , ✓) + wt, (3.1a)
yt = h(xt, ✓) + et , (3.1b)

are commonly used model structures. State-space formulations can also be de-
scribed in terms of their probability density functions (PDFs)

xt ⇠ p(xt |xt�1, ✓), (3.2a)
yt ⇠ p(yt |xt, ✓), (3.2b)

where (3.2a) is known as the state transition density, (3.2b) is known as the mea-
surement likelihood and the symbol ⇠ corresponds to a distribution relation.

3.1 Sensor Fusion

Sensor fusion is the process of combining multi-sensory data in a clever way to
obtain a filtered state estimate, x̂t , or a state sequence estimate {x̂i }ti=0 = x̂0:t . A
state-space model is the key component of many sensor fusion algorithms and
model parameters, ✓, are usually not of interest. Sensor fusion often use maxi-
mum likelihood (ML) (Fisher, 1912) estimators which have the form

✓̂ML = argmax
✓

p(Y |✓). (3.3)

37
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Another important estimator is the maximum a posteriori (MAP)

✓̂MAP = argmax
✓

p(✓|Y ) = argmax
✓

p(Y |✓)p(✓)
p(Y )

= argmax
✓

p(Y |✓)p(✓), (3.4)

where the second equality is known as Bayes’ therorem and the last equality is
using the fact that the maximising argument is independent of the normalising
constant p(Y ).

3.1.1 Smoothing and Filtering
The smoothed state x̂0:t defines an estimate of the whole state trajectory and it can
be obtained as the MAP estimate of the state sequence given the measurements

x̂0:t = argmax
x0:t

p(y0:t |x0:t)p(x0:t). (3.5)

With Gaussian noise and initial state x0 ⇠ N (x̄0, P) the negative log of (3.5) times
two becomes a Gaussian MAP estimation problem

x̂0:t = argmin
x0:t

kx̄0 � x0k2P�1 +
t

X

i=1

kxi � f (xi�1)k2Q�1 +
t

X

i=1

kyi � h(xi )k2R�1 =

argmin
x0:t

V (x0:t), (3.6)

where the terms not directly depending on x0:t have been left out, see for in-
stance Rao (2000) for details. This is also a nonlinear least squares formulation, a
topic which will be treated in Section 4.3.3. Note that if only a part of the whole
batch is considered at each time step a so-called moving horizon estimation prob-
lem is obtained. Alternatively, the process and measurements can be viewed as
equality constraints and the constrained formulation of (3.6) is then

x̂0:t = argmin
x0:t

kx̄0 � x0k2P�1 +
t

X

i=1

kwik2Q�1 +
t

X

i=1

keik2R�1 , (3.7a)

subject to xi = f (xi�1) + wi, (3.7b)
yi = h(xi ) + ei . (3.7c)

MAP estimation can be extended to include other parameters in f and h, besides
the state, resulting in a joint smoothing and parameter estimation problem. The
particular benefit with this optimisation viewpoint is that it is straightforward to
add constraints which is not easily done in a filtering context.

In the case of linear dynamics and linear measurement equations (3.6) becomes a
convex optimisation problem that can be e�ciently implemented as a Rauch-
Tung-Striebel (RTS) smoother Rauch et al. (1965). A straightforward, yet ap-
proximate, extension to nonlinear systems is given by the extended-RTS (E-RTS)
smoother where the forward filter is realised using an EKF. This method is used
in Paper E. Note that in this nonlinear setting the E-RTS may be improved using
iterations, step control, and other techniques, since in the end we are just solving
a nonlinear optimisation problem.
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Algorithm 1 Extended Kalman Filter
Available measurements are Y = {y1, . . . , yN }. Require an initial state, x̂0|0, and
an initial state covariance, P0|0, and use the models (3.1).

1. Time Update
x̂t|t�1 = f (x̂t�1|t�1, ut), (3.8a)

Pt|t�1 = FtPt�1|t�1FT
t + Qt, (3.8b)

2. Measurement Update
St = HtPt|t�1HT

t + Rt, (3.9a)

Kt = Pt|t�1HT
t S
�1
t , (3.9b)

x̂t|t = x̂t|t�1 + Kt

⇣

yt � h(x̂t|t�1)
⌘

, (3.9c)

Pt|t = Pt|t�1 � KtHtPt|t�1. (3.9d)
Where

Ft ,
@f (xt, ut)

@xt

�

�

�

�

�

(xt ,ut )=(x̂t�1|t�1,ut )
, Ht ,

@h(xt)
@xt

�

�

�

�

�

(xt )=(x̂t|t�1)
, (3.10)

while, Qt and Rt are the covariance matrices of wt and et , respectively.

Extended Kalman Filter

A popular estimator is the extended Kalman filter which is described in many
books, see e.g., Kailath et al. (2000). The EKF works in a two step procedure sum-
marised in Algorithm 1. As with the E-RTS there are no convergence guarantees
since the involved functions are nonlinear.

3.2 Optimisation

Many batch and filtering problems can be formulated in terms of optimisation
programs to which there are many software packages readily available. A quite
general optimisation program is

minimise
✓

V (✓) (3.11a)

subject to cE(✓) = 0 (3.11b)
cI (✓)  0, (3.11c)

where V : Rn ! R is the objective function, cE are equality constraints, cI are
inequality constraints and ✓ are the variables.

The Lagrange function, often just called the Lagrangian, is obtained by taking
the optimisation problem (3.11) and augmenting the objective function with a
weighted sum of the constraints as

L(✓, �, ⌫) = V (✓) + �T cE(✓) + ⌫T cI (✓), (3.12)

with associated dual variable vectors, � and ⌫. The first order necessary optimal-



40 3 Estimation

ity conditions are

rV (✓) + �TrcE(✓) + ⌫TrcI (✓) = 0 (3.13a)
cE(✓) = 0 (3.13b)
cI (✓)  0 (3.13c)

⌫ ⌫ 0 (3.13d)
diag(⌫)cI (✓) = 0 (3.13e)

which have to be satisfied at the optimum (✓⇤, �⇤, ⌫⇤) and (3.13a) is the gradient of
the Lagrangian (3.12). These equations are often referred to as the Karush-Kuhn-
Tucker (KKT) conditions, see e.g., (Boyd and Vandenberghe, 2004; Nocedal and
Wright, 2006) for detailed explanations and some historical notes. For convex
problems the KKT conditions are also su�cient whereas for non-convex prob-
lems a KKT point is merely a candidate solution.

Specific classes of problems can be identified depending on e.g., the properties of
V , the choice of variables, among others. If, for example, the objective function is
V (✓) = 1

2✓
T G✓+✓T c, G is a symmetric matrix, and the constraints are linear in ✓,

then a quadratic program (QP) is obtained. Many problems can be transformed
into an equivalent QP and an instructive example on linear Kalman filtering is
given below.

Example 3.1: KF measurement update as a Quadratic Program
The Kalman filter iterates two equations for the state

x̂t|t�1 = Ax̂t�1|t�1 (3.14a)

x̂t|t = x̂t|t�1 + Pt|t�1CT (CPt|t�1CT
t + R)�1(yt � Cx̂t|t�1), (3.14b)

where (3.14a) is the time update and (3.14b) is the measurement update. Equiv-
alently, the left hand side of the measurement update can be specified as the
following QP

{x̂t|t , êt} = argmin
x,et

eTt R
�1et + (x � x̂t|t�1)T P�1t|t�1(x � x̂t|t�1) (3.15a)

subject to yt = Cx + et , (3.15b)

or alternatively, the unconstrained version is

x̂t|t = argmin
x

(yt � Cx)T R�1(yt � Cx) + (x � x̂t|t�1)T P�1t|t�1(x � x̂t|t�1). (3.16)

The actual gain from these formulations, compared to the standard KF equa-
tions (3.14), is that constraints can be added easily and modification of the objec-
tive function becomes straightforward. Such an example is modelling of so called
heavy-tailed noise which is a direct approach to handle non-Gaussian residuals.
This can be treated by adding another variable zt to (3.15), as in (Mattingley and
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Boyd, 2010), resulting in

{x̂t|t , êt , ẑt} = argmin
x,et ,zt

eTt R
�1et + (x � x̂t|t�1)T P�1t|t�1(x � x̂t|t�1) + �kztk1 (3.17a)

subject to yt = Cx + et + zt, (3.17b)

where � � 0 is a design parameter controlling how much the kztk1-norm (`1)
should be favoured. This is not a QP anymore, however it can be transformed
into another QP which has the form

{x̂t|t , êt , ẑt} = argmin
x,et ,zt

eTt R
�1et + (x � x̂t|t�1)T P�1t|t�1(x � x̂t|t�1) + �1T u (3.18a)

subject to yt = Cx + et + zt, (3.18b)
� u  zt  u. (3.18c)

For small � some elements in zt will be exactly zero, whereas for large � all el-
ements will be zero and the original problem is obtained. This means that the
filter is more robust with respect to non-Gaussian errors. The `1-norm can be in-
terpreted in a statistical sense as zt being Laplace distributed p(zt) = L(0, 2�2/�),
see e.g., Hastie et al. (2009). `1-regularisation is also used to find sparse parame-
ter estimates and these metods are known as least absolute shrinking and selec-
tion operator (LASSO) Tibshirani (1996).

Constrained programs can be transformed into unconstrained counterparts us-
ing the Lagrangian and additional penalisation terms to account for dropped
constraints. Many software packages can solve constrained problems by parsing
them as unconstrained ones, or vice versa, if it is more e�cient to solve them this
way. Popular unconstrained methods are steepest descent, (quasi-) Newton and
trust-region, see e.g., Nocedal and Wright (2006); Dennis and Schnabel (1983).

3.2.1 Iterated Extended Kalman Filter

An interesting parallel between filtering and optimisation is that the measure-
ment update in the EKF (3.9) is the solution to the following NLS problem

x̂t|t = argmin
x

1
2
kyt � h(x)k2R�1t +

1
2
kx � x̂t|t�1k2P�1t|t�1

= argmin
x

V (x) (3.19)

which is the nonlinear counterpart of (3.16). The EKF solution is given by a full,
single step, in a Gauss-Newton procedure (Bertsekas, 1994). Note that in the
filtering case it does not matter if the state dynamics are nonlinear or not. The
pure EKF may be a poor choice if e.g., the predicted state is far from the true one.
Albeit Gauss-Newton does not promise global (or even local) convergence, itera-
tionsmay improve the estimate. This approach is used in the iterated-EKF (IEKF),
see e.g., Jazwinski (1970); Bell and Cathey (1993); Bar-Shalom and Li (1993), in
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which the measurement update for the state is iterated a few times

Hi =
@h(x)
@x

�

�

�

�

�

x=xi
, (3.20a)

Ki = Pt|t�1HT
i (HiPt|t�1HT

i + Rt)�1, (3.20b)

xi+1 = x̂t|t�1 + Ki

⇣

yt � h(xi ) � Hi (x̂t|t�1 � xi )
⌘

, (3.20c)

where the first iteration is exactly the same as in the EKF measurement update.
The measurement updated state and the covariance approximation is

x̂t|t = xi+1, (3.21a)
Pt|t = Pt|t�1 � KiHiPt|t�1, (3.21b)

where the updated covariance is only updated using the last Kalman gain and
measurement Jacobian, Ki and Hi , respectively. The IEKF assumes that each step
reduces the cost (3.19)

V (xi+1)  V (xi ), (3.22)

without evaluating if that was the case. Modifying the update (3.20c) as

xi+1 = x̂t|t�1 + Ki

⇣

yt � h(xi ) � Hi (x̂t|t�1 � xi )
⌘

,

= xi +
⇣

x̂t|t�1 � xi + Ki

⇣

yt � h(xi ) � Hi (x̂t|t�1 � xi )
⌘⌘

, (3.23)

a step control parameter ↵ can be introduced to ensure cost reduction. The mod-
ified measurement update of the IEKF is then on the form

xi+1 = xi + ↵i

⇣

x̂t|t�1 � xi + Ki

⇣

yt � h(xi ) � Hi (x̂t|t�1 � xi )
⌘⌘

, (3.24)

= xi + ↵i pi , (3.25)

where the step length 0 < ↵  1 and the search direction p is chosen such
that (3.22) is satisfied in each step. We call this approach IEKF-L. More advanced
line search strategies that employs conditions on the curvature for su�cient de-
crease could of course be used. The IEKF with and without line search is illus-
trated in Example 3.2.

Example 3.2: Bearings Only Tracking and IEKF
An applied example of IEKF bearings-only tracking is studied, which also can
be found in Gustafsson (2012) as Example 8.1. For simplicity, the target is sta-
tionary, i.e., wt = 0 and Q = 0, at the true position x⇤ = [1.5, 1.5]T . The bearing
measurement function from the j-th sensor Sj at time t is

y
j
t = hj (xt) + et = arctan2(yt � Sj

y, xt � Sj
x) + et , (3.26)

where arctan2() is the two argument arctangent function, Sy and Sx denotes the
y and the x coordinates of the sensors, respectively. The noise is et ⇠ N (0, Rt).
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The Jacobians of the dynamics and measurements are

F = I , Hj =
1

(x � Sj
x)2 + (y � Sj

y)2

2

6

6

6

6

4

�(y � Sj
y)

x � Sj
x

3

7

7

7

7

5

. (3.27)

With the two sensors having positions S1 = [0, 0]T and S2 = [1.5, 0]T . The filter
is initialised with x̂0|0 = [1, 1]T and P0|0 = I2. In Figure 3.1 the IEKF is compared
with the EKF for a single realisation with et ⇠ N

⇣

0,⇡10�3I2
⌘

for the left plot and
ten noise-free measurements for the right plot with the same covariance as in the
left plot. If this artificial measurement covariance is decreased by a few orders
of magnitude, then the EKF covariance does not capture the true uncertainty but
the IEKF does. For this simple example 10 iterations are used since then the IEKF
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Figure 3.1: Left: The IEKF is iterated 10 times and comes closer to the true
state with a covariance that captures the uncertainty. Right: 10 noise-free
measurements are given and the IEKF, again iterated 10 times, converges to
the true position much faster than the EKF.

have converged and the result clearly improves the estimate. However, it may be
su�cient to perform fewer iterations to speed up execution.

The cost function for this example is nearly convex close to the true target. This
means that if we start close enough it should be safe to take apply the IEKF with-
out any modifications. It was however also verified that the actual cost decreased
in each step. In the left plot in Figure 3.2 the target is in the same location as be-
fore but the initial guess is x̂0|0 = [0.2, 1.5]T . Given one measurement from each
sensor the EKF performs one update and the IEKF performs 3 iterations. It is
obvious that both the target location and the covariance estimate is much better
when using the IEKF.

Starting with the initial guess x̂0|0 = [0.3, 0.1]T with P0|0 = 2I2 where the curva-
ture of the cost function is bit more di�cult. The EKF and IEKF-L are given per-
fect measurement but with assumed covariances Q = R = ⇡10�3I2. The position
estimate is shown in the right plot in Figure 3.2. Note that the IEKF-L covariance
is consistent as opposed to the EKF. The rapid convergence of the IEKF-L is not
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Figure 3.2: Left: The target estimate and the covariance is much better using
the IEKF. The dashed lines corresponds to the iterated estimate in the IEKF.
Note that the first step in the IEKF is the same as the EKF. The level curves
illustrates the NLS cost with a minimum at the true target position. Right:
The EKF has poor performance and under-estimates the covariance while
IEKF-L gives good results by step size reduction and just 3 iterations.

surprising since the variable step is based on cost decrease at each iteration. More
iterations does not give any significant improvement and the steps gets short.

3.2.2 Nonlinear Least Squares

Nonlinear least squares problems are obtained when the objective function is a
sum of squared errors as in the MAP smoothing problem (3.6) or the constrained
form (3.7a). Popular solvers are Gauss-Newton and Levenberg-Marquardt which
approximates nonlinear functions by appropriate linear functions. The goal in
NLS is to estimate parameters, ✓, by minimising a parametrised residual vector,
e"(✓) ⇠ N (0,⌃✓). For notational convenience the residuals are normalised accord-
ing to their assumed covariance

"(✓) = ⌃�T /2✓ e"(✓), (3.28)

where ⌃�T /2 denotes the transposedmatrix square-root and then theMahalanobis
notation can be dropped since ke"(✓)k2

⌃�1✓
= (⌃�T /2✓ e"(✓))T (e"(✓)⌃�T /2✓ ) = k"(✓)k22.

The residuals are said to be minimised in a least-squares sense by the cost

V (✓) =
1
2

N
X

t=1

||"t(✓)||22 =
1
2

N
X

t=1

"Tt (✓)"t(✓). (3.29)
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Algorithm 2 Gauss-Newton
1. Require initial an estimate ✓ and Jacobian J(✓)
2. Compute a search direction p by solving

J(✓)J(✓)T p = �J(✓)"(✓). (3.33)
3. Compute a step length, ↵, such that the cost (3.29) is decreased. This can

be done using line search, see e.g., Nocedal and Wright (2006, page 297)
or Boyd and Vandenberghe (2004, page 464).

4. Update the parameters
✓ := ✓ + ↵p. (3.34)

5. Terminate if a stopping criteria is met. Such criteria can be; the change in
cost is small, the number of iterations has exceeded some threshold, among
others.

6. Otherwise, return to step 2.

Define "(✓) = ["1(✓) "2(✓) . . . "N (✓)]T and the Jacobian J(✓) = d"T (✓)
d✓ , then the

gradient and the Hessian of (3.29) with respect to the parameters are given by

rV (✓) =
dV (✓)
d✓

=
1
2

N
X

t=1

"t(✓)
d"t(✓)
d✓

= J(✓)"(✓), (3.30)

and

d2V (✓)
d✓2 = J(✓)J(✓)T +

1
2

N
X

t=1

"t(✓)
d2"Tt (✓)
d✓2 , (3.31)

respectively. The extension to multivariable residuals is easily obtained by stack-
ing the vectorisation of the individual residuals which again gives a scalar cost
function.

The Gauss-Newton method can be seen as a modified Newton method which
applies only to NLS problems. It is computationally cheap since the Hessian of
the objective function is approximated as

d2V (✓)
d✓2 ⇡ J(✓)J(✓)T , (3.32)

thus there is no need for second order derivatives. The approximation is good
when the initial ✓ is close to the optimum but it may be bad if some residuals are
large. An option is then to include the second order terms in (3.31) or approxi-
mate themwith some secant method. The Gauss-Newtonmethod as an algorithm
is summarised in Algorithm 2. The Gauss-Newton method may encounter prob-
lem if the Jacobian is singular or ill-conditioned. A straightforward remedy is
given by the Levenberg-Marquardt algorithm which modifies the normal equa-
tions as

(J JT + µI )p = �J". (3.35)

where µ is a positive number and the ✓ dependence have been omitted. The µ
parameter acts as an interpolation of the Gauss-Newton method and gradient
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descent. This can be seen by noticing that Gauss-Newton corresponds to µ = 0
and for large µ the step will be approximately in the gradient descent direction
which typically is the preferred option if the initial solution is far from the opti-
mum. The parameter is adaptively updated by somemethod and should typically
decrease as the minimum is approached. Another modification suggested byMar-
quardt (1963) is to take larger steps in the direction in which the gradient is small
by

(J JT + µdiag{J JT })p = �J", (3.36)

and thus speed up convergence.

Note that in practice parameters are often subject to constraints, for instance;
unit quaternions should have unit length; physical landmarks need to be in front
of the camera (Hartley, 1998); motion is constrained by motion models. When
parameters are updated by a simple increment such constraints may be violated.
It is therefore important to have a stable local parametrisation for the update fol-
lowed by some procedure such that the parameters do not violate the constraints,
for instance normalisation of an updated quaternion. Such an approach is used
in Paper D since the gyroscope rates are natural parameters for the local update
and the unit quaternion for global rotation parametrisation.

3.3 Problem Structure

For problems with many parameters the key to e�ciency is to utilise the spe-
cific structure of each problem in the corresponding Jacobian and the Hessian
approximation. Although the normal equations can be computed e�ciently by
numerical matrix factorisations, such as QR, LDL and SVD it may not be a good
option if the factorisation needs to be updated. For large problems even the com-
putation of the normal equations may be infeasible due to e.g., memory or time
constraints. Explicit, rather than numerical, factorisations are then a good op-
tion. A well-known trick for e�cient equation system solving is to use the Schur
complement and an example of this is given below.

Example 3.3: Schur Complement
In batch problems such as NLS-SLAM and bundle adjustment (BA) there is a
natural sparsity in the Jacobian and thus in the Hessian approximation. Partition
the normal equations (3.33) as

"

JcJTc JcJTm
JmJTc JmJTm

# "

pc
pm

#

= �
"

Jc"c
Jm"m

#

()
"

Hcc Hcm
Hmc Hmm

# "

pc
pm

#

= �
"

Jc"c
Jm"m

#

(3.37)

where Jc and Jm are the Jacobian w.r.t., the camera poses and landmarks respec-
tively. The primary sparsity structure in BA comes from the fact that each land-
mark observation only depends on one camera pose which means that Hcc and
Hmm are block diagonal. Solving (3.37) for pc and pm can be done e�ciently using
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the Schur complement of e.g., Hmm as
⇣

Hcc � HcmH
�1
mmHmc

⌘

pc = �Jc"c + HcmH
�1
mmJm"m (3.38a)

pm = H�1mm (�Jm"m � Hmcpc) (3.38b)

where the much smaller reduced system (3.38a) is solved first and pc is back-
substituted into (3.38b). And since Hmm is block diagonal, its inverse is cheap to
compute. Furthermore, it is often the case that all landmarks are not observed
the whole time and this gives rise to a secondary sparsity structure in the Hcm
matrix which can be exploited.

For very large problems the normal equations may be solved by quasi-Newton
methods such as L-BFGS (Nocedal, 1980) which e�ciently approximate the in-
verse Hessian. Other approaches are conjugate gradients or in a distributed way
using the alternating directionmethod ofmultipliers (ADMM) (Boyd et al., 2011).
These methods converge slowly, yet they may be the only feasible option for
large systems where direct methods are not suitable. In general there are few,
if any, guarantees that the global optimum will be found by any nonlinear pro-
gram. However, careful selection of the initial starting point greatly improves the
chance of reaching the optimum.





4
SLAM

In this chapter a brief overview of some SLAM estimation methods is given. More
thorough descriptions are given in the three appended SLAM publications.

4.1 Introduction
SLAM problems are combinations of localisation and mapping type problems
solved simultaneously. There are mainly two strategies and these are either based
on filtering or on batch optimisation. The early research almost exclusively fo-
cused on filtering methods which recursively incorporate the measurements esti-
mating the posterior filtering density p(xt, m |y1:t) and the list of filtering based
acronyms is long. In summary, many of them are either using particle filters Mon-
temerlo et al. (2002) or extended Kalman filters, Smith et al. (1990). Figure 4.1
illustrates a SLAM setup with a moving platform and observing landmark fea-
tures from di↵erent locations.

4.1.1 Probabilistic Models

The target in SLAM is to either maximise the posterior density of the complete
trajectory and map

p (x0:t , m |y0:t) , (4.1)

or the filtering density

p (xt, m |y0:t) , (4.2)

which is obtained by marginalising old states. Here x0:t is the whole state tra-
jectory, xt is the current state, m is a static map and are the y0:t measurements
relating to the state and the map. For notational convenience, correspondence

49



50 4 SLAM

p
1

p
2

p
3

p
4

m1

m2
m3

m4

m5 m6

m7 m8

X
n

Y
n

Z
n

X
b

Y
bZ

b

Figure 4.1: A moving platform with body coordinate system (b) is observing
an environment represented by point landmarks, m1, . . . , m8. Also, a global,
fixed navigation coordinate system, (n), is drawn.

variables and input signals are not made explicit. The SLAM posterior (4.1) can
for instance be factorised as

p (x0:t , m |y0:t) = p(x0:t |y0:t)p(y0:t |x0:t , m) = p(x0:t)p(yx0:t |x0:t)p(yx,m0:t |x0:t , m), (4.3)

where the first factor is the process model, the second factor is the measurement
likelihood independent of the map, e.g., GPS or IMU measurements, and the
third is the measurement likelihood of measurements that depend on the map
and the process. From (4.3) the filtering and smoothing forms are straightfor-
wardly obtained. As was shown in Section 3.1.1 the smoothing density becomes
an NLS problem if the noise sources are Gaussian as is the common assumption
in most algorithms. The batch formulation is the target in GraphSLAM (Thrun
and Montemerlo, 2006; Thrun et al., 2005). Similar to FastSLAM (Montemerlo
et al., 2002, 2003), the posterior is factorised as

p(x0:t , m |y0:t) = p(x0:t |y0:t)p(m |x0:t , y0:t), (4.4)

where p (x0:t |y0:t) is the posterior of trajectories. This density is obtained by
marginalising the landmark parameters which introduces links, relative pose con-
straints, between any two poses measuring the same landmark and the result is
a pose graph. This is in close relation to the reduced system in (3.38a) obtained
using the Schur complement. GraphSLAMmaintains a pose graph as a Gaussian
with mean and covariance but only computes the conditional mean of the map
using the factorisation

p (m |x0:t , y0:t) =
Nm
Y

i=1

p
⇣

mi |x0:t , y0:t
⌘

, (4.5)
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which is the same approach as in FastSLAM. This means that each landmark can
be treated independently given the true trajectory, thus avoiding to keep track
of the full correlation structure of the map which is the main draw-back with
EKF-SLAM.

4.2 EKF-SLAM

EKF-SLAM is probably the most common SLAM method and it is often straight-
forward to implement as described in e.g., Durrant-Whyte and Bailey (2006);
Smith et al. (1990). For a thorough treatment, the book by Thrun et al. (2005)
serves as a standard reference. In feature based SLAM, coordinates in the global
frame are explicitly represented as landmarks, m, which are part of the state vec-
tor. The standard assumption is that the landmarks are stationary but dynamic
objects can naturally be included in the state vector (Bibby and Reid, 2007). As-
sume that measurements arrive in the same rate as the dynamic model. Then the
landmark and the measurement models are given by

xt = f (xt�1) + wt, (4.6a)
mt = mt�1, (4.6b)
yt = h(xt, mt) + et . (4.6c)

The EKF given in Algorithm 1 applies to (4.6) with just a few modifications. The
prediction step in EKF-SLAM is given by

x̂t|t�1 = f (x̂t�1|t�1), (4.7a)
m̂t|t�1 = m̂t�1|t�1, (4.7b)

Pxx
t|t�1 = FtP

xx
t�1|t�1F

T
t + Q, (4.7c)

Pxm
t|t�1 = FtP

xm
t�1|t�1, (4.7d)

Pmx
t|t�1 = Pmx

t�1|t�1F
T
t , (4.7e)

where

Ft ,
@f (xt�1)
@xt�1

�

�

�

�

�

(xt�1)=(x̂t�1|t�1)
. (4.7f)

Note that only the vehicle state covariance and the cross terms are updated while
that the map mean and covariance remains unchanged. The full covariance ma-
trix is

P =
"

Pxx Px m

Pm x Pmm

#

. (4.8)

When new landmarks are initialised they are appended to the state vector but the
vehicle state dimension stays the same. If the map estimation is only used locally
for vehicle state estimation i.e., odometry, then old landmarks can be removed
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from the filter. The measurement update for EKF-SLAM is given by

Kt = Pt|t�1HT
t (HtPt|t�1HT

t + Rt)�1, (4.9a)
"

x̂t|t
m̂t|t

#

=
"

x̂t|t�1
m̂t|t�1

#

+ Kt

⇣

yt � h(x̂t|t�1, m̂t|t�1)
⌘

, (4.9b)

Pt|t = Pt|t�1 � KtHtPt|t�1, (4.9c)

where

Ht ,
h

@
@xt

h(xt, mt) @
@mt

h(xt, mt)
i

�

�

�

�

�

(xt ,mt )=(x̂t|t�1,m̂t|t�1)
. (4.10)

The measurement Jacobian (4.10) is often rather sparse since the sensor will typ-
ically only observe a part of the landmark state at each time instant and an ef-
ficient implementation exploits this structure. Since the measurements are as-
sumed independent the measurement update can be processed iteratively avoid-
ing the need for inverting a large matrix in the Kalman gain computation (4.9a).

In Paper B EKF-SLAM is used for intialisation of the trajectory and map which
makes it limited to small problems. In Figure 4.2 the horizontal speed estimate
from EKF-SLAM and NLS-SLAM is shown.
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Figure 4.2: The smoothed horizontal speed of the camera in red and EKF in
blue. The true speed is 0.1 m/s except for when the robot stops and changes
direction, this happens at about 4 seconds and 6 seconds.
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The EKF-SLAM framework also applies to sensor network calibration, as in Pa-
per A. Obviously there is then no need for correspondence search since the sensor
identities (landmarks) are known and the map size is also fixed. As was pointed
out in Section 2.4 measurements are here obtained in the sensor node magne-
tometers assuming a known magnetic dipole model of the survey vessel. This is
the reverse measurement relation to the ordinary SLAM concept.

4.3 Batch SLAM
Batch methods, also known as Full SLAM, have recently come to dominate SLAM
research both o✏ine and as a sub-system in online applications. Some beneficial
properties of batch methods are:

• Loop closing and thus drift compensation is easier.

• The e↵ect of linearisation errors can be reduced through iterative refine-
ment.

• E�cient optimisation routines can be utilised.

• Data association decisions can easily be undone.

• The inherent primary sparsity is utilised.

• The complete map correlation structure does not have to (but can be) com-
puted.

In both filtering and batch SLAM applications the system unavoidably grows
with the exploited space since more memory is needed to store the map and pos-
sibly historical motion estimates. However, in most realistic scenarios only a
few parameters are a↵ected by the measurements and therefore only small parts
of the system, or its factorisation, need to be updated. A concrete example is
the square-root smoothing and mapping (SAM) Dellaert and Kaess (2006) which
solves the Full SLAM problem incrementally in real-time.

E�cient solutions to batch formulations are utilising the inherent sparsity in the
Jacobian J or equivalently the associated information (inverse covariance) matrix
I = J JT . In contrast, the filter covariance, and likewise the filter information
matrix, is full since past vehicle states are marginalised as shown in Paskin (2003).
The batch sparsity ideas are exploited in a SLAM context by (M. Kaess and A.
Ranganathan and F. Dellaert, 2008; Grisetti et al., 2011; Thrun and Montemerlo,
2006; U. Frese, 2005; Paskin, 2003) and many others. Furthermore, Dellaert and
Kaess make no special distinction between SAM and BA since they are both often
treated as NLS problems in batch form.

4.3.1 Graphs
Recently, optimisation based batchmethods on graphs, and especially pose graphs
(Lu and Milios, 1997), have attracted much interest and will therefore be given
some attention here as well. The GraphSLAM algorithm, proposed by (Thrun
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Figure 4.3: Left: Structure of a Jacobian from the NLS-SLAM problem in Pa-
per B. The upper left diagonal block corresponds to the process derivatives,
the left lower block corresponds to the derivatives of the camera measure-
ments w.r.t., the IMU/camera states and the lower right block are deriva-
tives of the camera measurements w.r.t., the landmark parameters. Right:
Jacobian matrix from NLS-SLAM problem in Paper D. The structure is
more complicated since there are three blocks of measurements (rows) cor-
responding to the accelerometer measurements, camera measurements and
gyroscope measurements, respectively. The parameters (columns) are veloc-
ity, acceleration, landmarks, acceleration bias, gyroscope bias, and angular
velocity, respectively.

and Montemerlo, 2006; Thrun et al., 2005), is such a method. It is assumed
that the data association is known and there is no general mechanism in Graph-
SLAM for treating false associations once the graph is constructed. The graph-
interpretation is another way of describing dependencies among parameters as
in the Jacobian and the Hessian. Examples of two SLAM graphs are shown in
Figure 4.3. For instance, the information matrix associated with the Full SLAM
posterior is the graph of a Markov fandom field (Thrun et al., 2004). The vari-
ous graph representations are primarily used to gain insight into the underlying
inference problem and to enable e�cient solution strategies. For most scenarios
the corresponding graph contains loops since some places may be visited several
times. Inference on the graph can therefor only be done approximately e.g., with
the sum-product algorithm or “loopy” belief propagation. Junction trees elimi-
nates these cycles by clustering them into single nodes (Paskin, 2003) leaving a
graph which is a tree and thus exact belief propagation is possible.
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The full-SLAM and BA graphs are matrices with known structure when corre-
spondences are fixed. In the tutorial on graph-based SLAM (Grisetti et al., 2011)
a clear distinction is made between the sensor specific data association used to
construct the graph, which they call the front-end, and the strategies used to op-
timise the graphs which are referred to as the back-end. We will here refer to the
front-end as the initialisation.

4.3.2 Initialisation
Depending on the application the initialisation can be anything from cheap to
very computationally expensive. Pose graphs are intuitive to use when the sen-
sor model is invertible which is the case with ground robots having laser range
scanners in 2D or 3D. By pair-wise matching of the laser scans, e.g., using iter-
ative closest point (ICP), see for instance Besl and McKay (1992), local relative
poses are obtained. The pose graph nodes are then the trajectory of robot poses
and the edges contains observations and odometry. There are also no natural
3D-3D point correspondences when using laser measurements only since mea-
surements do not provide information around the point. Initialisation in visual
applications typically consists of feature tracking and essential matrix estimation
within a RANSAC loop.

!Raw!data! SLAM!es-mate!
Graph!!!

Construc-on!
(Ini-alisa-on)!

Graph!!
Op-misa-on!

(NLS)!

Node!posi-ons!

Node!posi-ons!
and!measurements!

Figure 4.4: Iterative correspondence search and graph optimisation.

There are few (if any) visual methods that use pose graphs only. For instance, Kim
and Eustice (2009); Eade et al. (2010) use view-based matching for whole images
combined with odometry and the relative poses obtained are used to construct
a pose graph. Both of them are using view-based recognition based on match-
ing entire frames to each other, similar to ICP, thus they are not doing any local
tracking. Strasdat et al. (2011) combines a sub-mapping BA approach much like,
PTAM (Klein and Murray, 2007), and connects them via a pose graph in a sep-
arate optimisation thread. It is good to incorporate iterative an correspondence
search in the optimisation thread, as illustrated in Figure 4.4, since associations
may become too unlikely by some metric once the optimisation has started. One
such error metric for visual tracking is the bi-directional error (Kalal et al., 2010)
which is the di↵erence between the image coordinate of the forward-track and
the end image coordinate of the backward-track (reversed point tracking) which
should be small for well-localised features (Hedborg et al., 2011, 2012). This idea
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is similar to what is used in the Paper D where iterates between state estimation
and correspondence search is done. Along the same line Dellaert et al. (2003)
employ simultaneous SFM and correspondence estimation using EM to learn 3D
models. While a multimodal pose graph model is devised Pfingsthorn and Birk
(2012) optimising correspondences using Gaussian mixtures which admits cor-
rections for poor initialisation.

4.3.3 NLS-SLAM

In state-space formulations of SLAM the map is included in the state vector with-
out process noise

xt = f (xt�1) + wt, (4.11a)
mt = mt�1, (4.11b)
yt = h(xt, mt) + et . (4.11c)

This formulation is however equivalent to

xt = f (xt�1) + wt, (4.12a)
yt = h(xt, m) + et , (4.12b)

meaning that the map can be excluded from state vector and simply viewed as
a parameter. The idea with NLS-SLAM to use an initial estimate of the map
and the whole state-space sequence x0:t and then minimise all the measurement
errors and the state trajectory errors as the NLS problem

{x̂0:t , m̂} = argmin
x0:t , m

kx̄0 � x0k2P�1 +
t

X

i=1

kxi � f (xi�1)k2Q�1 +
t

X

i=1

kyi � h(xi , m)k2R�1 .
(4.13)

In Paper D, the dynamic model is considered being exact, i.e., it is just used to
define a static map for the parameter-space and is left out of the optimisation.
Then the following NLS problem is obtained

{x̂0:t , m̂} = argmin
x0:t , m

t
X

i=0

kymi � hm(xi , m)k2
R�1m

+ kyai � ha(xi )k2R�1a + ky!i � h!(xi )k2R�1! ,

(4.14)

where hm denotes the direct parametrisation (2.47) for camera, ha denotes ac-
celerometer measurement function and h! denotes gyroscope measurements. Be-
sides the IMU measurements, this is a standard BA formulation. Since both the
camera and accelerometer measurement functions are nonlinear w.r.t., the state
and the map, a good initial value is needed. It is the sole purpose of Paper D
to show how such an initial point can be obtained through a sequence of almost
linear steps with only SIFT features and IMU data as input.
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4.3.4 EM-SLAM
In Paper E the map is also considered being a static parameter, ✓ := m, according
to

xt = f (xt�1, ut , wt), (4.15a)
yt = ht(xt, ✓) + et , (4.15b)

where the IMU is input to the motion model. In an ML setting, the joint likeli-
hood of measurement and states parametrising the map is

p✓(y1:t , x1:t) =
t

Y

i=1

p✓(yi |xi )p(xi |xi�1), (4.16)

where the state trajectory is considered being a latent variable. This density can
be maximised using expectation-maximisation (Dempster et al., 1977) by solving
two coupled, but hopefully easier, problems iteratively. This is done by comput-
ing the expected value of the log of (4.16)

Q(✓, ✓k) = E✓k
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�
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�

�

�

y1:t

)

+ const., (4.18)

where the measurement errors are assumed Gaussian. The motion model and
other terms independent of the map are lumped into a constant parameter. The
expected value cannot be obtained in closed form, instead we approximate (4.17)
as

Q(✓, ✓k) ⇡ � 1
2

N
X

i=1

✓

kyi � hi (x̂i |t , ✓)k2R�1m +

Tr(R�1rxhi (x̂i |t , ✓)Ps
i |t(rxht(x̂i |t , ✓))T )

◆

, (4.19)

where, rx denotes the Jacobian w.r.t., to x, x̂i |t is the smoothed estimate of the
latent variable and Ps

i |t is its covariance. The smoothed estimate is obtained with
an E-RTS smoother. The trace term compensates for the use of the estimated
latent variables instead of the true ones. The Q(✓, ✓k) function is then maximised
w.r.t., the map ✓ using the quasi-Newton method BFGS, see e.g., Nocedal and
Wright (2006) as further explained in Section 3.2 in Paper E. To start the EM-
SLAM iterations an intial estimate of the map and the state is needed and it is
here obtained using the results in Paper D. It should be noted that the splitting
of batch SLAM into state estimation and mapping is also the key in GraphSLAM
and FastSLAM as discussed in Section 4.1.1.
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4.4 IMU and Camera
Fusion of IMU andmonocular vision information is conceptually straightforward
but can be a challenging task in practice. A nice introduction to this sensor setup
is given in (Corke et al., 2007) and the thorough exposition in Hol (2011) is also
recommended. The complementary characteristics of these sensors are attractive
since the unbounded error growth in position and orientation from IMU integra-
tion can be corrected using the camera.
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Figure 4.5: Bearings-only SLAM example illustrating the depth ambiguity.
A similar example can also be found in Bailey (2003) but here only the initial
velocity 0.25m/s of the platform is known. Left: Landmarks are initialised at
approximately the true range and the resulting estimate is consistent. Right:
The landmarks are initialised at two times the true range and the estimated
trajectory scales accordingly giving a biased estimate. This corresponds to
the velocity estimate of the platform being 0.5m/s.

A calibrated stereo camera gives the ability to directly measure 3D coordinates of
landmarks in metrical space. However, the baseline between cameras in a stereo
rig are physically limited, thus the depth resolution is often limited to close range
scenarios since the range resolution itself decreases with range. Motion-stereo
does not have this limitation since the baseline is created arbitrary by motion.
Obvious downsides of motion-stereo is the need for recovery of the pose, e.g.,
using epipolar geometry, and the inability to estimate the scale which is due to the
depth ambiguity which is illustrated in Figure 4.5. A comparison of stereo and
monocular vision based SLAM approaches are presented in Lemaire et al. (2007)
and the introductory chapters in Chli (2009) gives a nice overview of vision based
SLAM in general.

Apart from SLAM applications the combination of an IMU and monocular cam-
era can be used for:

• IMU supported structure from motion (SFM);

• vision supported inertial navigation, i.e., ego-motion estimation;
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• loosly or tightly coupled SFM;

• camera IMU fusion for augmented realitys and;

• image stabilisation.

In the context of SLAM, observability is a non-negligible issue and some exam-
ples are the case of constant velocity Bryson and Sukkarieh (2008), motion along
the optical axis or if landmarks are far away. Short term unobservability is not
problematic in filtering problems but may lead to complete failure in batched
solutions due to rank deficiency. Simple means for avoiding some of these prob-
lems are to use measurement counters. It is however non-trivial to characterise
the unobservable subspace in SLAM completely which the substantial amount
of publications on this issue is a proof of, see e.g., (Lupton and Sukkarieh, 2012;
Hesch et al., 2013; Perera et al., 2009; Kim and Sukkarieh, 2004; Andrade-Cetto
and Sanfeliu, 2005; Lee et al., 2006; Wang and Dissanayake, 2008) and the many
references therein. Observability is also highlighted in the vision aided IMU sys-
tems of Mourikis and Roumeliotis (2007); Mourikis et al. (2009); Li and Mourikis
(2013, 2012a); Dong-Si and Mourikis (2012); Li and Mourikis (2012b) which op-
erates without explicit landmark parametrisation and instead keeps old poses in
a sliding window expressed as constraints through shared observations.

4.4.1 Linear Triangulation
A monocular camera in combination with an IMU can be used to estimate the
pose and to recover the metric scale, a topic which have studied by Martinelli
(2012); Nützi et al. (2011); Kneip et al. (2011) and others. It was showed in Mar-
tinelli (2012) that given measurements of a landmark from five distinct vantage
points with known rotation it is possible to recover the landmark position, the
camera position and velocity, and accelerometer bias in closed form. His results
are based on well-known linear formulations of the direct parametrisation (2.48)
but without considering noise. This formulation was used in Paper D including
noise terms and will now be explained. Camera coordinates and the pinhole pro-
jection are given by

mc = Rcw(mw � cwt ), (4.20a)

P(mc) =
1
zc

"

xc

yc

#

, (4.20b)

which also can be written as a linear form. With normalised measurements
[u, v]T we have

"

u
v

#

zc =
"

xc

yc

#

, (4.21)

which is linear in the unknownmc and also inmw and cwt if the rotation is known.
We can solve (4.21) w.r.t., camera and landmark coordinates with enough mea-
surements available. However, for each new 2D camera measurement there is
also another unknown 3D camera position. A solution is to use approximate po-
sitions calculated from the accelerometer. This results in a linear system in the
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unknown mw and we need at least two camera measurement from distinct van-
tage points to find a solution. In this linear formulation, the camerameasurement
noise does not reflect depth uncertainty in a proper manner since we have

"

u
v

#

zc =
"

xc

yc

#

+ zc
"

eu
ev

#

()
"

u � eu
v � ev

#

zc =
"

xc

yc

#

, (4.22)

meaning that the noise scales with the depth parameter. This can be treated using
iteratively reweighted least squares (IRWLS), see e.g., Björck (1996) by updating
the camera measurement covariance weighting matrix at each iterate using ẑc

from the previous iterate. The key is that we bypass solving the nonlinear re-
projection error minimisation problem by solving a simple linear problem. This
method is algebraic in the sense that it does not consider minimisation of the mea-
surement errors since the projective model is not directly used to form the error.
However, the linear solution also minimise the re-projection error if the correct
weighting is used (Zhang and Kanade, 1998; Hartley and Zisserman, 2004) which
here corresponds to that ẑc is su�ciently close to its true value. This section fin-
ishes with an example of IRWLS triangulation, inspired by the paper (Hartley
and Sturm, 1997).

Example 4.1: IRWLS Triangulation
Consider two 3⇥4 cameramatrices, P and P 0 with known rotation and translation
both measuring a 3D point m. The two cameras and the point are then related by

�[u, v, 1]T = P[mT 1]T = Px, (4.23a)

�0[u0 , v0 , 1]T = P 0[mT 1]T = P 0x. (4.23b)

The �’s are unknown scalars accounting for the projective ambiguity. They can
be eliminated from the last rows of the two equation systems. After some alge-
bra the unknown 3D point can be expressed as a linear system Ax = 0 where
A = [p1 � up3, p2 � vp3, p01 � u0p03, p2 � v0p03]T is a 4 ⇥ 4 matrix and the vectors,
pi , p0i , i = 1, 2, 3, are the rows of the camera matrices. This equation system is
solved by computing the SVD of A fromwhich the point is recovered from the sin-
gular vector �[m̂T , 1] which corresponds to the smallest singular value � . More
measurements can be added as rows in A to further suppress noise.

The minimum of ||Ax|| does not have a geometric meaning. At the minimum there
will be an error ✏ = upT3 � pT1 x. The re-projection error of the measured image
coordinate u and x is given by ✏0 = u � pT1 x/xp

T
3 = ✏/pT3 . Thus, if the first row

of A was multiplied with w = 1/pT3 x and similarly for the other rows, then the
minimum of the linear method would correspond to the one of the nonlinear re-
projection error. This is not possible to do since it requires x to be known. Instead,
we can iterate the linear procedure starting with unit weights and then use the
weights from the previous iteration and hopefully converge to a solution with an
error close to the one of the re-projection error. The algorithm can for instance
be terminated when the change in the weights is small.

The setup is the following: The point is located inm⇤ = [1, 1, 2]T , the first camera
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P in the origin, the second camera P 0 is translated to = [0, 1, 30]T and both of
them without rotation. Each camera receives 10 measurements subject to noise
e ⇠ N (0, 0.01I2). Results for M = 100 simulations and 3 iterations are shown in
Table 4.1 where it is clear that the iterations gives an improvement.

Iteration 0 1 2 3

Average RMSE [ 1
M

q

PM
i km̂i �m⇤k] 0.0274 0.0203 0.0202 0.0202

Table 4.1: Iteratively reweighted least squares triangulation.

The strength of this method is that it is simple to compute and no special initiali-
sation is needed, contrary to nonlinear optimisation methods. A disadvantage is
that the method may fail to converge (Hartley and Sturm, 1997) if, for example,
the baseline is very short which results in a poorly conditioned system.





5
Concluding remarks

This chapter ends the first part of the thesis which consisted of background ma-
terial. The work in the whole thesis is summarised here with conclusions of the
publications in Part II and suggested directions for future work. For detailed
conclusions and future work, the reader is referred to each of the appended pub-
lication.

5.1 Conclusions
The common denominator for the problems studied in this thesis is that they deal
with various aspects of navigation and mapping in unknown environments.

Calibration of sensor networks is important for the network’s detection and track-
ing capabilities. Underwater sensor positions can be di�cult to obtain in fast
deployment scenarios and sensors can also move due to currents or a non-rigid
seabed. An automatic and inexpensive EKF-SLAMmethod for underwater sensor
network positioning without the need for GNSS was presented. Using only mag-
netic sensors and a vessel with known magnetic signature the sensor positions
and the vessel’s route was determined. The expected performance of the method
and the network was studied using sensitivity- and CRLB analysis on simulated
data. This analysis could also be used for sensor network design.

ROV’s cannot utilise GNSS for localisation because these signals are greatly atten-
uated in water. Due to their limited payload capacity, and in order to have a com-
petitive price, the onboard navigation sensors are relatively cheap. We showed
that fusion of a complex hydrodynamic model of the ROV with onboard sensor
data can improve the navigation performance and the robustness to sensor fail-
ure. Experimental results from sea trials showed that in particular the vehicle

63
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speed can be accurately estimated.

The combination of inertial sensor and optical camera can be used both for nav-
igational and mapping purposes. Experiments and simulations indicated that
metrically correct estimates can be obtained. The structure of the batch SLAM
problem was exploited and solved with NLS and EM utilising e�cient optimisa-
tion routines. The batch methods requires a good initial estimate for avoiding
convergence to a local minimum. A multistage initialisation procedure for batch
SLAM was proposed where a series of almost uncoupled and simple problems
were solved.

5.2 Future Work
Underwater sensor networks, and sensor networks in general, are important for
monitoring and surveillance. The simulated setup in Paper A can certainly ben-
efit from experimental validation which, however, could be rather expensive. A
natural extension is to try NLS-SLAM minimisation of the whole data batch to
find out if the results can be improved.

Increased navigation performance and robustness w.r.t., disturbances is always
desirable. The ROV model in Paper C is used in conjunction with the onboard
sensor for this task. The model for rotational dynamics can be improved, per-
haps by using speed dependent damping and stronger coupling in the inertia
matrix. These, and other, ideas should first be explored using simulations and
then preferably in controlled tank tests.

SLAM in general is a mature and diversified field of research. In the near fu-
ture perhaps the gap between the robotics community and the computer vision
community can be shortened. For this to happen, more work on the similarities
between the two areas are needed. For instance, it is not that common to see
model-based filters in computer vision applications.

System analysis concepts such as observability, controllability and robustness are
often di�cult to apply to SLAM systems directly. It would therefore be useful to
have easy-to-use tools for SLAM system analysis as to guide design and evalu-
ation on a general basis. For the specific application of SLAM with IMU and
vision more work on performance bounds, along the line of Nyqvist and Gustafs-
son (2013), is desirable.

The coupling between filtering and optimisation is an interesting area for more
research. Perhaps the convergence rate of Rao-Blackwellized particle filters could
be improved by treating some of the nonlinearities using IEKF-L. Iterated smooth-
ers, such as moving horizon estimation further gives the possibility to handle
constraints in a systematic manner.
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Abstract

Sensor localization is a central problem for sensor networks. If the
sensor positions are uncertain, the target tracking ability of the sen-
sor network is reduced. Sensor localization in underwater environ-
ments is traditionally addressed using acoustic range measurements
involving known anchor or surface nodes. We explore the usage of
triaxial magnetometers and a friendly vessel with known magnetic
dipole to silently localize the sensors. The ferromagnetic field created
by the dipole is measured by the magnetometers and is used to local-
ize the sensors. The trajectory of the vessel and the sensor positions
are estimated simultaneously using an Extended Kalman Filter (EKF).
Simulations show that the sensors can be accurately positioned using
magnetometers.

1 Introduction

Today, surveillance of ports and other maritime environments is getting increas-
ingly important for naval and customs services. Surface vessels are rather easy
to detect and track, unlike submarines and other underwater vessels which pose
new threats such as terrorism and smuggling. To detect these vessels, an ad-
vanced underwater sensor network is necessary. Such sensors can measure fluc-
tuations in for example magnetic and electric fields, pressure changes and acous-
tics.

Deploying an underwater sensor in its predetermined position can be di�cult
due to currents, surge and the lack of a Global Navigation Satellite System (GNSS)
functioning underwater. Sometimes the sensors must be deployed fast, resulting
in very uncertain sensor positions. These positions must then be estimated in
order to enable the network to accurately track an alien vessel.

Lately, many solutions to the underwater sensor localization problem have been
suggested. They can be broadly divided into two major categories; range-based
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and range-free. In general, range-based schemes provide more accurate position-
ing than range-free schemes.

Range-based schemes use information about the range or angle between sensors.
The problem is thereafter formulated as a multilateral problem. Common meth-
ods to measure range or angle include Time of Arrival (ToA), Time Di↵erence
of Arrival (TDoA), Angle of Arrival (AoA) or Received Signal Strength Indicator
(RSSI). These methods usually require active pinging but silent methods based on
TDoA have been suggested Cheng et al. (May. 2008). The 3D positioning problem
can be transformed into a 2D problem by the use of depth sensors Cheng et al.
(2008). The range positioning scheme is often aided by surface nodes, anchor
nodes, mobile beacons or autonomous underwater vehicles Zhou et al. (2007);
Erol et al. (2008, 2007). Joint sensor localization and time synchronization was
performed in Tian et al. (2007).

Range-free schemes generally provide a coarse estimate of a node’s location and
their main advantage lie in their simplicity. Examples of range-free schemes are
Density-aware Hop-count Localization (DHL) Wong et al. (2005) and Area Lo-
calization Scheme (ALS) Chandrasekhar and Seah (2006). A more thorough de-
scription of underwater sensor localization solutions, can be found in the surveys
Akyildiz et al. (2005); Chandrasekhar et al. (2006).

In this paper we propose amethod to silently localize underwater sensors equipped
with triaxial magnetometers using a friendly vessel with known static magneti-
zation characteristics. (For methods to estimate the magnetic characteristics, see
Nelson and Richards (2007).) Each sensor is further equipped with a pressure
sensor and an accelerometer used for depth estimation and sensor orientation es-
timation, respectively. To enable global positioning of the sensors, the vessel or
one sensor must be positioned globally. To the best of the authors knowledge this
is the first time magnetic dipole tracking is used for sensor localization.

For target tracking in shallow waters, magnetometers are often a more useful sen-
sor than acoustics, since sound scatters significantly in these environments Birsan
(2006). Birsan has explored the use of magnetometers and the magnetic dipole
of a vessel for target tracking Birsan (2004, 2005). Two sensors with known posi-
tions were used to track a vessel while simultaneously estimating the unknown
magnetic dipole of the vessel. Tracking and estimation were performed using
an unscented Kalman filter Birsan (2004) and an unscented particle filter Birsan
(2005). Dahlberg et al. Dalberg et al. (2006) fused electromagnetic and acoustic
data to track surface vessels using underwater sensors.

Several studies of the electromagnetic characteristics of the maritime environ-
ment have stated that the permeability of the seabed di↵ers considerably from
the permeability of air or water. The environment should therefore be modeled
as a horizontally stratified model with site specific permeability and layer thick-
ness for each segment Dalberg et al. (2006); Daya et al. (2005); Birsan (2006). This
has not been included in our simulation study but should be considered in field
experiments.
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In the past 10-15 years quite a lot of e↵ort has been put into reducing the static
magnetic signature of naval vessels by active signature cancelling. This has in-
creased the importance of other sources of magnetic fields such as Corrosion Re-
lated Magnetism (CRM) Daya et al. (2005); Lundin (2003). CRM is generated by
currents in the hull, normally induced by corrosion or the propeller. It is there-
fore very di�cult to estimate and subsequently di�cult to cancel. This makes
CRM important in naval target tracking but not so much in sensor localization.
In our study, a friendly vessel used for sensor localization can turn o↵ its active
signature cancelling, resulting in a magnetic field from the dipole which is con-
siderably stronger than the field induced by CRM. We have therefore neglected
CRM.

An underwater sensor network used for real time surveillance must be silent. Nei-
ther sensor localization, surveillance or data transfer can be allowed to expose
the sensor network. Silent communication rules out the use of acoustic modems
which are the common mean of wireless underwater data transfer Akyildiz et al.
(2005). We therefore assume that the sensors are connected by wire. As a conse-
quence, common problems in underwater sensor networks such as time synchro-
nization, limited bandwidth and limited energy resources will be neglected.

The sensor localization problem is basically reversed Simultaneous Localization
and Mapping (slam). In common slam Durrant-Whyte and Bailey (June 2006);
Bailey andDurrant-Whyte (Sept. 2006), landmarks in the environment are tracked
with on-board sensors. The positions of these landmarks and the vehicle trajec-
tory are estimated simultaneously in a filter. In sensor localization the sensors
are observing the vessel from the ”landmarks” position. The problem has the
same form as slam but with a known number of landmarks and known data
association.

The paper outline is as follows; Section 2 describes the system, measurement
models and state estimation. Simulations of the performance of the positioning
scheme, its sensitivity to di↵erent errors and the importance of the appearance
of the trajectory are studied in Section 3. The paper ends with conclusions.

2 Methodology

This section describes the nonlinear state estimation problem here solved with
ekf-slam, how the vessel dynamics and sensors are modeled and how di↵erent
performance measures are computed. All vectors are expressed in a world fixed
coordinate system unless otherwise stated.
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2.1 System Description
The sensor positioning system is assumed to have the following process and mea-
surement model

xk+1 = f (xk) + wk (1)
yk = h(xk , uk , e

u
k ) + ek (2)

where f ( · ) is a nonlinear state transition function, h( · ) is a nonlinear measure-
ment function, xk the state vector, uk the inputs, wk the process noise, euk input
noise and ek measurement noise. In slam the state vector consists of both the ves-
sel position pv = [x, y]T and landmark (sensor) states s stacked, i.e. x = [pTv , sT ]T .

Process Model

The processmodel describes the vehicle and the sensors dynamics. There are com-
plex vessel models available which include 3D orientation, angular rates, engine
speed, rudder angle, waves, hull, etc., see e.g. Fossen and Perez (2004). Since we
do not consider any particular vessel or weather condition, a very simple vessel
model is used. It is assumed that no substantial movement in the z-coordinate,
pitch and roll angles of the vessel are made, hence a nonlinear 5 states coordi-
nated turn model is su�cient. The parametrization used is a linearized discreti-
sation according to Gustafsson (2001)

xk+T = xk +
2vk
!k

sin(!kT ) cos(hk +
!kT
2

) (3a)

yk+T = yk +
2vk
!k

sin(!kT ) sin(hk +
!kT
2

) (3b)

vk+T = vk (3c)
hk+T = hk + !kT (3d)
!k+T = !k (3e)

where T is the sampling interval and (x, y), v, h,! denote position, speed, heading
and angular rate, respectively. Furthermore, it is assumed that the sensors are
static and do not move after some time of deployment, hence a process model for
the sensors is

sxj ,k+T = sxj ,k (4a)

syj ,k+T = syj ,k j = 1, . . . , M (4b)

where M is the number of sensors, sxj and syj are sensor j’s x and y position,
respectively.

Measurement Model

Each sensor contains a pressure sensor which is used as an input, dj,k , of the z-
component. The sensor also contains accelerometers which are used to determine
the direction of the earth gravitational field. The magnetometers in the sensor
can be used to compute the direction of the earth magnetic inclination if the
environment is free from magnetic disturbances such as ships. In most cases the
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magnetic inclination vector will not be parallel to the gravitational vector (except
for the magnetic north and south pole) and the sensor orientation may be readily
measured. The sensor orientation is modeled as a static input Cj .

In this paper we only consider the ferromagnetic signature due to the iron in
vessel construction. The ferromagnetic signature stems from the large pieces of
metal used to construct a vessel. Each piece has its own magnetic dipole and
the sum of these dipoles can roughly be simplified into a single dipole. The
magnetic flux density for a dipole diminishes cubically with the distance to the
dipole. With vector magnetometers dipole orientation can be estimated. Triaxial
measurements of the magnetic flux density from a dipole can be modeled as

h(xk , uk) = (5)
µ0

4⇡|rj,k |5 (3hrj,k ,m(hk)irj,k � |rj,k |2m(hk)) (6)

where m(hk) = [mx cos(hk), my sin(hk), mz]T is the magnetic dipole of the vessel
and µ0 is the permeability of the medium. rj,k = Cj [xk � sxj,k , yk � syj,k , 0 � dj,k]T
is the vector from each sensor to the vessel where Cj is the static orientation of
sensor j in the global coordinate frame and dj,k is the measured depth of the
sensor. Note that dj,k and Cj,k should be seen as inputs, uk = {dj,k ,Cj }Mj=1, since
these are measured variables but not part of the state vector. The dipole model
without coordinate transformations can be found in e.g. Cheng (1989). In the
proximity of the vessel, a possibly better model would be a multiple dipole model
Lindin (2007) where the measurement is the sum of several dipoles, but this is
out of the scope of this paper. A single dipole is a reasonable approximation if
the measurements are made at a large distance compared to vessel size Nelson
and Richards (2007).

Themagnetic dipole used throughout the simulations wasm = [50,�5, 125]T kAm2

(same as in Birsan (2005)). Fig. 1 shows the measured magnetic flux density at
sensor 3 in Fig. 2 from a vessel where the dipole has been slightly rotated around
the z-axis between each simulation. The upper left figure in Fig. 1 was acquired
using the magnetic dipole discussed earlier. Clearly the direction of the dipole
a↵ects the measured magnetic field. This indicates the importance of using a
accurate dipole estimate.

2.2 State Estimation
Our approach to the state estimation problem is to use an Extended Kalman Filter
(EKF) in the formulation of ekf-slam, for details see e.g. Durrant-Whyte and
Bailey (June 2006). There are some characteristics in this system which do not
usually exist in the common slam problem;

• The landmarks (sensor) are naturally associated to the measurements, i.e.
data association is solved.

• The sensors global orientations are known which in turn makes it possible
to estimate the orientation of the trajectory.
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Figure 1: Measured magnetic flux density at sensor 3 in Fig. 2 for vessels
with slightly rotated dipoles.
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• The planar motion assumption and the pressure sensor makes it possible to
transform sensor positioning into 2D.

A well known problem with slam is the ever expanding state space that comes
with addition of new landmarks which will eventually make it intractable to com-
pute a solution. In a sensor network the number of sensors (landmarks) will nor-
mally be known.

Due to the duality of the estimation problem implied in slam, i.e. estimate a

map and simultaneously localize the vehicle in the map, the question of state observ-
ability needs to be answered. Previous observability analyzes on the slam prob-
lem Kim and Sukkarieh (2004); Bryson and Sukkarieh (2008); Andrade-Cetto
and Sanfeliu (2005); Lee et al. (2006); Wang and Dissanayake (2008); Perera et al.
(2009) has focused on vehicle fixed range and/or bearing sensors, such as laser
and camera. Perera et al. (2009); Andrade-Cetto and Sanfeliu (2005) conclude
that only one known landmark needs to be observed in 2D slam for the global
map to be locally weakly observable. In our proposed system the sensors are in
the actual landmarks position and their measurements are informative in both
range and bearing to the dipole, hence the global map is observable if one sensor
position is known. Theoretically this means that the sensor positions and the tra-
jectory can be estimated in a global coordinate frame with a global map position
error depending only on the error of the known sensor. If no global position of
either sensor or vessel is available the sensors can be positioned locally.

Even if the system is observable there are no guarantees that a EKF will con-
verge since it depends on the linearization error and the initial linearization point.
More recent approaches to the slam problem Kaess et al. (2007); Dellaert (2005)
consider smoothing instead of filtering. These methods can handle linearization
errors better since the whole trajectory and map can be re-linearized. Yet, a good
initial linearization point is necessary.

2.3 Cramér-Rao Lower Bound

Given the trajectory of a vessel, it is interesting to study a lower bound on the co-
variance of the estimated sensor positions. We have chosen to study the Cramér-
Rao lower bound (crlb) due to its simplistic advantages. crlb is the inverse of
the Fisher Information Matrix (FIM), I(x), which in case of Gaussian measure-
ment errors can be calculated as

I(x) = H(x)T R(x)�1H(x), (7a)
H(x) = rxh(x) (7b)

where R(x) is Gaussian measurement noise and H(x) denote the gradient of h(x)
w.r.t. x. The crlb of a sensor position is given by

Cov(s) = E
n

(s0 � s)(s0 � s)T
o

(8a)

� I(s)�1 (8b)
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where s0 is true sensor position and s is the corresponding estimate. Since in-
formation is additive the FIM of a sensor location for a certain trajectory can be
calculated as the sum of the FIMs from all vessel positions along the trajectory.
The lower bound of the covariance of the sensor position estimate is then the in-
verse of the sum of the FIMs. A more extensive study of the fundamentals of
crlb can be found in Kay (1993).

3 Simulation Results
The sensor positioning problem can, depending on which sensors are available,
be solved in di↵erent ways. If no accurate global position of the vessel or a sen-
sor is available during the experiment (GPS is for example easily jammed), the
sensors can only be positioned locally. In Section 3.1, magnetometers are used
to localize the sensors. If global vessel position is available throughout the ex-
periment, from GNSS or using a radar sensor and a sea chart, it can be used as a
measurement of the position of the vessel. This will not only position the sensors
globally but also enable a more accurate trajectory estimation. This experimental
configuration is simulated in Section 3.2. The parameters used in the simulations
are listed in Table 1.

Param. Covariance
SLAM/GNSS

x0 10/10 m
y0 10/10 m
v0 0/0 m/s
h0 1/1 rad
!0 0/0 rad/s
sxj 400/400 m

eGNSS 1 m
eh 10�16 T

Param. Value

m [50, -5, 125] kAm2

µ0 4⇡ 10�7 Tm/A
dj,0 {-5, -15} m
T 0.1 s

Table 1: The parameters used in the simulations.

3.1 Magnetometers Only
If there is no reliable global position measurement of the vessel, the trajectory
of the vessel must be estimated using the same magnetic fluctuatuions as are
being used to localize the sensors. Simulations show that the sensor network
needs to be more dense when no GNSS is available. If there is little or no overlap
in which two or more sensors observe the vessel simultaneously, the trajectory
estimate, and in the end the sensor position estimates, depend more on the vessel
model than observations. Yet, the sensor positions are still coupled through the
covariance matrix.

A sensor localization simulation using 7 sensors and a generated trajectory is
shown in Fig. 2 and Fig. 3. Fig. 4 shows the Root Mean Square Error (RMSE) of
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each sensor as it developes over time. Since the initial guesses of sensor positions
were generated independently, di↵erent sensors have di↵erent initial errors. All
sensor though have the same initial uncertainty covariance (400 m, see Table 1 ).
The initial guesses are meant to represent the prior information of the true sensor
positions, acquired during sensor deployment. The limited range of the magnetic
fluctuations causes the sensor position estimate to change only when the vessel
is su�ciently close. This can be studied in Fig. 4. Sensor 4 in Fig. 2 is too far
away from the vessel for accurate positioning, resulting in a large uncertainty
ellipse. From Fig. 2, it is clear that error in trajectory estimates result in errors in
estimated sensor positions.

200 Monte Carlo simulations using di↵erent trajectories and sensor locations
show that this configuration results in a positioning error of 26.3% in average.
A sensor failing to retain the true sensor position within two standard devia-
tions was considered incorrectly positioned. In Fig. 2, sensor 7 is incorrectly
positioned.
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Figure 2: Estimated sensor positions with 2� uncertainty and vessel trajec-
tory, for simulations using magnetometers.

3.2 Magnetometers and GNSS
If global position measurements of the vessel are available throughout the tra-
jectory, these measurements are used to improve the trajectory estimate. Each
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Figure 3: Estimated vessel trajectory with 2� uncertainty and sensor posi-
tions, for simulations using magnetometers.

sensor is positioned relative to the trajectory of the vessel and is therefore less de-
pendent of other sensor positions than in Section 3.1. This is quite natural since
the cross correlations will not have such great impact on the sensor position es-
timates when the trajectory is known. Simulation results using the same sensor
positions and trajectory used in Section 3.1, are shown in Fig. 5. Fig. 6 shows the
RMSE of each sensor throughout the simulation. The global trajectory measure-
ments result in more accurate sensor position estimates and lower uncertainties
than using only magnetometers. Sensor 4 is far away from the trajectory resulting
in a very uncertain position estimate.

200 Monte Carlo simulations using di↵erent trajectories and sensor locations
show that using magnetometers and GNSS results in a sensor positioning error
of 12.9% in average.

3.3 Trajectory Evaluation using CRLB

crlb for sensor positions surrounding a couple of trajectories were calculated
for the case of GNSS and magnetometers. A high crlb indicates that after a
simulation, a sensor in that position would still have a high uncertainty. Fig. 7
shows the trajectory used in Sections 3.1 and 3.2. Fig. 8 and Fig. 9 show two other
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Figure 4: Root Mean Square Error of estimated sensor positions throughout
the simulation using only magnetometers.

trajectories. It is clear that the crlb becomes low in an area where the vessel can
be observed from many directions. In Fig. 8 sensor positions quite close to the
end of the trajectory have a high crlb since they only observe the vessel from
one direction. In Fig. 9 sensor positions between the start and end point of the
trajectory are relatively di�cult to estimate since it only observe the vessel from
two opposite directions. The simulations suggest that in field experiments the
vessel should be manouvered in a trajectory that allows each sensor to observe
the vessel from as many directions as possible.

3.4 Sensitivity Analysis, Magnetic Dipole

The magnetic dipole of the vessel will probably not be accurately measured in a
real world experiment. How will the positioning perform if the estimated magni-
tude of the dipole is for example 102% or 110% of the true magnitude?

The trajectory previously used has been simulated using an assumed dipole that
di↵ers from the true one. A dipole with a magnitude of 98% of the true one is
generated and the error is divided over the three components of the dipole. Each
dipole error is simulated multiple times using the same trajectory and each time
the error is distributed amongst the dipole components di↵erently. Again, a sen-
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Figure 5: Estimated vessel trajectory and sensor positions with 2� uncer-
tainty. GNSS and magnetometers are used as sensors.

sor failing to retain the true sensor position within two standard deviations is
considered incorrectly positioned. Table 2 shows the percentage of incorrectly
positioned sensors for di↵erent errors of magnitude and di↵erent simulation set-
tings.

Dipole 80% 90% 95% 98% 99% 100%
SLAM 44.6% 25.7% 23.4% 23.4% 18.9% 14.3%
GNSS 38.3% 9.7% 3.4% 2.9% 0.0% 0.0%

Dipole 101% 102% 105% 110% 120%
SLAM 14.3% 14.3% 16.6% 34.3% 53.1%
GNSS 4.0% 4.6% 8.6% 12.0% 38.3%

Table 2: Sensitivity analysis of error in dipole estimate.

3.5 Sensitivity Analysis, Sensor Orientation
The sensor orientation is assumed measured in the previous experiments since
it can be estimated prior to the experiment. We will now study how sensitive
the system is to errors in the orientation estimate. The positioning performance
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Figure 6: RMSE of estimated sensor positions throughout the simulation.
GNSS and magnetometers are used as sensors.

when sensor orientation errors are present, are evaluated using 25 Monte Carlo
simulations for each orientation error using di↵erent trajectories. For each sim-
ulation, random orientation errors with the stated covariance are generated. (A
covariance of 0.16 rad results in orientation errors up to 0.8 rad or 45�.) Table 3
shows the percentage of incorrectly positioned sensors for di↵erent sensor orien-
tation error covariances.

Note that the sensor positioning error of a system using GNSS and magnetome-
ters was merely una↵ected by the introduction of an orientation covariance of
up to 0.04 rad. If the sensor observes the vessel from many di↵erent directions,
the positioning still succeeds. When only magnetometers are used, the trajectory
measurements cannot compensate for the errors in orientation, rendering larger
positioning errors.

Ori Cov 0.0 rad 0.01 rad 0.04 rad 0.16 rad 0.36 rad
SLAM 26.3% 29.8% 36.9% 54.8% 52.4%
GNSS 12.9% 12.5% 11.9% 18.5% 26.8%

Table 3: Sensitivity analysis of error in estimated sensor orientation.
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Figure 7: crlb for all sensor positions surrounding the trajectory (in red).
Trajectory 1.

4 Conclusions

We have presented a silent underwater sensor localization scheme using triaxial
magnetometers and a friendly vessel with known magnetic characteristics. More
accurate sensor positions will enhance the detection, tracking and classification
ability of the underwater sensor network. Monte Carlo simulations indicate that
a sensor positioning accuracy of 26.1% is achievable when only magnetometers
are used and of 12.9% when GNSS and magnetometers are used. Knowing the
magnetic dipole of the vessel is important and a dipole magnitude error of 10%
results in a positioning error increase of about 10%. Simulations also show that
our positioning scheme is quite unsensitive to minor errors in sensor orientation,
when GNSS is used throughout the trajectory.
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Figure 8: crlb for all sensor positions surrounding the trajectory (in red).
Trajectory 2.
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Figure 9: crlb for all sensor positions surrounding the trajectory (in red).
Trajectory 3.
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Abstract

In this paper we present a solution to the simultaneous localisation
and mapping (SLAM) problem using a camera and inertial sensors.
Our approach is based on the maximum a posteriori (MAP) estimate
of the complete SLAM problem. The resulting problem is posed in
a nonlinear least-squares framework which we solve with the Gauss-
Newton method. The proposed algorithm is evaluated on experimen-
tal data using a sensor platform mounted on an industrial robot. In
this way, accurate ground truth is available, and the results are encour-
aging.

Keywords: Inertial measurement units, Cameras, Smoothing, Dynamic systems,
State estimation

1 Introduction

In this paper we present an optimisation based solution to the simultaneous local-
isation andmapping (SLAM) problem formulated as nonlinear least-squares, and
solved with the Gauss-Newton method. The method aims at providing high qual-
ity SLAM estimates which could e.g., be used as priors for computing detailed
terrain maps.

SLAM is the problem of estimating a map of the surrounding environment from
a moving platform, while simultaneously localising the platform. These estima-
tion problems usually involve nonlinear dynamics and nonlinear measurements
of a high dimensional state space. In Dellaert, F. and Kaess, M. (2006) a nonlin-
ear least-squares approach to SLAM, called square root Smoothing and Mapping
(
p
SAM) is presented. We extend this approach by considering a full 6 DOF plat-

form, 3 DOF landmarks, inputs using inertial sensors and camera measurements.
The resulting algorithm is evaluated on experimental data from a structured in-

105
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door environment and compared with ground truth data.

For more than twenty years SLAM has been a popular field of research and is
considered an important enabler for autonomous robotics. An excellent intro-
duction to SLAM is given in the two part tutorial by Durrant-Whyte and Bai-
ley (2006); Bailey and Durrant-Whyte (2006) and for a thorough overview of vi-
sual SLAM Chli (2009) is highly recommended. In the seminal work of Smith
et al. (1990) the idea of a stochastic map was presented and was first used in P.
Moutarlier and R. Chatila (1989), where the estimate is computed with an Ex-
tended Kalman Filter (EKF). There are by now quite a few examples of successful
EKF SLAM implementations, see e.g., J.E. Guviant and E.M. Nebot (2001); J. J.
Leonard and H. Jacob and S. Feder (2000). Another popular approach is the Fast-
SLAM method (Montemerlo et al., 2002, 2003) which uses particle filters. These
are known to handle nonlinearities very well. Both EKF SLAM and FastSLAM suf-
fer from inconsistencies due to poor data association, linearisation errors (Bailey
et al., 2006a) and particle depletion (Bailey et al., 2006b).

Some impressive work where the SLAM problem is solved solely with cameras
can be found in Davison et al. (2007); Davison (2003); Eade (2008); Klein and
Murray (2007). The camera only SLAM methods have many similarities with
bundle adjustment techniques, (Hartley and Zisserman, 2004; Triggs et al., 2000),
and the stochastic map estimation problem can be seen as performing structure
from motion estimation (Fitzgibbon and Zisserman, 1998; Taylor et al., 1991).
Without any other sensors measuring the platform dynamics, the image frame
rate and the visual information contents in the environment are limiting factors
for the ego motion estimation, and hence the map quality.

Recent years’ increase in computational power has made smoothing an attrac-
tive option to filtering. One of the first SLAM related publications, where the
trajectory is not filtered out to a single estimate is Eustice et al. (2006), where
the whole time history is estimated with a so called delayed state information filter.
Other, more optimisation like approaches are Dellaert, F. and Kaess, M. (2006); M.
Kaess and A. Ranganathan and F. Dellaert (2008); Bibby and Reid (2007); Bryson
et al. (2009), which all optimise over the whole trajectory and a feature based
map.

2 Problem Formulation

We assume that the dynamic model and the measurements are on the following
form

xt = f (xt�1, ut) + Bwwt
|{z}

w̃t

, (1a)

lt = lt�1, (1b)
ytk = h(xtk , ltk ) + etk , (1c)
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where xt and lt are vehicle and landmark states, respectively, and the inertial mea-
surements can be modelled as inputs ut . The meaning of ytk is a measurement
relative to landmark ltk at time tk , and this is because the measurements and the
dynamic model deliver data in di↵erent rates. If we assume that all the measure-
ments and the inputs for t = {0 : N } and k = {1 : K} (K ⌧ N ) are available and the
noise is independent and identically distributed (i.i.d.), then the joint probability
density of (1) is

p(x0:N , lN |y1:K , u1:N ) =

p(x0)
N
Y

t=1

pw̃t
(xt |xt�1, ut)

K
Y

k=1

petk (ytk |xtk , ltk ). (2)

Note that the map, lN , is static and the estimate is given for the last time step
only. Furthermore, the initial platform state x0 is fixed to the origin without
uncertainty. This is a standard SLAM approach and x0 is therefore treated as a
constant. The smoothed maximum a posteriori (MAP) estimate of x0:N and lN is
then

[x⇤0:N , l⇤N ] = argmax
x0:N , lN

p(x0:N , lN |yt1:tK , u1:N ) =

argmin
x0:N , lN

� log p(x0:N , lN |yt1:tK , u1:N ). (3)

If the noise terms w̃t and etk are assumed to be Gaussian and white, i.e., etk ⇠
N (0, Rtk ) and w̃t ⇠ N (0, eQt), (3) then becomes

[x⇤0:N , l⇤N ] = argmin
x0:N , lN

N
X

t=1

||xt � f (xt�1, ut)||2
eQ�1t

+

K
X

k=1

||ytk � h(xtk , ltk )||2R�1tk , (4)

which is a nonlinear least-squares formulation.

3 Models

Before we introduce the details of the dynamic model some coordinate frame
definitions are necessary:

• Body coordinate frame (b), moving with the sensor and with origin fixed in
the IMU’s inertial centre.

• Camera coordinate frame (c), moving with the sensor and with origin fixed
in the camera’s optical centre.

• Earth coordinate frame (e), fixed in the world with its origin arbitrary posi-
tioned.
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When the coordinate frame is omitted from the states it is assumed that they are
expressed in the earth frame e.

3.1 Dynamics

The dynamic model used in this application has 10 states consisting of the posi-
tion and velocity of the b frame expressed in the e frame, pe = [px py pz]T and
ve = [vx vy vz]T , respectively. The orientation is described using a unit quater-
nion qbe = [q0 q1 q2 q3]T defining the orientation of the b frame expressed in the
e frame. The IMU measurements are treated as inputs, reducing the state dimen-
sion needed, and we denote the specific force ub

a = [abx aby abz ]T and denote the
angular rate ub

! = [!b
x !b

y !b
z ]T . The dynamics of the sensor in (1a) is then
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where

wb
a,t ⇠ N (0, Qa), Qa = �aI3, (6a)

we
w,t ⇠ N (0, Qw), Qw = �wI3, (6b)
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where R(qbet ) 2 SO(3) is the rotation matrix parametrised using the unit quater-
nion and R(qbet )T ub

a,t + ge is the specific force input expressed in the e frame,
where ge = [0 0 � 9.81]T compensates for the earth gravitational field.

3.2 Landmark State Parametrisation

Landmark states are encoded in the Inverse Depth Parametrisation (IDP) (Civera
et al., 2008). The first three states, xe, ye and ze, represent the 3D position of the
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camera when the landmark was first observed. The last three states describe a
vector to the landmark in spherical coordinates parametrised with azimuthal an-
gle 'e, elevation angle ✓e and inverse distance ⇢e, giving le = [x y z ✓ ' ⇢]T . The
angles 'e, ✓e and the inverse distance ⇢e are expressed in the right handed earth
coordinate frame e with ze-axis pointing upwards. This means that a landmark l,
with earth fixed coordinates [xel y

e
l z

e
l ]

T is parametrised as
2
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Since the camera is calibrated, as in Zhang (2000) using the toolbox (Bouguet,
2010), the landmark states can be introduced using normalised pixel coordinates
[u v]T according to

pe =
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, (8a)
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'e = arctan 2(gey, g
e
x), (8c)

✓e = arctan 2
⇣

||[gex gey]
T ||2, gez

⌘

, (8d)

⇢e =
1
de
0
. (8e)

Here, qbc is the unit quaternion describing the fixed rotation from the camera
frame to the body frame. Furthermore, pe is the camera position when the land-
mark is observed and d0 is the initial depth for the landmark. Finally, ✓ =
arctan 2( · ) is the four-quadrant arc-tangent, ✓ 2 [�⇡,⇡]. The complete landmark
vector is of the dimension 6 ⇥ nlandmarks and nlandmarks will vary depending on
when new landmarks are initiated.

3.3 Camera Measurements

The measurements are sub-pixel coordinates in the images given by the SIFT fea-
ture extractor (Lowe, 1999). The dimension of the measurement vector ytk is
2 ⇥ naf, where naf denotes the number of associated features. The measurements
are expressed in normalised pixel coordinates. The camera measurement equa-
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tion relating states and measurements has the form

ytk = h(xtk , ltk )
|    {z    }

yctk

+etk , (9)

where

etk ⇠ N (0, Rtk ), Rtk = �featuresI2⇥naf . (10)

Using the IDP, (7) and (8), for a single landmark j and omitting time dependency,
the measurement (9) is calculated as

lcj =
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=
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⇣

pe � pej �R(qbe)T rbc
⌘

+ m('j , ✓j )
⌘

, (11a)

ycj =
1
lcz,j

"

lcx,j
lcy,j

#

, (11b)

where pej and ⇢ej are defined in (8a) and (8e), respectively. The translation rbc

and orientationR(qbc) defines the constant relative pose between the camera and
the IMU. The parameters in rbc and R(qbc) were estimated in the previous work
by Hol et al. (2010).

4 Solution

The proposed solution starts with an initialisation of the states using EKF SLAM
and the initial states are then smoothed using nonlinear least squares.

4.1 Initialisation

The nonlinear least-squares algorithm needs an initial estimate x00:N , l0N , which is
obtained using EKF SLAM. The time update is performed with the model (5) in a
standard EKF, for details, see e.g., Kailath et al. (2000). The landmark states (1b)
are stationary and will therefore only be corrected in the measurement update.

The measurement update needs some further explanation. Each time an image is
available (which in our experiments is 8 times slower than the specific force and
the angular rate inputs) a measurement update is made. The measurement up-
date needs an association between the features extracted from the current image
and the landmarks present in the state vector. The associations computed during
EKF SLAM are found in the following way; first, all landmarks are projected into
the image according to (9) and the most probable landmarks are chosen as the
nearest neighbours inside a predefined region. Second, the SIFT feature descrip-
tors for the landmarks and features inside the region are matched. In this way a
data association sequence is created for each image, relating the measurements
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and the landmarks in the state vector. To enhance the feature tracking we discard
unstable features (i.e., those that are only measured once or twice) and features
are proclaimed usable only if they are found at least three times.

4.2 Nonlinear Least-Squares Smoothing

The nonlinear problem (4) is in our approach solved using the Gauss-Newton
method, i.e., at each iteration we solve the linearised version of the problem.

In order to formulate the linearised least-squares smoothing problem for our spe-
cific setup we first need some definitions:

Ft ,
@f (x, u)

@x

�

�

�

�

�

(x,u)=(x0t�1,ut )
, (12)

is the Jacobian of the motion model and

H
j
tk ,

@h(x, l)
@x

�

�

�

�

�

(x,l)=(x0tk ,l
0
j )
, (13)

is the Jacobian of the measurement k at time tk with respect to the vehicle states.
The IDP gives a special structure to the equations since the measurements of the
features are related to the pose where the features where initialised. Therefore,
the landmark Jacobian is split into two parts. The first part is

J
j
xtk
,

@h(x, l)
@x

�

�

�

�

�

(x,l)=(x0tk ,l
0
j )
, (14)

which is the Jacobian of measurement k at time tk , with respect to the position
where landmark j was initialised. The second part is the Jacobian of measure-
ment k at time tk of the states �j , ✓j and ⇢j of landmark j

J
j
tk ,

@h(x, l)
@l

�

�

�

�

�

(x,l)=(x0tk ,l
0
j )
. (15)

From the initialisation, Section 4.1, a trajectory x00:N and a landmark l0N estimate
is given and is therefor treated as a constant. The linearised process model at
time t is then

x0t + �xt = Ft(x0t�1 + �xt�1) + But + Bw(x0t�1)wt. (16)

The linearised measurement equations are given by

y
j
tk = h(x0tk , l

0
j ) + H

j
tk �xtk + J

j
xtk

�xtk + J
j
tk �lj + e

j
tk . (17)

The linearised least-squares problem for the prediction and measurement errors
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is then

[�x⇤t , �l⇤j ] = argmin
�xt ,�lj

N
X

t=1

||Ft�xt�1 � I�xt � at ||2
eQ�1t

+
K

X

k=1

||Hj
tk �xtk + J

j
xtk

�xtk + J
j
tk �lj � c

j
tk ||2R�1tk (18)

where at = x0t �Ftx0t�1�But and c
j
tk = y

j
tk �h(x0tk , l0j ). Here at and c

j
tk are the predic-

tion errors of the linearised dynamics around x0t and the innovations, respectively.
The stacked version of the problem (32) can be solved iteratively according to

⌘ i+1 = argmin
⌘

||A(⌘ i )⌘ � b(⌘ i )||22, ⌘0 = 0, (19)

where we define ⌘ = [�xt, �lj ], and A(⌘) and b(⌘) is the matrix part and the vector
part of (32), respectively.

The structure of the A matrix is perhaps best explained using an example:
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tk = 1 : Two landmarks are seen for the first time giving the landmarks’ ini-
tialisation positions, i.e., the columns where the Jacobians (34) are
placed.

tk = 5 : The second camera measurement arrives, landmarks 1 and 2 are ob-
served and the first two block rows of A21 and A22 are added.

tk = 9 : Camera measurement 3 arrives, landmark 2 is observed and the third
block row of A21 and A22 is added.

tk = 13 : Camerameasurement 4 arrives, landmark 1 is observed and the fourth
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Algorithm 1 Nonlinear Least-Squares Smoothing for SLAM

Input: x0, l0 (trajectory and map from previous iteration), u (inputs), data as-
sociation
Output: xs, ls (smoothed estimate of the trajectory and the map)
N = # IMU measurements
A = [ ], a = [ ], c = [ ]
for i = 1 to N do
predict states, xi = f (x0i�1, ui )
if image available then
use the data association and calculate h(x0i , l

0
i )

calculate A11 = [A11 Ai
11]

T ,
A21 = [A21 Ai

21] and
A22 = [A22 Ai

22] according to (26) - (17)
calculate ai = x0i � xi
calculate ci = yi � h(x0i , l0i )
set a = [aT aTi ]

T

set c = [cT cTi ]
T

else
calculate A11 = [A11 Ai

11]
T

calculate ai = x0i � xi
set a = [aT aTi ]

T

end if
end for
Assemble up A according to (17) and b = [aT cT ]T

solve the least squares problem (19)
calculate [xsT , lsT ]T = [x0T , l0T ]T + ⌘

block row of A21 and A22 is added.

A single iteration of the nonlinear least-squares smoothing algorithm can be sum-
marised in pseudo code as seen in Algorithm 1.

The least-squares problem is weighted, so it is assumed that all of the terms in
(32) are multiplied with the corresponding matrix square root of the inverse of
the covariance matrices for the process and the measurement noise, respectively.
Note that the covariance matrix of the process noise, eQt = Bw(x0t )QtBw(x0t )

T , is
singular rendering the use of normal inversion impossible. In order to overcome
this, we simply regularise the problem by adding a diagonal matrix �I to the
covariance matrix, with � being a small number, rendering the covariance matrix
invertible. Furthermore, it is assumed that the associations from the initialisation
is good enough and that we do not have to compute new associations after each
iterate.
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5 Experiments

The implementation is done in Matlab, except for the SIFT binaries, where we
use a C code library from Hess.

5.1 Experimental Setup

For the purpose of obtaining high quality ground truth motion data we used an
IRB 1400 industrial robot fromABB. In an industrial robot the rotation and trans-
lation of the end tool can be logged with high accuracy. This gives an excellent
performance evaluation possibility, which is otherwise di�cult. The actual robot
trajectory was not possible to acquire during the experiment. However, since the
industrial robot is very accurate the actual output of the robot will be very close
to the programmed trajectory.

We constructed a small synthetic environment with known topography to obtain
realistic ground truth map data, see Fig. 1b. We use a combined IMU/camera sen-
sor unit, shown in Fig. 1a. The sensor unit is mounted at the end tool position of
the industrial robot. The IMU measurements are sampled at 100 Hz and images
of size 640 ⇥ 480 pixels are sampled at 12.5 Hz.

(a) The combined strap-down IMU and
camera system.

(b)An image from the camera during the
experiment.

Figure 1: The IMU/camera sensor unit used in the experiments and an image
from the camera over-viewing the synthetic environment.

5.2 Results

The resulting trajectories andmap obtained with the data from an experiment are
presented in Fig. 2. The Ground truth trajectory is a reference trajectory for the
robot. From these plots it is clearly visible that the smoothed estimate is closer
to the true trajectory than the initial estimate. The improvement is also visible if
the initial estimate and the final smoothed landmark estimate are compared as in
Fig. 3. Note that some landmark positions are already quite accurately estimated
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since the change is small after the smoothing. The smoothed estimate also has a
more accurate universal scale.
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Figure 2: The smoothed trajectory in red, the initial EKF trajectory in blue
and the ground truth trajectory in black. The black crosses are the smoothed
landmark estimates.

Both the smoothed horizontal speed of the platform, defined as ||[vxt v
y
t ]

T ||2, and
resulting estimate from the initialisation are plotted in Fig. 4. We see that the
smoothed speed is much closer to 0.1 m/s, which is the true speed.

6 Conclusions and Future Work
In this work we have presented the SLAM problem formulated as nonlinear least-
squares. For evaluation we have used a combined camera and IMU sensor unit
mounted at the manipulator of an industrial robot which gives accurate ground
truth.

The experimental results in Section 8 show that the nonlinear least-squares trajec-
tory, Fig. 2, and the speed estimate, Fig. 4, show a significant improvement of the
initial estimate. The sparse point cloud in Fig. 3, illustrating the initial landmark
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Figure 3: The initial landmark estimates given by the EKF in blue bullets
and the final smoothed estimate in red diamonds, where the black dashed
line illustrate the relative displacement.

estimate and final smoothed estimate, shows also an improvement. The universal
scale of the environment is improved since the landmarks have moved towards
more probable positions.

For a long-term solution another initialisation procedure is necessary, since EKF
SLAM is intractable for large maps. A possible alternative is to use IMU sup-
ported visual odometry to get a crude initial estimate. This approach needs a
supporting global data association scheme.
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Figure 4: The smoothed horizontal speed of the camera in red and EKF in
blue. The true speed is 0.1 m/s except for when the robot stops and changes
direction, this happens at about 4 seconds and 6 seconds.
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Abstract

We compare dead-reckoning of underwater vehicles based on inertial
sensors and kinematic models on one hand, and control inputs and hy-
drodynamic model on the other hand. Both can be used in an inertial
navigation system to provide relative motion and absolute orientation
of the vehicle. The combination of them is particularly useful for ro-
bust navigation in the case of missing data from the crucial doppler
log speedometer. As a concrete result, we demonstrate that the perfor-
mance critical doppler log can be replaced with longitudinal dynam-
ics in the case of missing data, based on field test data of a remotely
operated vehicle.

1 Introduction

Unmanned Underwater Vehicles (UUV) are widely used around the world, both
in military applications such as mine hunting and mine disposal, and in civilian
applications such as surveillance of divers and tunnel or hull inspections. There
are di↵erent kinds of UUV which are mainly divided into Remotely Operated Ve-
hicles (ROV) and Autonomous Underwater Vehicles (AUV). The main di↵erence
between these two is that the ROV is tethered either to a submarine, a surface ves-
sel or a used in a harbour and is thereby controlled by an operator. AUVs often
just move forward and steer the heading and depth with rudders like a torpedo,
contrary, ROVs can be steered in many directions since they usually have several
thrusters. The ROV used in the experiments is the Saab Seaeye Falcon which is
depicted in Fig. 1.

Inertial navigation is the key component in most advanced navigation systems,
and the only approach that does not rely on external infrastructure of informa-
tion. The key idea is that angular speeds measured by gyroscopes can be in-
tegrated to provide the orientation of the vehicle, while accelerations from ac-
celerometers are after rotation with the current orientation integrated twice to
provide the position relative the starting point. Inertial navigation su↵ers from
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drift, more severe to the consumer grade than tactical grade sensors. A magne-
tometer and the indirect information from the gravity can be used to stabilize
the orientation. Nevertheless, gravity leakage into the acceleration will occur,
that causes a drift in position that is cubic in time. Integration of position in-
formation from global navigation satellite systems (GNSS) eliminates this drift,
but satellite signals are not available in underwater environments. An additional
velocity sensor, as the doppler log studied here, reduces this drift considerably
to linear in time. Thus, velocity information is crucial for low-cost navigation
systems. The doppler log is subject to outliers and missing data during certain
operating conditions, so a backup system for speed information is highly desir-
able.

We here investigate whether a dynamic model of the vehicle can be used for nav-
igation, together with the control signals (engine reference speed and rudder for
general AUV’s, input voltage to five thrusters for our ROV). The model poten-
tially provides an independent observation of vehicle speed and angular rate.
We will demonstrate that in particular the speed can be accurately predicted by
the model. That is, fusion of kinematic and hydrodynamic models allows for
robust navigation. Further, the dynamic model gives the speed in water, while
the doppler log gives the speed over seabed. The di↵erence corresponds to water
stream, which is an important parameter for the control system, that can be esti-
mated by fusion of the two models. Our experimental conditions did not have a
significant stream and this potential benefit is not further investigated here.

Having two separate sources of speed and angular rate can also be used for fault
detection and monitoring. For instance, a change in hydrodynamics caused by a
foreign object stuck to the vehicle, or malfunctioning thrusters, can be detected
and isolated. This might be a subject for future studies.

This paper is organised as follows. Section 2 discuss related literature. Section 3
gives a brief system overview and introduce the kinematics. The hydrodynamic
models are presented in Section 4 while the sensor models are described in Sec-
tion 5. The sensor fusion in combination with the hydrodynamic model is de-
scribed in Section 6 and the results are presented in Section 8 on data from ac-
tual sea trials conducted in Lake Vättern, Sweden. Finally, Section 8 contains
concluding remarks and gives some suggestions for future directions.

2 Related Work
Navigation of underwater vehicles are in general based on the onboard inertial
navigation system (INS) but due its inherent drift, these systems are often aided.
Support systems can for instance include doppler speedometers Jalvning et al.
(2004), GNSS fixes at the surface and acoustic baseline positioning using transpon-
ders Allen et al. (2006); Mandt et al. (2001). The INS can also be supplemented
with map-aided bathymetric navigation Karlsson and Gustafsson (2006); Pap-
palardi et al. (2001); Ånonsen and Hallingstad (2006) where the bottom profile
is measured using echo sounders. Other, interesting, approaches are using stereo
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Figure 1: The Saab Seaeye Falcon vehicle that was used that was used in the
experiments.

camera systems which estimates terrain information and navigation states on the
fly Eustice et al. (2006); Mahon et al. (2008). Another way of improving naviga-
tion is considering physically motivated dynamic models, which in naval termi-
nology is known as hydrodynamics. Hydrodynamic models can be seen as aiding
sensors Fauske et al. (2007) which are independent of the INS, making them par-
ticularly useful for robust navigation and model based fault-detection. Estima-
tion of hydrodynamic parameters has a long tradition, see Fossen (2002); Indiveri
(1998), usually involving lengthy and costly experiments. Due to the complexity
of the often largely over-parametrized models, specialized experiments have to
be conducted isolating only a single or a few degrees of freedom. Motions like
these will however rarely occur under normal operation conditions. Recently,
methods for identification has emerged which do not rely on expensive reference
systems as in Taino et al. (2007); Kim et al. (2002). ROVs are often configured dif-
ferently, depending on the mission, and hence online estimation techniques are
of great interest. Identification of underwater vehicles using an observer based
method is done in Taino et al. (2007). Caccia et al. Caccia et al. (2000) is a further
development of the work in Alessandri et al. (1998) where they identified a ROV
from the inexpensive onboard sensor using an EKF with augmented state which
inspired the work of Millert et al. Millert and Tayamon (2009).
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Figure 2: The configuration of the thrusters as seen from above where the
fore is pointing to the left.

3 System Overview

The Falcon is an Open-Frame ROV similar to the JHUROV in Smallwood and
Whitcomb (2003) and the ROMEO in Caccia et al. (2000). A variable config-
uration makes the ROV highly attractive as it can can be equipped di↵erently
depending on the mission. However, this may also alter previously estimated
hydrodynamic parameters. The ROV has a cascade control structure where the
outer loop consists of the operator which demands a reference speed and a refer-
ence heading and the inner loop consists of thruster PID-controllers striving to
minimize the speed and heading errors by means of the INS. The dimensions are
0.7 ⇥ 0.6 ⇥ 1.0m and is symmetrical along its axes. The dry mass of the Falcon
is approximately 73kg with the standard sensor payload. The propulsion system
consists of five brushless thrusters of which four are horizontal vectored thrusters
for motions in surge, sway and yaw and a thruster for motion in heave. Thus, the
Falcon is under-actuated as it is only controllable in four degrees of freedom. The
thruster configuration can be seen in Fig. 2. The Falcon is equipped with five
sensors, these are vector magnetometer, vector gyroscope, vector specific force,
doppler velocity log (measuring linear speed) and a depth sensor.
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3.1 Kinematics

The kinematics is expressed in the commonly used SNAME notation SNAME
(1950). The ROV is a rigid body and its position and orientation can be described
using seven coordinates

⌘ =
h

x y z qT
iT

, (1)

where x, y and z denote the position decomposed a local North-East-Down (NED)
frame called the e-frame which is a plane tangential to the earth’s surface at the
current location. This frame is considered to be inertial. Furthermore, q is a unit
quaternion

q =
h

q0 q1 q2 q3
iT

. (2)

parametrising the orientation of the vehicle w.r.t. the inertial frame, see e.g., Fos-
sen (2002); Kuipers (2002) for details. The velocities

⌫ =
h

u v w p q r
iT

, (3)

are decomposed in the body fixed frame b. Here, u, v and w denote the velocity
in surge, sway and heave and p, q and r denote the angular velocities in roll, pitch
and yaw, respectively. The b frame is fixed in the vehicle with the u-axis pointing
forewords in the vehicle’s direction, v-axis to the port and the w-axis upwards.
The origin of the frame will be the approximate centre of mass. The kinematic
equations are then

⌘̇ = J(⌘)⌫, (4)

where J(⌘) is the transformation from the body fixed frame to the e frame.

4 ROV Modeling

Hydrodynamics is the terminology of submerged or partially submerged bodies
subject to forces and torques. Hydrodynamic model structures can be derived us-
ing first principles of physics and some unknown parameters may be identified
with e.g., bollard pull or towing tank experiments. The parameters in the mod-
els are in general time varying, however an alternative is to estimate constant
models for di↵erent regions of the ROV movement, such as uniform acceleration,
uniform translation and hover, as suggested by Morrison (1994). This approach
was considered in Millert and Tayamon (2009) in which several model structures
for the Falcon were identified of which some will be described and utilized in the
following sections. The six degrees of freedom (DOF) hydrodynamics of the ROV,
using notation from Fossen (2002), is

⌘̇ = J(⌘)⌫, (5a)
M ⌫̇ + C(⌫)⌫ + D(⌫)⌫ + g(⌘) = ⌧ + ew (5b)

whereM is the inertia matrix, C(⌫) is the Coriolis and centripetal matrix, D(⌫) is
the hydrodynamic damping matrix, g(⌘) is the hydrostatic restoring force vector,
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ew is the vector of environment disturbances, such as currents, and

⌧ =
"

⌧1
⌧2

#

, (6)

where

⌧1 =
h

X Y Z
iT

, (7a)

⌧2 =
h

K M N
iT

, (7b)

is the vector of forces and torques related to the propulsion. In previous work Alde-
bjer (2004); Millert and Tayamon (2009) model structures for (5) was identified
using free decay experiments and least squares.

The inertia matrix is invertible and therefore the hydrodynamics (5) can be put
into the form

⌘̇ = J(⌘)⌫, (8a)

⌫̇ = M�1 (⌧ � C(⌫)⌫ � D(⌫)⌫ � g(⌘) + ew) . (8b)

Let the state vector be defined as x = [⌘T ⌫T ]T and the input as u = ⌧ and
write (8) in compact form as

ẋ = f (x, u) + w. (9)

This notation will be useful later when estimation is concerned in Section 6.

4.1 Hydrodynamic Models

This section presents the hydrodynamic modeling approach that have been used
for the di↵erent types of forces and torques.

Added Mass and Inertia

The loss of acceleration in water can be modeled as an added mass Aldebjer
(2004); Fossen (2002). This applies both for the translation and rotation of the
vehicle. The vehicle has three planes of symmetry and it is therefore fair to ne-
glect the coupling terms in the added mass matrix

MA = �diag{Xu̇, Yv̇ , Zẇ, Kṗ, Mq̇, Nṙ }, (10)

which gives the total inertia matrix, M = MRB + MA, where MRB is the rigid
body inertia matrix. This approximation is applicable at the low speeds in which
the Falcon operates and furthermore, o↵-diagonal parameters are di�cult to esti-
mate. The Coriolis and centripetal matrix C(⌫) = CRB(⌫) + CA(⌫), where CRB(⌫)
can be calculated from the mass matrix

C(⌫) =
"

0 �S(M11⌫1 +M12⌫2)
�S(M11⌫1 +M12⌫2) �S(M21⌫1 +M22⌫2)

#

, (11)
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where

M =
"

M11 M12
M21 M22

#

, S(a) =

2

6

6

6

6

6

6

4

0 �a3 a2
a3 0 �a1
�a2 a1 0

3

7

7

7

7

7

7

5

. (12)

This is an o↵-diagonal structure that introduces desired coupling between the
states.

Gravity

The gravity is called a restoring force and it can be modeled as

g1,G =Rbe

2

6

6

6

6

6

6

4

0
0
mg

3

7

7

7

7

7

7

5

, (13)

g2,G =0

where Rbe = R(q) denotes a rotation from the e frame to the b frame and g ⇡
9.81m/s2 in Sweden. The force of gravity is a↵ecting the vehicle in the centre of
mass and therefore the moment from the gravity force is zero.

Buoyancy

Another restoring force is buoyancy which acts on the vehicle and prevents it
from sinking. Buoyancy arises when a body moves the fluid surrounding itself
and take its place. Buoyancy forces and torques can be modeled as

g1,B =Rbe

2

6

6

6

6

6

6

4

0
0

�g⇢V

3

7

7

7

7

7

7

5

, (14a)

g2,B =rcb ⇥ g1,B, (14b)

where the vector rcb is pointing from the centre of mass to the centre of buoyancy,
⇢ is the water density and V is the displaced water volume. In most underwater
vehicles the centre of buoyancy is above the centre of gravity since this will give
a restoring torque on the vehicle which helps stabilizing the vehicle in roll and
pitch. In most underwater applications the vehicle has almost the same buoyancy
and gravity magnitude since it otherwise would sink to the bottom or reach the
surface. Therefore, the buoyancy force is set to g1,B = �g1,G, since the vehicle
then is neutral in the water. In summary, the restoring force and moments vector
is

g(⌘) =
"

g1,G + g1,B
g2,B + g2,B

#

=
"

0
g2,B

#

. (15)

Drag

The damping forces acting on a marine vessel is described as a sum of potential
damping, skin friction, wave drift damping and vortex shedding, these are gener-
ally non-linear and di�cult to model. At moderate speed it is custom to assume
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uncoupled motion, hence, the damping matrix D(⌫) is diagonal. The drag force
model matrix is then

D1,D = � diag{Xu, Yv, Zw}
� diag{Xu|u||u|, Yv|v||v|, Zw|w||w|}, (16)

assuming both linear and quadratic damping as in e.g., Eng et al. (2008). As seen
in (16) the drag force is assumed to a↵ect the system independently in the three
axes. The drag force is assumed to a↵ect the vehicle in the centre of mass and
therefore the drag force will not produce any moment. However, the rotational
drag will produce a moment according to

D2,D = � diag{Kp,Mq, Nr }
� diag{Kp|p||p|, Mq|q||q|, Nr |r ||r |}. (17)

The complete damping model is then

D(⌫) =
"

D1,D 0
0 D2,D

#

. (18)

Thrusters

Thruster modeling is a thoroughly studied area with many alternatives proposed
in the literature and one of the most common and simplest models describe the
output force as quadratic function of the input voltage (or propeller revolution
rate) as

⌧ = Cu|u| (19)

where C is a constant and the absolute value accounts for the propeller direc-
tion. Previous work Millert and Tayamon (2009) has suggested a slightly di↵er-
ent model for the thrusters on this vehicle. This is a dynamic model with a rise
time of approximately 120ms which was estimated in bollard pull tests using a
load cell measuring the produced force. This dynamics is fast compared to the
rest of the system and is therefore neglected. The actual force produced when the
vehicle is moving may however di↵er from stationary experiments to a large ex-
tent Indiveri (1998). The force from the thrusters as function of the input signals
can be described by

⌧1,i =
⇣

2.98 · 10�4u3
i � 0.16ui |ui | + 0.32ui

⌘

, (20)

where ⌧1,i is the force from thruster i = 1, 2 . . . , 5 and ui is the measured input
signal for thruster i. It was noted that the thrusters saturate at 90% of its maxi-
mum input producing 127N. The force expressed in the ROV coordinate frame
is

⌧1,i = ⌧1,ivi (21)

vi is a unit vector pointing in the direction as the thruster exerts its force. This
force also create a moment on the vehicle which can be calculated by

⌧2,i = rTi ⇥ ⌧1,i , (22)
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where rTi is the vector pointing from the origin to the location of the i th thruster.
All forces and moments generated by the thrusters may be collected as

⌧1 =
5

X

i=1

⌧1,i , (23a)

⌧2 =
5

X

i=1

⌧2,i . (23b)

4.2 Discretization

The hydrodynamic model (8) is discretized with Eulers’s method which gives

⌘t+1 = ⌘t + T J(⌘t)⌫t , (24a)
⌫t+1 = ⌫t+

TM�1 (⌧t � C(⌫t)⌫t � D(⌫t)⌫t � g(⌘t)) + wt , (24b)

and it is assumed that the control input ⌧ is constant over the sampling interval
T . A simplified notation for (24) is

xt+1 = f (xt , u) + wt , (25)

where u = ⌧ and T is implicit. The process noise is wt ⇠ N (0,Qt) and a simple
discretization is QD , TQt . The quaternion should also be normalized in each
time step whereas otherwise it will not represent an orientation.

4.3 Kinematic model

As a comparison the sensor data will also be processed in an Extended Kalman
Filter (EKF) using a kinematic model with inertial measurement signals rather
than control inputs. The state vector composed in the e and b frame is

x =
h

(pe)T (vb)T (ab)T (qbe)T (!)T
iT

, (26)

denoting the position, velocity, acceleration, the rotation (parametrized with a
unit quaternion) and the angular velocity, respectively. As in the hydro dynamic
model the velocities and accelerations are expressed in the body frame introduc-
ing a few extra non-linearities. On the other hand when using this setup then the
same sensor models, see Section 5, can be used. The continuous-time non-linear
dynamic model for the states is

ṗe = Rebvb, (27a)

v̇b = ab � ! ⇥ vb, (27b)

ȧb = �! ⇥ ab + wat , (27c)

q̇be =
1
2
S(!)q, (27d)

!̇ = w!t
. (27e)
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where, wat and w!t
is noise accounting for the unknown jerk and the unknown

angular acceleration, respectively. This acceleration state is also used in the
hydrodynamic model since it is needed for the accelerometers. Furthermore,
S (!t) qbet is the quaternion product of the angular velocity and the unit quater-
nion in matrix vector notation where S (!) is defined as

S (!) =

2

6

6

6

6

6

6

6

6

6

6

6

4

0 �!x �!y �!z
!x 0 !z �!y
!y �!z 0 !x
!z !y �!x 0

3

7

7

7

7

7

7

7

7

7

7

7

5

. (28)

Again using Euler’s method on (12) with sampling interval T gives

pet+1 = pet + TReb
t vbt , (29a)

vbt+1 = vbt + T (abt � !t ⇥ vbt ) (29b)

abt+1 = abt � T (!t ⇥ abt ) + Twat (29c)

qbet+1 = qbet +
T
2
S(!t)qbet (29d)

!t+1 = !t + Tw!t
, (29e)

This kinematic model can be expressed as

xt+1 = f (xt) + wt , (30)

where f ( · ) is a nonlinear function of the state and wt is noise.

5 Sensor Models

The Falcon ROV sensor suite consists of a vector magnetometer, a vector gyro-
scope, a vector specific force sensor, a Doppler velocity log (DVL) and a hydro-
static pressure sensor (HPS). The typical equations for sensors are

y = h(xt) + et , (31)

where h( · ) is a nonlinear function of the state xt and et is noise where subscript
t denotes time dependency. Selection of such sensors can be crucial since size,
weight, price, energy consumption and other physical limitations need to be con-
sidered. Moreover, cheaper sensors do not o↵er the same accuracy as in the higher
range. Models of strapdown inertial sensors can be found in most books on navi-
gation, see e.g., Titterton and Weston (1997).

5.1 Inertial Measurement Unit and Magnetometer

The inertial measurement unit (IMU) providesmeasurements of the specific force
and angular velocity.
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Specific Force

The measured specific force is the sum of the linear acceleration and the force
from the gravitational field which is independent of reference frame. The ori-
entation of the sensor plays an important role since the gravitational field will
a↵ect the measurements and an error in the estimated sensor orientation is man-
ifested as an acceleration error. Also, the measured force due to the rotational
velocity depends on the mounting of the sensor relative to the body rotational
centre. This o↵set is modeled by the vector rIMUb which is pointing to the sen-
sor with the origin at the vehicle’s centre of mass. A measurement model for the
acceleration is

ya = RIMUb
⇣

abt � Rbe
t ge + !t ⇥

⇣

!t ⇥ rIMUb
⌘⌘

+ eat , (32)

where ge is the gravity vector and rIMUb is the vector from the body origin to
the IMU centre and eat is measurement noise which also includes the unknown
angular acceleration.

Gyroscope

The triad of gyroscopes measures the sensor unit’s angular velocity and a mea-
surement model for this sensor is

y! = RIMUb!t + e!t
, (33)

where RIMUb is the rotation matrix from the body frame to the IMU frame and
e!t

is measurement noise. This model is very simple and a common extension is
to add a slowly time varying bias to capture sensor drift which may be due to e.g.,
temperature changes.

Magnetometer

The vector magnetometer is also contained in the IMUs’ housing and therefore
the origin and rotation w.r.t. the body frame is considered to be the same. The
measurement model for the magnetometer is

ym = RIMUbRbe
t ne

np + emt
, (34)

where RIMUb is the rotation matrix from the body frame to the IMU frame, ne
np

is the normalised local earth magnetic field vector and emt
is the measurement

noise. At the location where the measurements were acquired, the magnetic
field was [15661, 1103, 47978]nT denoting north, east and vertical components
(NED), respectively.

5.2 Doppler Velocity Log

TheDoppler Velocity Log (DVL)measure the linear velocity of the vehicle relative
to the seabed. The sensor is an acoustic device that sends sound pings through
the water and measures the reflections at the seabed (RD , 2001) using a multi-
beam echo-sounder. In these reflections there will be a doppler shift which corre-
sponds to the velocity of the vehicle. The output from the sensor is represented
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in a sensor fixed coordinate system, DVL -frame. An expression is needed for the
velocity at the point in which the sensor is mounted. The distance from the vehi-
cle’s centre of rotation, which is assumed to coincide with the centre of mass, and
the sensor is denoted rDVLb. The measurement model for the DVL is

yv = RDVLb(vbt + !t ⇥ rDVLb) + evt , (35)

where RDVLb is the rotation matrix from the body frame to the DVL frame, rDVLb

is the vector from the vehicle body origin to the DVL origin and evt is measure-
ment noise. The measurement error in the DVL is mainly due to a scale error
and this error is due to the uncertainty of the speed of sound in the water which
depend on the water’s salinity.

6 Estimation
In this section the estimation process using the onboard sensors and the hydrody-
namic model is described.

6.1 Filtering
A standard method for non-linear filtering is to apply the Extended Kalman Fil-
ter (EKF) to the dynamic equations and the measurements, see e.g., Kailath et al.
(2000), and this is often the preferred solution when dealing with attitude es-
timation using integrated inertial systems Crassidis et al. (2007). The EKF is
summarized in Algorithm 1 below.

Algorithm 1 Extended Kalman Filter
Require an initial state, x̂0|0, and an initial state covariance, P0|0.

1. Time Update
x̂t|t�1 = f (x̂t�1|t�1, ut), (36a)

Pt|t�1 = FtPt�1|t�1FT
t +Qt , (36b)

2. Measurement Update
Kt = Pt|t�1HT

t (HtPt|t�1HT
t + Rt)�1, (37a)

x̂t|t = x̂t|t�1 + Kt(yt � h(x̂t|t�1)), (37b)
Pt|t = Pt|t�1 � KtHtPt|t�1. (37c)

In Algorithm 1 the Jacobian matrices are defined according to

Ft ,
@f (xt , ut)

@xt

�

�

�

�

�

(xt ,ut )=(x̂t�1|t�1,ut )
, (38)

Ht ,
@h(xt)
@xt

�

�

�

�

�

(xt )=(x̂t|t�1)
, (39)

furthermore, Qt and Rt are the covariance matrices of wt and et , respectively.
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(a) The lattice (b) The crayfish cage.

Figure 3: The lattice marks one end of the reference path and the crayfish
cage marks the other end.

6.2 Synchronization

The sensors and control inputs are sampled at di↵erent rates and at di↵erent
time instants. It is crucial that these signals are synchronized since otherwise the
performance of the filter is degraded. The synchronization is handled in a post-
processing step using the time-stamps from each sensor and the control inputs.
To handle the di↵erent sampling rates in the EKF the following is done:

At a time instant tk

1. Find the next signal (sensor(s) and/or control input) at time tk+1.

2. If it is a control input, perform a time update according to (36) over the
interval T = tk+1 � tk using the control input utk .

3. If it is a sensor signal return to the step 2) and then perform a measurement
update according to (37).

4. Return to 1).

7 Results

Data was collected in Lake Vättern, Sweden, under rather good weather condi-
tions. A path, which is marked by a cable, was followed each run where a lattice
marks one end of the cable and a cray fish cage marks the other, see Fig. 3. Note
that the ROV was only steered such that it finished at the other end of the cable
from where it started, i.e., the cable was used as a reference for the operator. The
cable’s position was measured using a ROV equipped with a GPS receiver which
was traveling in surface mode. The path is close to the shore and without any
nearby inlets creating currents. Data was processed o✏ine as described in the
previous section.
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Figure 4: A comparison of the velocities from the hydrodynamic model in
red compared to the sensor readings from the DVL in blue shows that the
model is very accurate. Some artifacts may be explained by currents and
turbulence not accounted for in the model and there is also noise in the DVL
measurements.

7.1 Velocity Model

The estimated velocity using the hydrodynamic model (8) compared to the ve-
locity measured by the DVL can be seen in Fig. 4. The DVL is fairly accurate
and can hence serve as a reliable reference. The model explains both the dy-
namic behaviour and constant motion very well. Also note the consistency with
the measured surge speed when the ROV is moving slightly backwards at about
200s.

7.2 Angular Velocity Model

The simulated yaw rate compared to the gyroscope can be seen Fig. 5 where it
is obvious that the hydrodynamic model does not capture the true rate particu-
larly well. An explanation for this could be that the drag model is rather rough
approximation since the parameters are in general speed dependent and coupled.
With data in which the ROV was doing a clockwise turn at slowly creeping surge
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Figure 5: Left: The yaw rate from the hydrodynamic model in red compared
to the sensor reading from the gyroscope in blue shows that the model do
not capture the rate dynamics satisfactorily. Right: The yaw rate from a data
set with a slowly creeping surge speed is a lot closer to the likely yaw rate.

speed the yaw rate is much closer to the rate given by the gyroscopes, see Fig. 5.

7.3 Position Estimates
The angular velocity models were simply too poor to be used for estimation of
the position, instead the hydrodynamics were aided with the onboard consumer
grade inertial and magnetometer sensor MTI from XSens. A view of the trajec-
tory estimated trajectory using the aided hydrodynamic model (8), the kinematic
model (12) with DVL and the reference trajectory can be seen in Fig. 6. The ref-
erence trajectory marks the coordinates of the cable and it was measured using
another ROV equipped with a more sophisticated navigation system. The ROV
was not controlled such that it ran along the cable the whole track. The position
estimate with the hydrodynamic model is comparable to the kinematic model
meaning that the DVL can be aided using the hydrodynamics.

8 Conclusion
We have compared two di↵erent Extended Kalman filters for navigation of a ROV.
The first one is based on inertial navigation principles supported with a DVL,
where a nearly constant velocity model is used for describing the motion. The
second one is based on a hydrodynamical model with the five thruster controls
as inputs, and where the inertial sensors can be used as feedback. It was shown
that the available models for this ROV for the angular dynamics were not good
enough to compete with inertial navigation. On the positive side, the transla-
tional dynamics turned out to be comparable to the inertial system in accuracy.
This is particularly useful in situations when the doppler log is not reliable. In
future work it would be interesting to find better models for the angular rates
and possibly di↵erent ones for di↵erent modes as the results indicates.
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Figure 6: The trajectory using the hydrodynamic model without the DVL in
red, the kinematic model (12) using all sensors in green and the blue curve
is the reference trajectory.
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Abstract

Inertial/visual SLAM aims at estimating the pose of a camera and
a map of landmarks detected in the images, using support from an
inertial measurement unit (IMU). Some of the most competitive ap-
proaches for SLAM and its computer vision counterpart, Structure
From Motion (SFM), are based on batch formulations such as Graph-
SLAM or Bundle Adjustment (BA). A major challenge in the imple-
mentation is the initialisation since these problems are inherently non-
linear and nonconvex. We propose a multi-step algorithm that solves
a series of simple and almost uncoupled problems, often leading to
linear solutions. It is believed that this leads to a robust algorithm
which is simple to implement and fast to execute. The initialisation
method is demonstrated on simulated data and a small feasibility
study on experimental data using an industrial robot, to get access
to ground truth, is also performed.

1 Introduction

Simultaneous Localization AndMapping (SLAM) concerns the problem of jointly
estimating the trajectory of a moving platform and a map of landmarks observed
from the platform. The platform trajectory is inherently constrained by its mo-
tion dynamics, so model-based filtering approaches have been used extensively,
in particular in the robotics area Durrant-Whyte and Bailey (2006); Bailey and
Durrant-Whyte (2006). Further, measurements from an Inertial Measurement
Unit (IMU) enable a more accurate motion model based on inertial navigation
principles Titterton and Weston (1997). Besides providing more reliable predic-
tions of the platform position, the IMU also provides a metric scale to the trajec-
tory and the map.

The first filtering SLAMmethods were relying on Extended Kalman Filters (EKF) P.
Moutarlier and R. Chatila (1989); Smith et al. (1990) which scale badly with the

145



146
Paper D Initialisation and Estimation Methods for Batch Optimisation of

Inertial/Visual SLAM

dimension of the map whereas particle methods FastSLAM Montemerlo et al.
(2002, 2003) does not scale well with the dimension of the vehicle state. More re-
cent methods are based on batch formulations Dellaert, F. and Kaess, M. (2006);
Thrun and Montemerlo (2006); Grisetti et al. (2007); Jung and Taylor (2001) with
clever data structures allowing real-time executionM. Kaess and A. Ranganathan
and F. Dellaert (2008).

SLAM batch approaches in computer vision are known as Bundle Adjustment
(BA), Hartley and Zisserman (2004); Triggs et al. (2000); Agarwal et al. (2009)
which dates back to the work of Brown (1958). BA is used as a final polish to im-
prove an estimate or as intermediate step in sequential algorithms such as Struc-
ture From Motion (SFM) Fitzgibbon and Zisserman (1998); Taylor et al. (1991).
When BA and SLAM is formulated as Maximum Likelihood (ML) or Maximum
a Posteriori (MAP) with a Gaussian noise assumption the results is a nonlinear
least squares (NLS) estimation problem. However, BA methods normally do not
utilise a motion model and other sensors, besides cameras, are rare. For instance,
the visual sequential methods Konolige and Agrawal (2008); Strasdat et al. (2010)
approximate the BA by keeping a set of keyframes selected heuristically. The
work of Klein and Murray (2007) combines local feature tracking and BA in two
threads and is still considered state-of-the-art.

GraphSLAMwas established in Lu andMilios (1997) as a solution to batch SLAM
via a pose graph and was further explored by Thrun and Montemerlo (2006);
Grisetti et al. (2007) and many others. Pose graphs can be formally obtained
by marginalisation of landmark parameters introducing relative pose constraints
through shared observations. This is an approximation since the optimisation
variables only consider the pose graph and not the landmarks. These methods
have been proven very useful for 2D ground robotics with laser scanners but have
not been used extensively on BA problems. Methods to initialise such systems in
a linear manner, similar to the ones used in computer vision, were previously
explored in Carlone et al. (2011); Dellaert and Stroupe (2002).

The working horse of these algorithms is Gauss-Newton like optimisation solvers
with e�cient structure utilisation and domain specific tricks as the back-bone
for scaling to huge problems. As with all nonlinear optimisation schemes, NLS-
SLAM, BA, and GraphSLAM rely on accurate initialisation to avoid the many
local minima in their corresponding NLS cost functions.

Inertial/visual SLAM Kneip et al. (2011b); Martinelli (2012); Bryson et al. (2009);
Lupton and Sukkarieh (2012) is an attempt to unify the advantages of the SLAM
solutions from the computer vision and robotics communities, where both cam-
era frames and IMU measurements are utilised. See Figure 1 for an illustration
of the setup. It is the purpose of this contribution to provide a general, robust
and fast initialisation algorithm for inertial/visual SLAM. It is a multi-step algo-
rithm, similar to work in Sinha et al. (2010) but which only treats camera based
SFM, thus ad-hoc in its nature, but each step has a natural problem formulation
and a simple solution. The intention of this algorithm is that it can facilitate
faster and simpler solutions to the impressing applications that already exist for
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Figure 1: The setup with inertial and visual sensors. The camera is observing
the environment represented by point landmarks, m1, . . . , m8, and the iner-
tial sensors are measuring accelerations and angular rates in the body coor-
dinate system, (b), which moves together with the camera. Also, a global,
fixed navigation coordinate system, (n), is drawn.

camera-only SLAM. Optionally, the nonlinear refinement can be skipped if the
results from the initialisation are already satisfactory.

The initialisation is utilising that the reprojection error is conditionally linear
given that the platform’s rotations are known. In this linear formulation the cam-
era measurement noise is parameter dependent, see Sinha et al. (2010); Martinelli
(2012); Kneip et al. (2011b), and is treated in an iterative fashion.

The data association, which is also an important and di�cult problem, is based
on clustering, see for instance Hastie et al. (2009), of feature tracks. The feature
tracks, see e.g., Thormählen et al. (2008), are estimated as a linear program for-
mulation of the assignment problem. Outliers are e�ciently eliminated using an
iterative procedure on the reprojection errors using the IMU data.

The block diagrams in Figure 2a serve as illustrative overview of the proposed
method. The initialisation procedure computes a set of landmarks with its corre-
sponding measurements (this includes the loop closure candidates), an estimate
of the trajectory and the velocity using IMU data and a camera-only rotation es-
timate. The flow of this procedure is illustrated in Figure 2b. The landmark
initialisation in Figure 2b represents the image processing operations such as fea-
ture tracking and track clustering. Feature tracks are extracted from matching
correspondence pairs in the image sequence. The feature tracks are then clus-
tered based upon their average feature descriptor in order to find loop closure
candidates. The clustered feature tracks are then used to initialise 3D point land-
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Figure 2: An overview of the proposed method. Most blocks corresponds to
a subsection in Section 3 and Section 5 with the same name
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marks.

The paper is organised as follows; Section 4 describes the models of the di↵erent
sensors used in the formulation of the problem. Section 3 handles the initial-
isation procedure based on the almost linear formulation of the visual/inertial
SLAM problem. Here, all steps for the initialisation of the trajectory, orientation,
landmarks and data association are described. Each subsection here represents a
particular block in Figures 2b and 2c. In Section 5 a nonlinear refinement method
is used where the initial point is given by the proposed initialisation procedure.
In Section 5 some comments and discussion that motivate the linear initialisation
method are given. Finally, results on both simulated and real data are shown in
Sections 6 and 8.2 respectively, and some conclusions and future work are dis-
cussed in Section 9.

2 Models

The sensors of interest are monocular camera and 6-DOF inertial sensors, gyro-
scopes and accelerometers, contained in a single unit. A standard Cartesian 3D
point landmark parametrisation is used and its measurement is given by the pin-
hole projection model. In this work we assume that both the camera and the
relative pose of the camera optical center with respect to the center of the IMU
are calibrated. The camera calibration implies that image pixel coordinates can
be transformed to metric coordinates and all the inertial measurements can be
assumed to measure the camera’s rotation and acceleration.

2.1 Position and Orientation

Given the accelerations, a = [ax, ay, az]T , and angular velocities, ! = [!x,!y,!z]T ,
of a moving and rotating object expressed in the non-moving frame, the so called
navigation (or world or earth) frame. The the position, velocity and orientation
(parametrised as unit quaternion q = [q0, q1, q2, q3]T , qT q = 1) of the object in the
navigation frame, [p, v, q], can be written as a discrete time dynamic model as

pt = pt�1 + T vt�1 +
T 2

2
at (1a)

vt = vt�1 + T at (1b)

qt = exp
✓T
2
S!(!t)

◆

qt�1 (1c)

where T is the sampling time, the skew-symmetric matrix
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parametrises the quaternion dynamics and here exp( · ) denotes the matrix expo-
nential.
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2.2 IMU Measurements

The IMU measures the specific force and rotation speed in a frame attached to
the IMU body frame, denoted b. Usually these measurements are imperfect and
contain both biases and measurement noise. The biases are assumed constant
and this is usually only a good approximation for a short period of time since in
practice biases will vary due to e.g., temperature. Under these assumptions the
measurements can then be described as

yat = Rbe(qt)(aet � ge) + ba + eat (3a)
y!t = !t +b! + e!t (3b)

where ge = [0, 0,�g] is the local gravity vector expressed in the navigation frame,
and g ⇡ 9.82, Rbe(q) is the rotation matrix parametrisation of the quaternion and
the measurement noises are assumed i.i.d. Gaussian with zero mean and time
invariant covariances Ra and R!, i.e., eat ⇠ N (0, Ra) and e!t ⇠ N (0, R!) .

2.3 Camera Measurements

The monocular camera is modeled as a standard pinhole camera, see cf. Hartley
and Zisserman (2004). The camera calibration matrix and lens distortion need
to be estimated prior to usage. Since the calibration and distortion are known
the distorted pixels can be pre-multiplied with the inverse of the camera ma-
trix and distortion can be compensated for. Thus, the camera then works as a
projective map in Euclidean space, P : R3 ! R2. The projection is defined as
P([X, Y , Z]T ) = [X/Z, Y /Z]T and normalised camera measurement ymt = [ut, vt]T

of a landmark, m, at time t is then

ymt = P(Rce(qt)(m�pt)) + emt (4)

which relates the absolute pose of the camera w.r.t., the 3D location of the point.
The measurement noise is assumed i.i.d. Gaussian, emt ⇠ N (0, Rm). The cor-
respondence variables at time t, cit , encodes the measurement-landmark assign-
ment, yit $ mj , which gives a subset of all M landmarks at time t, Mt = {mj }, j 2
{1, . . . , M | cit = j}. At time t the stacked measurement equation is then
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where cit denotes the index of the corresponding landmark and Ny is the number
of measurements, which of course varies over time. Methods for estimation of
correspondence variables are discussed in Section 3.2.



3 SLAM Initialisation 151

3 SLAM Initialisation

In this section a method intended for initialisation of monocular visual/inertial
SLAM from sequential data is described. The output of the method is a landmark
map and the motion of the platform. It also establishes local correspondences via
assignment variables using image features descriptors. Classical algorithms that
solve assignment problems are the Hungarian (Munkres) algorithm Kuhn (1955)
and the popular Auction algorithm Bertsekas (1991). Here a slightly di↵erent ap-
proach is adopted which results in a sequence of linear optimisation problems. In
the landmark initialisation procedure we use appearance based correspondence
matching, see e.g., Cummins and Newman (2010); Ho and Newman (2006). It
aims at finding similar features corresponding to the same physical object in dif-
ferent images. Appearance based matching relies on feature descriptors that are
distinctive and holds some invariance properties. For instance, image intensity
invariance can be important in outdoor environments where lighting conditions
may change and matching over large baselines requires invariance against scale,
rotation and possibly invariance against change of viewpoint is desirable. In the
following subsections we will describe the total initialisation procedure in detail
and provide algorithms that implement these steps.

3.1 Feature Tracks

Feature tracks Thormählen et al. (2008) are established from the appearance of
correspondences over multiple views by a matching scheme. Feature descrip-
tor vectors, f , from the popular Scale-Invariant Feature Transform (SIFT) Lowe
(1999) are used for establishing correspondences. Given a sequence of images
It , t 2 {1, . . . , K}, the feature matching problem consists of assigning a subset of
feature measurements from image It , f i

t , i 2 {1, . . . , Nt}, to a subset of feature mea-
surements from image It+1, f

j
t+1, j 2 {1, . . . , Mt+1}, such that each measurement

gets assigned to exactly one, unique, other measurement. In a manner similar to
measurement-landmark assignment described before these assignments are also
encoded by correspondence variables (which are binary in this case), cijt 2 {0, 1},
which are collected into ct and the assignments for all images are collected into
c. Furthermore, each assignment is associated with a matching cost Gij

t as

Gij
t = �kf i

t � f j
t+1k�12 , (6)

which is the negative inverse Euclidean distance between the feature descriptor
vectors. The costs are used to construct a matrix and to find pairwise matches in
the image sequence. This is done by solving the assignment problem which can
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be formulated as the following binary program (BP)

bct = argmin
c
ij
t

Nt
X

i=1

Mt+1
X

j=1

Gij
t c

ij
t

subject to
Nt
X

i=1

c
ij
t  1,8j (7)

Mt+1
X

j=1

c
ij
t  1,8i

c
ij
t 2 {0, 1}

which is typically hard to solve. A standard method is to relax the binary con-
straints cijt 2 {0, 1} to 0  c

ij
t  1. This relaxation gives that (7) becomes a linear

program (LP) which is much easier to solve. A compact representation of the
relaxed BP assignment problem (7) on matrix form is (omitting time index for
readability)

bc̄ = argmin
c̄

ḠT c̄

subject to Ac̄  1(N+M)⇥1 (8)

0NM⇥1  c̄  1NM⇥1
where Ḡ and c̄ are the vectorised versions of the matrices G and c where columns
are stacked on top of each other. The matrices 1i⇥j and 0i⇥j are the i ⇥ j matrix of
ones and zeros respectively. Matrix A, which has dimension (N + M) ⇥ NM , has
a specific structure as follows: The first M rows look like

A1 = IM ⌦ 11⇥N (9a)

and the last N rows look like

A2 = 11⇥M ⌦ IN (9b)

and A = [AT
1 AT

2 ]
T . ⌦ represents the Kronecker’s matrix product. This constraint

matrix A is totally unimodular, that is, all possible square sub-matrices are uni-
modular i.e., having determinant equal to ±1. An important observation is that
the matrix of (relaxed) constraints is unimodular. This means that the LP prob-
lem is integral, i.e., its optimum has an integer value corresponding to the opti-
mum of the original BP problem Papadimitriou and Steiglitz (1982). This means
the assignment problems are simple since good and fast LP solvers are readily
available. In this work Gurobi Optimizer Gurobi Optimization Inc (2013) is used.
The computational bottleneck for these problems is creating the cost matrix G
since each element must be calculated.

The solution to the assignment problem will always use all the measurements
from the smaller set no matter how bad the fit is. The reason is because the cost
will always decrease by assigning one more variable, no matter how small the
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decrease is. This is not a desired behavior since these matches can in principle
be arbitrarily bad. It is therefore necessary to model features which are unique
for each measurement such that they do not end up being assigned. One way of
doing this is to add a regularisation term to the assignment cost as

Gij
t = �kf i

t � f j
t+1k�12 + ⌘, (10)

where ⌘ > 0 is a tuning parameter which controls the rejection of the excess
assignments that are bad. Thus, ⌘ will force the cost of certain, unlikely, assign-
ments to become positive, implying that those assignments will never be chosen
since they would increase the total cost.

3.2 Track Clustering

Feature tracks are defined as a time sequence of pairwise matching feature cor-
respondences Ct:t+s = [ft , ft+1, . . . , ft+s]. The minimum length of a track is then
a pair because a feature without a match is not useful. The length of the tracks
has a twofold interpretation; a feature descriptor is unique with respect to others
in the sequence, i.e., the feature has a unique surrounding, and the other case is
when the camera is stationary and thus the scene has been observed for a long
time. However, in case of a moving camera, feature tracks may be lost due to
e.g., occlusion or change of perspective. Therefore, new feature tracks may rep-
resent previously initiated tracks. To cater for this a track clustering scheme is
employed joining tracks that may represent observations of the same feature. For
simplicity of calculation, each track is represented by the mean value, C̄, of all
the descriptors that constitute that track. The distance between tracks used for
clustering is then

dij = kC̄i � C̄jk2. (11)

Since tracks have a temporal meaning and each feature can be measured only
once in each image, valid clusters of tracks contain only time-disjoint tracks. That
is, Ci:j and Ck:l are allowed to be clustered together only if {i : j} \ {k : l} = ;.
Time-disjoint clustering is illustrated in Figure 3. Solving for these constraints
can be done by simply removing time-overlapping tracks within clusters. Since
the amount of landmarks is unknown, a clustering method where the number of
clusters is not explicitly given is used. One such method is single-linkage clus-
tering where the clustering stops when some condition on the between-cluster
distance is fulfilled, Hastie et al. (2009). This distance is viewed as a tuning pa-
rameter. Another benefit of the single-linkage clustering is its speed, since there
are good implementations available. Furthermore, data reduction and automatic
loop closure detection is obtained since loops are defined by clusters containing
more than one track. This implies that the between-cluster distance used for ter-
mination of the clustering controls the quality of the loop closures; if stopping
too soon, there will be many small clusters and some loop closures will be missed
and if stopping too late the risk of clustering wrong tracks together is increased.
The track clustering algorithm is summarised in Algorithm 1. In this way, a set of
landmarks has been obtained representing the initial map of the environment. Er-
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Figure 3: Example of time-disjoint track clustering where only Track 1 and
Track 3 are allowed to be clustered. Subscript figures on the descriptors, f ,
are the time indices and superscript figures are the enumeration of features
at each time instant.

Algorithm 1 Track Clustering

Input: The set of all tracks {Ci }NC
i=1, where Ci = [fk , fk+1, . . . , fk+l ], l � k > 1.

Output: Track clusters C
1: Compute track means:

C̄i = 1
l�k

Pl
t=k ft , i = 1, . . . , NC

2: Cluster the tracks:
C̃ = Cluster_data(C̄i ), i = 1, . . . , NC

3: for all clusters do
4: if tracks within the cluster are time disjoint then
5: keep the cluster
6: end if
7: end for
8: Remaining clusters are C
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rors introduced, outlier measurements, in the clustering and in the feature tracks
should be removed. This will be done according to Algorithm 3.

3.3 Rotation Initialisation

From sets of correspondences, estimated as in Section 3.1, for each image pair in
the image sequence the relative transformations (up to a scale of the translation)
can be obtained. This is done with the Eight-Point Algorithm, see e.g., Hartley
and Zisserman (2004), resulting in a rotation sequence

Rc = {Rc
i }K�1i=1 , (12)

where Rc
i is the relative rotation of the cameras, (c), from time i to i + 1. The

global rotation, from world to camera, (ce), for any time, j , can be calculated by
the matrix product

Rce
j =

0
Y

i=j

Rc
i . (13)

Note that rotation matrices do not generally commute meaning that the product
must be done in the reverse time order. Also note that the rotations are initialised
with camera only and the gyro is not used. This is because the dominating error
from the gyro is bias giving drifting rotation estimates. Errors from camera esti-
mated rotations have more random like behaviour resulting in the random walk
errors. There may also be correspondence errors in the feature tracks resulting
in bad rotations. The sensitivity to initial rotation errors are further analysed in
Section 6.2.

3.4 Linear SLAM

Methods of 3D structure estimation using linear methods and image point corre-
spondences are well known. The basic idea is to form an overdetermined trian-
gulation problem, which is linear in the unknowns, and solve it by linear least
squares. This is essentially the Direct Linear Transformation (DLT) Abdel-Aziz
and Karara (1971) which may work well in practice. However, instead of min-
imising the discrepancy between measured image coordinates and the back pro-
jection of points, an algebraic error without good geometrical interpretation is
minimised Hartley and Zisserman (2004). It is therefore common to proceed with
a nonlinear optimisation over the reprojection residuals with the linear method
as a starting point. Given the correct weighting of the measurements, then the lin-
ear method minimises the reprojection error, see for instance Zhang and Kanade
(1998). This weighting does however depend on the unknown depth of the points
but iterative re-weighting often improves the linear solution.

The projection is a convex operation and this can be exploited in many ways.
Optimal approaches to reconstruction consider reprojection errors under the L1
norm Hartley and Scha↵alitzky (2004); Kahl and Henrion (2007) since it pre-
serves (quasi)-convexity, see Olsson and Kahl (2010); Kahl (2005) and have a sin-
gle optimum which is typically not the case for the L2 cost. These approaches
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assume outlier free measurements because otherwise the maximum error will
correspond to an outlier and by using this insight an iterative method for out-
lier removal using L1 was proposed Sim and Hartley (2006), however, it does
not scale to large problems Agarwal et al. (2008). In common, it is assumed that
rotations are known beforehand and in many situations this is a reasonable al-
ternative since rotations may be estimated from point correspondences. Known
(or error-free) orientation was considered for fusion of vision and inertial sensors
in Martinelli (2012) and for the case of visual odometry with inertial measure-
ments in Kneip et al. (2011a,b). The assumption of known orientation will also
be used here which results in an almost linear method. Assuming known rota-
tions it is possible to rewrite (11) in the following way (omitting time index)

� = Rce(q)(m�p) (14)
"

u
v

#

=
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6

6

6

6
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#

(16)

where �(p, m) = [�x, �y, �z]T is the di↵erence between landmark and camera po-
sitions expressed in the camera coordinate system. Equation (10) is linear in the
unknown parameters m and p, but has noise that is dependent on the parameters.
With � explicit (10) becomes

R3,:(m�p)
"

u � eu
v � ev

#

=
"

R1,:(m�p)
R2,:(m�p)

#

, (17)

where Ri,: denotes the i:th row of the rotation matrix Rce. The accelerometer
measurements with bias are as in Section 4.1

yat = Rce
t (at � ge) + ba + eat (18)

where ge, ba are assumed constant and eat ⇠ N (0, Ra). Usually, the sampling rate
of an IMU is faster than a camera which can be handled in a straightforward
fashion e.g., by averaging accelerations between the camera samples

yat =
1

(St � St�1)
St
X

s=St�1
yas , (19)

where St maps the time indices between the camera and IMU. Treating the ac-
celerations, its bias, initial velocity and landmarks as unknown parameters and
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Algorithm 2 Iterative Reweighted Least Squares
Input: IMU measurements, ya1:N , (!1:N ), feature measurements, ym1:N , rotations
Rec
1:N , data associations c, initial parameters ✓0 = [a1:N , v0, ba, m]T , number of

iterations K
Output: Parameter estimates ✓init

1: for k := 1 . . . K do
2: Create the WLS problem according to (21) with R̃m = �z(✓k�1)2Rm
3: Solve the WLS problem giving ✓k
4: end for
5: ✓init := ✓k

defining ✓ = [a1:N , v0, ba, m]T , the following formulation is proposed

✓init = argmin
✓

N
X

t=1

kyat � Rce
t (at � ge) � bak2R�1a + (20)

kymt �z(pt, m) � �x,y(pt, m)k2
R̃�1m

subject to
"

pt
vt

#

= Ft
"

p0
v0

#

+
t

X

i=1

Fi�1Bai ,

F =
"

I3 T I3
0 I3

#

, B =
"

T 2

2 I3
T I3

#

,

where R̃m = �z(p0t , m
0)2Rm, and superscript 0 indicates that the parameters used

for weighting are fixed for each iteration. The constraints represent the second
order linear dynamics introduced in (9). In turn, this can also be interpreted as
a second order interpolation of the trajectory. The formulation in (20) would be
a constrained weighted linear least squares (WLS) problem if the measurement
noise in the camera did not depend on the landmark. Now since any pt can be
expressed as a (linear) function of v0 and a1:t the constraint can be directly sub-
stituted into the cost function resulting in the following unconstrained problem

✓init = argmin
✓

N
X

t=1

kyat � Rce
t (at � ge) � bak2R�1a + (21)

kymt �z(v0, a1:t , m) � �x,y(v0, a1:t , m)k2
R̃�1m

,

where R̃m = �z(v0, a1:t , m)2Rm. The only di↵erence between this problem and
usual WLS is the parameter dependent noise for the landmark measurements.
This can be treated in an iterative fashion where �z is used for weighting the
noise covariance which is evaluated using the parameter values from the previous
iteration. This approach is also known as Iterative Reweighted Least Squares
(IRLS) which is a well known method, see e.g., Björck (1996). The procedure is
described in Algorithm 2. This approach usually converges after a few iterations
and in our implementation three (K = 3) iterations were a suitable choice.
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Algorithm 3 Iterative Outlier Rejection
Input: IMU measurements, ya1:N , feature measurements, ym1:N , rotations Rec

1:N ,
data associations c, initial parameters a1:N , v0, ba, m, rejection threshold �
Output: Data associations c
1: terminate := false
2: k := 0
3: ck := c
4: while not terminate do
5: Solve the problem according to Algorithm 2 given the assignments ck and

all the parameters and produce a set of landmark residuals for each image
i, "im

6: for each image i do
7: "̄ := "im\max("im)
8: if all max("im) ↵ "̄ > � then
9: remove the assignment that is associated with max("im) from ck

10: end if
11: end for
12: if no assignments removed from ck then
13: terminate := true
14: else
15: k := k + 1
16: end if
17: end while
18: c := ck

The problem (21) can be augmented with linear terms for initial gyro bias estima-
tion, kqt� T

2 S!(!t+b!)qt�1k2R�1q , which is the first order approximation of (9c). Us-

ing the bilinear relation S!(b)q = S̃q(q)b, this can be written as kqt� T
2 S!(!t)qt�1�

T
2 S̃q(qt�1)b!k2R�1q , which is also a linear function of b!, since rotations are assumed

to be known. These terms are decoupled from the rest of the parameters and the
WLS problem defined by these can be solved separately if required.

3.5 Iterative Outlier Removal

The landmark initialisation produced by Algorithm 1 will introduce erroneous
associations due to the unavoidable ambiguity of the feature descriptors. These
associations should be considered outliers. It is di�cult to discriminate outliers
based on descriptors alone. However, given the IMU data, which describe the
motion independently of cluster appearance, a strategy for inertial based outlier
rejection can be devised according to the pseudo-code in Algorithm 3. This pro-
cedure will terminate when all of the residuals are of similar size, where similar
is defined here by the rejection threshold �. The operator ↵ denotes element-wise
division.
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4 Nonlinear Least-Squares SLAM
Accelerations, initial velocity, landmarks and biases estimated with the linear
method described in Section 3.4 are used as an initial value for NLS. Here the
reprojection error is formulated in its original form, that is

ymt = P(Rce(qt)(m�pt)) + et (22)

where the operator P is defined as in (11). The second addition is that rotations
are not fixed any more, but are estimated together with the rest of the parameters.
This is done by adding the angular velocities !1:N to the parameter set. Now, the
measurement relation from Section 4.1 can be used

y!t = !t + b! + e!t . (23)

and the rotations can be calculated by using the relation (9c) as

qt =

2
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2
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◆

3

7

7

7

7

7

5

q0, (24)

where q0 is assumed given. These two modifications give the new parameter
vector ✓ = [a1:N ,!1:N , v0, ba, b!, m]T and the new nonlinear least squares (NLS)
formulation of the problem according to

✓̂ = argmin
✓

N
X

t=1

kyat � Rce
t (at � ge) � bak2R�1a +

ky!t � !t � b!k2R�1! + (25)
�

�

�

�

�

ymt �
�x,y(v0, a1:t ,!1:t , m)
�z(v0, a1:t ,!1:t , m)

�

�

�

�

�

2

R�1m

and Rce
t is now a function of !1:t and � is defined in (14). This problem can be

solved e�ciently with e.g., a standard Levenberg-Marquardt solver, Nocedal and
Wright (2006).

5 Heuristic Motivation of the Linear Initialisation
In tracking and navigation the measurement models are often nonlinear and so
are most SLAM systems stemming from e.g., transformations between reference
frames by rotations, perspective divide, among others. In practice this means
that there exist local minima which should be avoided. In order to reach the
global minimum the initialisation point should be in the proximity of the global
minimum or at least the function should be monotone between the initial point
and the global minimum and even better is of course if it is also convex along
this direction. In fact, it is su�cient that the function is convex on a path that
the minimisation procedure will take in order to end up in the global minimum.
Here we propose an initialisation procedure based on the almost linear method.
We will use a simple heuristics to motivate that the initial point created in this
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manner is better than an initial point created using available measurements.

The definition of convex function f (✓) : Rn ! R is

f (�✓1 + (1 � �)✓2)  �f (✓1) + (1 � �)f (✓2), (26a)
0  �  1, (26b)
8✓1, ✓2 2 dom f ⇢ Rn. (26c)

Geometrically, this is interpreted as the hyperplane that lies between points (✓1, f (✓1))
and (✓2, f (✓2)) is always above the function f . If this is fulfilled for all ✓ then the
function is convex. Convex functions have a property that there is only one global
minimum, so any minimisation procedure can be used to obtain that. For exam-
ple linear least squares problems fall into this category. However, many functions,
although non-convex on the whole domain, are convex on a subset of the domain,
usually in the proximity of the local minima. This can be motivated with the
fact that Taylor expansion around the local minimum will be quadratic function
plus a rest term of a higher degree. If this rest term is not dominating over the
quadratic term, the function is (locally) convex in this region. As stated before, in
order to apply a local minimisation procedure, and successfully obtain the global
minimum, the path between the initial point and minimum should also fulfill
the convexity property (26).

The main idea is to check the local convexity of the NLS cost function given the
initial point produced with the linear initialisation procedure. This can be done
approximately by using a dense sampling of the cost function along the search
direction as given by the initialisation and then evaluate if the path is convex
according to (26). In addition, we also require that the search direction in the
initial point, p0, is well aligned with the direction from the initial point to the
true solution, ✓⇤ � ✓0. The intuition behind this is that an initial search direction
is crucial for convergence to a good solution. This is determined with the angle
between these two directions defined as

� = arccos
 

pT0 (✓
⇤ � ✓0)

kp0k2 k✓⇤ � ✓0k2

!

, (27a)

p0 = �(JT0 J0)�1JT0 "0, (27b)

where J0 is a Jacobian matrix of the cost function evaluated in ✓0 and "0 is the
residual in ✓0. These criteria will be evaluated in a Monte Carlo fashion for the
linear initialisation procedure and compared to other initialisation approaches,
for example using measurements only.

6 Monte Carlo Simulations

Monte Carlo (MC) simulations are used to evaluate the whole initialisation ap-
proach. That is, to find out if the linear method gives a good starting point for
the nonlinear optimisation and if the outlier rejection procedure seems reason-
able. For the initialisation of the landmarks, i.e., the clustering approach, only
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Initialisation method Linear Naïve
Average initial angle � [�] 17.7 66.6
Average error k✓̂ � ✓⇤k/dim(✓⇤) 1.6 · 10�3 221 · 10�3
# of non convex paths 0 0

Table 1: MC simulation results for the initialisation method, see Section 6.1,
where the measurement noise was varying. The angle � is defined in (27a),
✓̂ is defined in (25) and ✓⇤ is the true solution.

real data are used since it is complicated to make simulated SIFT features and
these results are presented in Section 8.2.

6.1 Efficiency of the Linear Initialisation
Here, the method according to Section 3.4 is evaluated. In the first set of simula-
tions a trajectory and a set of landmarks are created and di↵erent white Gaussian
noise is simulated and added to the measurements for each MC simulation. No
outliers are present. Initial rotation used for the linear optimisation is also ran-
domly perturbed but fixed together with the trajectory and the scene. The linear
solution produced in this way is compared with the naïve guess where the initial
point is created from the measurements and randomised landmark positions.

The first set of MC simulations consist of 50 simulations performed on a data
set with 20 landmarks and 30 time points. Landmarks were placed in a general
configuration, with varying distance to the camera. The noise standard deviation
was fixed and is set to �a = 10�3 m/s2, �m = 10�4 m and �! = .5�/s. The results
are listed in Table 1. Both the proposed initialisation method and the naïve one
have convex paths between the initial and the true point, but the initial angle
between the search direction and the direction to the true solution is much larger
(approximately four times) for the measurement initialised optimisation. This
causes the average error of the solution to be much larger (approximately 140
times) for the naïve initialisation.

6.2 Sensitivity to Initial Rotation Errors
In the second set, consisting of 3 times 25 realisations, the trajectory and the
scene are fixed as before, no noise is added to the measurements and no outliers
are present. Here the initial rotations are varied randomly with di↵erent pertur-
bation magnitude 0.1, 1 and 5 [�/s]. The solutions to the linear initialisations
given di↵erent rotation perturbations are then used to solve the non-linear opti-
misation problem and the results are in Table 2. Here it can be seen that both
error in the linear solution as well as initial angle grow with the magnitude of
the error in rotation. As a consequence the number of non-convex paths also in-
creases with the perturbation magnitude and the average error of the estimate is
large. The reason for the very large average for the perturbation of 1 degree per
second is the presence of 4 really bad solutions. With these removed the value
is 0.45 which is more reasonable. This evaluation shows the importance of the
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Perturbation magnitude [�/s] 0.1 1 5
Average initial angle � [�] 1.64 40.2 84.0
Average error k✓̂ � ✓⇤k/dim(✓⇤) 8.34 · 10�9 69.1 1.0
Average error k✓init � ✓⇤k/dim(✓⇤) 0.08 0.63 0.78
# of non convex paths 0 3 18

Table 2: MC simulation results for the initialisation method, see Section 6.2,
where the initial rotation error was varying. The angle � is defined in (27a),
the NLS estimate ✓̂ is defined in (25), the initial estimate ✓init is defined
in (21) and ✓⇤ is the true solution.

initial estimation of the rotations.

6.3 Iterative Outlier Removal

The third set is used to evaluate the performance of the outlier rejection method
proposed in Algorithm 3. Here the outlier measurement rate is varied while the
trajectory, scene and the initial rotations are fixed. The performance is evaluated
according to the amount of outlier measurements that are left and the amount of
inlier measurements that are removed.

Results are presented in Table 3, in this case the scene is fixed to 30 landmarks in
21 images and the outlier rate is varied, both as a number of landmark outliers
and as a number of images where outliers are present. The outliers are created
by randomly flipping a pair of associations in an image. For example, if the num-
ber of landmarks to be outliers are two, then in all images where outliers are
present the measurements from these two landmarks are flipped with two other
randomly chosen landmarks. This strategy is chosen because it is the behaviour
of the data association method employed here. Three di↵erent rejection thresh-
olds are used, � = {3, 5, 8}, in the experiments. The result shows that, as a general
trend and as expected, the rejection threshold governs the amount of outliers that
are left and number of inliers that are rejected. It is of general interest to reject
as many outliers as possible and to keep as many inliers as possible. The lower
threshold means better outlier rejection, but the price is that more inliers are also
rejected. This also emphasises the importance of having many landmark mea-
surements in order to be resilient to removing inliers. Note that this statistics is
conservative in the way that only measurements that are created as outliers are
considered as true outliers. In many cases all measurements for a landmark that
is creating outliers are removed, implying that this landmark is no longer deemed
as usable and it can be excluded from the statistics. This means that results in
Table 3 would be somewhat better if these are taken into account.
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� = 3 Outliers left [%] Inliers removed [%]
IO \ LO 0.07 0.13 0.2 0.07 0.13 0.2
0.05 0 0 0 13 22 22
0.10 0 0 0 18 23 31
0.14 0 0 0 17 26 41
0.19 0 6.3 0 29 36 40
0.24 0 0 0 20 20 52
0.29 0 0 0 20 46 48
0.33 0 0 2.4 23 44 52
0.38 6.3 0 2.1 42 50 54
� = 5 Outliers left [%] Inliers removed [%]
IO \ LO 0.07 0.13 0.2 0.07 0.13 0.2
0.05 0 50 0 9.1 12 14
0.10 0 0 0 11 21 32
0.14 0 8.3 5.6 17 25 42
0.19 0 0 0 21 34 38
0.24 0 5 0 19 25 54
0.29 0 0 0 16 36 49
0.33 7 0 0 21 34 51
0.38 6.3 0 0 39 35 54
� = 8 Outliers left [%] Inliers removed [%]
IO \ LO 0.07 0.13 0.2 0.07 0.13 0.2
0.05 0 0 8.3 8.1 9.2 15
0.10 0 0 0 17 20 27
0.14 0 0 11 16 18 26
0.19 0 0 0 15 25 35
0.24 0 5 10 22 34 58
0.29 8.3 0 0 16 25 42
0.33 0 0 2.4 27 42 38
0.38 6.3 0 8.3 34 31 66

Table 3: Outlier rejection simulation results. IO is the fraction of images in
which outliers are present. LO is the fraction of the landmark set in which
outliers are present. Three di↵erent rejection thresholds � are used.
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Figure 4: Sensor unit containing both camera and inertial sensors.

7 Real Data Experiments

In the real data experiments, a sensor unit, see Figure 3, equipped with monoc-
ular monochrome VGA camera (Pointgrey firefly) and three axis inertial sensors
(gyroscopes and accelerometers) was used. It contains also magnetometers and
a temperature sensor which is used for internal calibration. In one of the experi-
ments the sensor unit was mounted at the tool position of an IRB-1400 industrial
robot from ABB for the purpose of an accurately known ground truth. Also, a
small scene with objects of known size was created so that the estimated scene
could be compared with respect to its size. In the second experiment, a free-
hand movement of the camera is used in a room, and no accurate ground truth
is available. In this case the accuracy is evaluated based on the approximate mea-
surements in the room and approximately “knowing” where camera was. Prior
to usage, the camera was calibrated using the toolbox Bouguet (2010) and the rel-
ative pose of the camera centre with respect to the IMU centre was calibrated as
described in Hol et al. (2010). A open source SIFT implementation from Vedaldi
and Fulkerson (2008) was used.

In Figure 4 the trajectory estimate from the linear initialisation and the nonlinear
refinement are plotted together with the ground truth trajectory for the first data
set. An image with the feature measurements is illustrated in Figure 5. Velocity
in x, y-plane is shown in Figure 5. Since the true rotations are known, errors in
quaternions and Euler angles are depicted in Figures 6 and 9 respectively. Land-
mark estimates for initial and nonlinear estimation are shown in Figure 10.

For the second data set (free-hand run), an example image together with plotted
features is showed in Figure 11. The resulting trajectory estimate is shown in Fig-
ure 12. The x, y-plane velocity, quaternions, Euler angles and landmark estimates
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Figure 5: Example image from the robot run with extracted features shown
as red stars.

are plotted in Figures 13, 14, 15 and 16 respectively.

In both cases the nonlinear refinement improves the initial estimate for both ro-
tations and kinematic parameters. In the first data set the landmark estimate is
much better than the initial estimate, and for the second data set this is harder
to assess, but the positions of the landmarks look reasonable given the environ-
ment. For example we see that there are three levels in the bookshelf with distinct
features, which can be seen in both Figure 11 and Figure 16.

7.1 Clustering Results

For the landmark initialisation approach (track clustering) a helicopter data set
made with a Yamaha Rmax helicopter is used. In this data set only the im-
ages were available, i.e., no IMU, implying that no outlier rejection nor complete
SLAM could be done and this data set is only used to evaluate the clustering per-
formance. The flight is performed in a circle, meaning that the helicopter visits
the same place. The total length of one such loop was 325 images taken in 4 Hz
giving the total time of 81.25 s. An example of the loop-closure is illustrated
in Figure 17 where two tracks, one from the beginning and one from the end
of the loop, are clustered together. With this cluster tuning the amount of loop-
closures is about 4%. This should be compared to the amount of images showing
the overlapping environment which were 7% of the total amount of images. For
the other two data sets this number is higher, especially for the free-hand run
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Figure 6: Trajectory from the linear estimation (green), from nonlinear re-
finement (red) and ground truth (blue).
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Figure 7: Estimated horizontal velocity from the linear estimation (green)
and from the nonlinear refinement (red). True velocity is 0.1 m/s except in
three time points when it is zero.
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Figure 8: Estimated quaternion error from camera (dash-dotted) and after
nonlinear refinement (solid).
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Figure 9: Estimated Euler angles error in degrees from camera (dash-dotted)
and after nonlinear refinement (solid). Blue is the yaw, green is the pitch and
red is the roll angle.
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Figure 10: Landmark estimates from the linear estimation (green) and from
nonlinear refinement (red). Most of the landmarks should lie on the �0.5 m
plane and some should be higher up.

Figure 11: Example image from the free-hand run with extracted features
shown as red stars.
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Figure 12: Trajectory from the linear estimation (green), from nonlinear re-
finement (red).
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Figure 13: Estimated horizontal velocity from the linear estimation (green)
and from the nonlinear refinement (red).



170
Paper D Initialisation and Estimation Methods for Batch Optimisation of

Inertial/Visual SLAM

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Quaternions

Time [s]

q

Figure 14: Estimated rotations from camera (dashed) and after nonlinear
refinement (solid).
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Figure 16: Landmark estimates from the linear estimation (green) and from
nonlinear refinement (red). Three distinct layers can be recognised which
basically come from the bookshelf’s levels.

data set, where large parts of the environment were visible the whole time. In
general, most of the clusterings are local loops where for example a feature is lost
for a few images and is then tracked again. One such example can be seen in
Figure 18.

Even some outliers are introduced in the clustering process, which is, as explained
earlier, expected, and one such is depicted in Figure 19. The total amount of out-
lier landmark was about 10%, which is similar for the other two data sets. Many
of the outliers are caused by the too similar environment, for the example in Fig-
ure 19 the road edge looks similar to SIFT and the descriptors are too similar.
This will cause the erroneous clustering.

8 Conclusions and Future Work

In this work we presented a method for initialisation of optimisation based vi-
sual/inertial SLAM on batch form. This sensor combination makes it possible
to obtain full Euclidian reconstruction of the environment and trajectory. The
method is based on a multistage strategy where visual methods, such as the Eight-
Point Algorithm, feature extraction and clustering of feature tracks, are used for
rotation and landmark initialisation. Inertial data are used for data association in-
cluding outlier rejection and initialisation of trajectory and landmark location pa-



172
Paper D Initialisation and Estimation Methods for Batch Optimisation of

Inertial/Visual SLAM

(a) Image 7. (b) Image 8.

(c) Image 9. (d) Image 321.

(e) Image 322. (f) Image 323.

(g) Image 324. (h) Image 325.

Figure 17: Example of successful loop-closure clustering with the helicopter
data. The tracked feature is marked with the red star.
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(a) Image 3. (b) Image 4.

(c) Image 12. (d) Image 13.

Figure 18: Example of clustering creating local loops with the helicopter
data. The tracked feature is marked with the red star.
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(a) Image 299. (b) Image 300.

(c) Image 314. (d) Image 315.

Figure 19: Example of erroneous clustering causing an outlier with the heli-
copter data. The tracked feature is marked with the red star.
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rameters. The method exploits the conditional linearity of visual/inertial SLAM.
The experiments done on the simulated and real data sets show that the initiali-
sation method gives better starting point for the subsequent full nonlinear opti-
misation than naïve initialisation with measurements only.

Also, the landmark initialisation method based on clustering of the tracked fea-
tures gives quite promising results where many possible loop-closures are identi-
fied while the amount of wrong associations is rather low. This allows for the iter-
ative outlier rejection method with aid from the inertial data. Even this method
shows good results with e�cient outlier removal while keeping the inlier amount
relatively high.

It must be pointed out that this approach requires a large amount of landmark
measurements in order to produce good results, i.e., the equation systemmust be
highly overdetermined. On top of that, since a camera is a bearings-only sensor,
there is also a demand for su�cient viewpoint change, also known as parallax, in
order to accurately estimate landmark position. The trajectory estimation can be
compensated with the inertial data, but even there a good SNR is required.

In the future it can be interesting to use proper constrained clustering algorithm
instead of discarding clusters with overlapping times, as it is done now. Also
alternative feature detectors might be used to see if descriptors from those have
di↵erent behaviour compared to SIFT.
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Abstract

The general Simultaneous Localisation and Mapping (SLAM) prob-
lem aims at estimating the state of a moving platform simultaneously
with building a map of the local environment. There are essentially
three classes of algorithms. EKF-SLAM and FastSLAM solve the prob-
lem on-line, while Nonlinear Least Squares (NLS) is a batch method.
All of them scales badly with either the state dimension, the map di-
mension or the batch length. We investigate the EM algorithm for
solving a generalized version of the NLS problem. This EM-SLAM al-
gorithm solves two simpler problems iteratively, hence it scales much
better with dimensions. The iterations switch between state estima-
tion, where we propose an Extended Rauch-Tung-Striebel smoother,
and map estimation, where a quasi-Newton method is suggested. The
proposed method is evaluated in real experiments and also in simula-
tions on a platform with a monocular camera attached to an inertial
measurement unit. It is demonstrated to produce lower RMSE than
with a standard Levenberg-Marquardt solver of NLS problem, at a
computational cost that increases considerably slower.

1 Introduction

The aim in Simultaneous Localisation and Mapping (SLAM) is to estimate a mov-
ing platform’s position and orientation while mapping the observed environment.
In the seminal work of Smith et al. (1990) the idea of a stochastic map was pre-
sented and was first used in P. Moutarlier and R. Chatila (1989), where the es-
timate is computed with an Extended Kalman Filter (EKF) and some later ones
are J.E. Guviant and E.M. Nebot (2001); J. J. Leonard and H. Jacob and S. Feder
(2000). Another popular approach is the FastSLAM method, Montemerlo et al.
(2002, 2003), which uses particle filters which are known to handle nonlineari-
ties very well. However, these approaches have some downsides, like constantly
increasing covariance matrix size for the EKF-SLAM, making it computationally
infeasible for large data sets. Additionally, linearisation errors can contribute to
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the inconsistencies in the estimates, Bailey et al. (2006a). However, FastSLAM
estimates can also be inconsistent due to particle depletion Bailey et al. (2006b)
and FastSLAM also scales badly with the state dimension of the moving plat-
form. Recently, some approaches based on optimisation, and Nonlinear Least-
Squares (NLS) in particular, have been proposed. These methods solve batch
problems, i.e., a smoothed estimate is obtained, but for online applications a mov-
ing horizon strategy could be applied. A downside of NLS is the quadratic scal-
ing in batch length. Popular approaches applying optimisation are e.g., Graph-
SLAM, Thrun et al. (2005) and Square Root Smoothing andMapping,

p
SAM, Del-

laert, F. and Kaess, M. (2006). A common denominator of these approaches is that
they solve some form of Maximum Likelihood (ML) problem. Also it is usual that
the sparsity of the problems is utilised enabling fast computations.

SLAM is a general class of problems where the combination of sensors vary and
one sensor which have gained in popularity is the camera, and in particular
monocular camera. Methods based on camera only has been known in the com-
puter vision society as the structure from motion (SfM) problem for quite some
time, see e.g., Fitzgibbon and Zisserman (1998); Taylor et al. (1991). The struc-
ture and motion recovered from SfM will have unknown universal scale, since
the camera su↵ers from the depth ambiguity problem. In other words, given a
motion of the camera, we cannot say if our velocity was large and the scene was
far away or if the velocity was low and the scene was close to the camera. One
way to solve this problem and to resolve the universal scale is to add some kind
of velocity measurement, and the inertial measurement unit (IMU) measuring
accelerations and angular velocities is one such way Bryson et al. (2009); Kneip
et al. (2011a,b); Martinelli (2012); Lupton and Sukkarieh (2012).

Here, we propose a SLAM formulation in ML form which is based on the Expec-
tation Maximisation algorithm Dempster et al. (1977). The method is evaluated
on, but not restricted to, a system with a monocular camera and IMU sensors.
In an EM setting, so called latent, or hidden, variables are introduced in order to
solve ML problems that can be di�cult. This is achieved by splitting the problem
into two simpler problems, one where expectation with respect to the conditional
density of the latent variables has to be calculated and one where a certain func-
tion needs to be maximised with respect to the parameters. These two steps are
then repeated until convergence. This motivates the name of the method. In EM-
SLAM, the map is viewed as the unknown parameter and the platform states,
such as position and orientation, are considered to be the latent variables. As a
simplified and intuitive motivation for this separation we can consider two sim-
pler problems; one with known map and the other one with known trajectory
and orientation. The first problem is then simply the navigation problem with
known landmarks. The second problem is known as the triangulation problem,
i.e., finding the landmark positions given the known platform positions and cam-
era observations. See e.g., Hartley and Sturm (1997) for an example of triangula-
tion application. Each of these problems are rather straightforward to solve sep-
arately but hard to solve combined. By separating the variables in the proposed
way we basically split the SLAM problem into the above-mentioned two simpler
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problems. In the first of these problems some approximations are necessary in
order to implement the algorithm. In the conditional expectation step the latent
variables are assumed to have Gaussian distribution and that they can be well
approximated with an Extended Rauch-Tung-Striebel (E-RTS) smoother, Rauch
et al. (1965). The maximization step is solved using a quasi-Newton method.
The proposed method is compared with the NLS formulation which can be seen
as a straightforward ML formulation where both the state sequence and the map
are seen as parameters. This reference method is solved using the Levenberg-
Marquardt algorithm Nocedal and Wright (2006). The comparison is done for
both the performance of the estimation and for the complexity of each approach
on both the simulations and small real data experiment.

The paper is organised as follows; in Section 2 the Expectation Maximisation al-
gorithm is explained more detailed and application to SLAM is described in Sec-
tion 3. The dynamical and measurement models specific to visual/inertial SLAM
are introduced in Section 4 and an alternative method of solving ML SLAM prob-
lem, NLS, is explained in Section 5. Comparison between EM-SLAM and NLS-
SLAM is discussed in Section 6, and a brief explanation about obtaining an initial
estimate for the landmarks is given in Section 7. Finally, results, conclusions and
future work are discussed in Section 8 and Section 9.

2 Expectation Maximisation
Maximum Likelihood in its basic form is a batch method which takes a set of ob-
servations Y = {y1, . . . , yN }, where the index denotes time, and aims at finding the
maximum likelihood (ML) estimate of the parameters ✓ from the measurement
likelihoods as

✓̂ML = argmax
✓

p✓(Y ), (1)

which can be solved by considering minimizing the sum of the negative mea-
surement log-likelihoods. Naturally, p✓(Y ) is the probability density function
parametrized by the unknown ✓. Often, the maximization of (1) can be very
di�cult and the key idea with Expectation Maximisation is to consider the joint
density p✓(Y, X), where X = {x1, . . . , xN } are latent variables. Then, by splitting
this density into two coupled, and hopefully easier, problems the parameters
and the latent variables can be solved for in an iterative manner. The first step
is the Expectation step, commonly denoted E-step, where the expectation of the
joint log-likelihood, log p✓(Y, X), with respect to the density of the latent variable
conditioned on all the measurements, p✓k

(X |Y ), is computed. The expectation
E✓k
{log p✓(X, Y )|Y } will be a function, called Q(✓, ✓k), of the parameter vector ✓

as

Q(✓, ✓k) =
Z

p✓k
(X |Y ) log p✓(Y, X) dX. (2)

Note that the conditional density of the latent variables, p✓k
(X |Y ), is computed

using the previous estimate of the parameters, ✓k , which is also emphasised in the
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notation. In the Maximisation step or M-step, the Q function obtained in the E-
step is maximized with respect to the parameter ✓ obtaining new estimate ✓k+1.
These two steps are repeated until some convergence criterion is met, usually
when the change in the parameter or likelihood value is below a certain threshold.

For an explanation of the EM algorithm applied to dynamical systems see e.g.,
Schön (2009), and how it can be used in system identification is exemplified
in Wills et al. (2010), where a particle smoother is used to calculate the con-
ditional expectation in the E-step. In Ghahramani and Roweis (1999); Duncan
and Gyongy (2006) nonlinear dynamical models are treated using EM where the
E-step is calculated using an Extended Kalman smoother, which is the same ap-
proach that will be used here. All these EM variants are formulated as batch
methods, but there are also online EM methods which typically use sequential
Monte Carlo and stochastic approximation methods Ozkan et al. (2012); Le Cor↵
et al. (2011). However, in these online approaches it is assumed that either the
joint log-likelihood belongs to the exponential family or that the state is low di-
mensional and can be well approximated with particle methods. In our case these
assumptions are not met which will require other approximations to be applied.

3 EM-SLAM

We formulate the visual/inertial SLAM problem by defining a state space model
as

xt = f (xt�1, ut , wt), (3a)
yt = ht(xt, ✓) + et , (3b)

where the measurement noise, et , is considered white and Gaussian with mean
zero and covariance R while the process noise, wt , is considered white with mean
zero and covariance Q. f describes the state transition function and ut are con-
sidered to be inputs given by the inertial sensors from which pose and velocity,
x = [p, v, q]T , are computed. The measurements yt here are the camera measure-
ments i.e., features extracted from images and h is the measurement function
relating measurements, states and parameters. The parameter vector ✓, consists
of landmark coordinates in three dimensions. These models will be defined in
detail in Section 4. The most significant di↵erence, as opposed to traditional
SLAM state space model formulation, is that the map is seen as a parameter
which parametrises the measurement equation and in turn, the measurement
likelihood function. This formulation is quite natural since the map is time inde-
pendent and is naturally seen as a parameter and not part of the state vector. Fur-
thermore, the conditional expectation step is assumed to be well approximated
by an Extended Rauch-Tung-Striebel (E-RTS) smoother. E-RTS is a straightfor-
ward modification of the standard RTS smoother, Rauch et al. (1965), by using
the Extended Kalman Filter instead of the Kalman Filter in the forward filter-
ing step, while the backward smoothing step is the same as in the original RTS
smoother.
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The state space formulation above constitutes the basis for the ML formulation
that is naturally put into EM setting, i.e., it is straightforward to define the joint
likelihood p✓(X, Y ). Here the platform states, X, are considered to be latent vari-
ables. By using the Markov properties this density can be written as

p✓(Y, X) =
N
Y

t=1

p✓(yt |xt)p(xt |xt�1). (4)

Notice that the process model does not depend explicitly on the parameter ✓,
which will simplify the calculations significantly as will be shown in the next
section.

Next, both the E-step and the M-step will be explained in detail with all deriva-
tions and approximations used.

3.1 E-step

Given the joint likelihood from (4) the expectation step gets the following form

Q(✓, ✓k) = E✓k
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, (5)

where the measurement likelihood is given by the PDF

p✓(yt |xt) = p✓(et) = p✓(yt � ht(xt, ✓)), (6)

and the state transition density, p(xt |xt�1), does not depend on ✓. Assuming that
the likelihood has Gaussian distribution the expectation (5) becomes

Q(✓, ✓k) = const.�

E✓k
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kyt � ht(xt, ✓)k2R�1t + log p(xt |xt�1)
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N
X

t=1

E✓k

(

1
2
kyt � ht(xt, ✓)k2R�1t

�

�

�

�

�

Y

)

+ const. (7)

where all the terms not depending on ✓ are lumped into a constant term, which
will not a↵ect the optimisation in the subsequent step. Due to the nonlinear
nature of the measurement function, see Section 4.2, there is no closed form solu-
tion. Thus, some approximations are necessary and one such is

Q(✓, ✓k) ⇡ const. � 1
2

N
X

t=1

✓

kyt � ht(x̂t|N , ✓)k2R�1+

Tr(R�1t rxht(x̂t|N , ✓)Ps
t|N (rxht(x̂t|N , ✓))T )

◆

(8)

Here, x̂t|N is the smoothed estimate of the latent variable and Ps
t|N is its covariance.

The smoothed estimate is obtained with an E-RTS smoother which is summarised
in Algorithm 1. The trace term can be thought of as a regularisation term to
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Algorithm 1 Extended Rauch-Tung-Striebel Smoother (E-RTS)
Input: measurements Y = {y1, . . . , yN }, inputs U = {u1, . . . , uN }, covariance matri-
ces Q and R, parameter estimate ✓k
Output: smoothed state estimates x̂s = {x̂1|N , . . . , x̂N |N }, covariances
Ps
1:N |N
1: Run a forward Extended Kalman filter (EKF) where measurement equation

uses fixed value of the parameter ✓ = ✓k , and store time and measurement
updates for states, x̂t|t , x̂t|t�1, the covariances Pt|t , Pt|t�1 and the Jacobians of
the dynamics, Ft�1 = @

@x f (xt�1, ut , wt)|xt�1=x̂t�1|t�1,wt=0, defined in (3a).
2: Ps

N |N := PN |N
3: for t = N : 2 do

4:

St�1 := Pt�1|t�1FT
t�1P�1t|t�1

x̂t�1|N := x̂t�1|t�1 + St�1(x̂t|N � x̂t|t�1)
Ps
t�1|N := Pt�1|t�1 + St�1(Ps

t|N � Pt|t�1)ST
t�1

5: end for

compensate for the usage of the estimated latent variables instead of the true ones.
If the true ones have been used that term would vanish and only the nonlinear
least squares part had to be solved. See Appendix for derivation of (8).

3.2 M-step

Maximisation of the Q-function can be done using standard optimisation soft-
ware. Optimisation software usually assumes that the cost function should be
minimised, which can easily be obtained by defining a new function as �Q(✓, ✓k).
In the continuation the minimisation of the function will be considered. An im-
portant special case is linear systems since then the minimisation step can be
solved by linear least-squares. As for our particular setting, the function to be
minimised is a nonlinear function of the parameters and nonlinear methods need
to be used. We use a quasi-Newton method called BFGS, Nocedal and Wright
(2006) since it is quite e�cient but other choices are also possible. In this method,
the inverse Hessian of the function to be optimised is recursively approximated
using the gradient information. Also note that the inverse Hessian could be in-
terpreted as an approximation of the map covariance. The BFGS algorithm is
summarised in Algorithm 2.

4 Models

In this section the models in (3) will be specified. The sensors of interest are
monocular camera and 6-DOF inertial sensors, i.e., gyroscopes and accelerome-
ters, contained in a single sensor package. To reduce the state and parameter
space the inertial sensors are considered as inputs to a process model. A minimal
3D point landmark parametrisation is used and its measurement is given by a
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Algorithm 2 M-step (Quasi-Newton minimisation method with BFGS Hessian
update)
Input: smoothed states x̂s, measurements Y , initial parameters ✓k , initial inverse
Hessian approximation B0 = �I , � > 0, termination threshold ".
Output: ✓k+1.
1: i := 0
2: terminate := false
3: ✓i := ✓k
4: while not terminate do
5: Compute search direction:

pi := �Bir✓Q(✓i , ✓k)
6: Update the parameter:

✓i+1 := ✓i + ↵i pi
where ↵i is the step length computed by line search ensuring decrease in
cost

7: Compute:
si = ✓i+1 � ✓i
ri = r✓Q(✓i+1, ✓k) � r✓Q(✓i , ✓k)

8: Update the inverse Hessian

Bi+1 :=
✓

I � si r
T
i

rTi si

◆

Bi

✓

I � ri s
T
i

rTi si

◆

+ si s
T
i

rTi si

9: if kr✓Q(✓i+1, ✓k)k < " then
10: terminate := true
11: else
12: i := i + 1
13: end if
14: end while
15: ✓k+1 := ✓i+1
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pinhole projection model. Also, since, in general, an IMU has a higher sampling
rate than a camera, a multirate systemmodel is obtained. Basically, it implies that
several state updates are performed, using the process model, between the mea-
surements. This however poses no limitations for the methods presented here,
since the E-RTS can easily handle multirate models.

4.1 IMU Parametrisation

The models for the gyroscopes and accelerometers are simple as they are only
considered to be inputs to the process model. The gyroscope signals are denoted
u! = [u!

x , u
!
y , u

!
z ]T where the subscript refers to each axis of the body frame.

Similarly the accelerometer signals are denoted ua = [ua
x , u

a
y , u

a
z ]T which are also

given in the sensor body frame. A discretised process model for the position
velocity and rotation, [p, v, q], in the local, inertial, navigation frame is then,

pt = pt�1 + T vt�1 +
T 2

2
RT (qt�1)

⇣

ua
t + gb + wa

t

⌘

(9a)

vt = vt�1 + T RT (qt�1)
⇣

ua
t + gb + wa

t

⌘

(9b)

qt = exp
✓T
2
S!(u!

t + w!
t )

◆

qt�1 (9c)

where the T denotes the sampling interval, R(q) is a rotation matrix parametrisa-
tion of the unit quaternion q = [q0, q1, q2, q3]T which describes the rotation from
navigation to body frame, gb = R(q)gn, is the gravity expressed in the body frame,
gn = [0, 0,�g] is the local gravity vector expressed in the inertial frame where g ⇡
9.82 and exp( · ) is here considered as the matrix exponential. The noise terms are
assumed Gaussian and independent [(wa

t )
T , (w!

t )
T ]T = wt ⇠ N (0,diagQa, Q!).

The skew-symmetric matrix

S!(u!) =

2
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, (10)

parametrises the quaternion dynamics. This parametrisation is very similar to
reduced-dimension observers in Rugh (1996).

4.2 Camera Measurements

The monocular camera is modeled as a standard pinhole camera, see cf. Hart-
ley and Zisserman (2004). The camera calibration matrix and lens distortion
was estimated prior to usage. Since the calibration and distortion are known the
undistorted pixels can be pre-multiplied with the inverse of the camera matrix,
thus the camera then works as a projective map in Euclidean space, P : R3 ! R2.
The projection is defined as P([X, Y , Z]) = [X/Z, Y /Z] and the Z coordinate is
assumed positive and non-zero since otherwise the point would be behind the
camera. Then a normalised camera measurement ymt = [ut, vt]T of a landmark,
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m, at time t is

ymt = P(R(qt)(m�pt)) + emt (11)

which relates the pose (position and orientation) of the camera to the 3D location
of the point. The measurement noise is assumed i.i.d. Gaussian, emt = [eut , e

v
t ]

T ⇠
N (0, Rm). The correspondence variables at time t, cit , encode the measurement-
landmark assignment, yit $ mj , which gives a subset of all M landmarks at time
t, Mt = {mj }, j 2 {1, . . . , M | cit = j}. At time t the stacked measurement equation is
then
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|                    {z                    }

ht (xt ,✓)

+emt , (12)

where cit denotes the index of the corresponding landmark and Ny is the number
of measurements, which of course varies over time. In this paper the correspon-
dences assumed correctly solved for in the initialiation step (see Section 7) but in
practice there will always be outliers of some kind. This is a strong assumption
which should be treated carefully since faulty associations will bias the SLAM
estimate. Interesting approaches to data association was exploited in e.g., Bibby
and Reid (2007); Dellaert et al. (2003) which both make use of the EM algorithm
to estimate correspondences.

5 Nonlinear Least-Squares

Another way of solving the ML SLAM problem is to consider all the interesting
parameters explicitly instead of having position, velocity and orientation as hid-
den variables. In this case the parameter vector ✓ will consist of all unknown
parameters, that is landmarks, accelerations in navigation frame and rate gyros.
The dynamics for the velocity and position is in this case used as explicit con-
straints. In this setting it is also possible to include biases for accelerations and
angular rates as parameters, which was avoided in the EM formulation. This is
because the problem greatly simplifies if the parameters a↵ect only the measure-
ment relation, as already explained in Section 3. Note however, that these extra
terms can be put in the state vector.

The measurement models for accelerations and angular rates are then

yat = R(qt)(at � ge) + ba + eat (13a)
y!t = !t + b! + e!t (13b)
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and camera measurements are defined as in Equation (12)

ymt = ht(pt, qt ,Mt) + emt . (14)

The unknown parameters are then accelerations, a1:N , angular rates, !1:N , ini-
tial velocity v0, acceleration bias, ba, angular velocity bias, b!, and landmark
positions m. Under the assumption that all noises are Gaussian and white, i.e.,
eit ⇠ N (0, Ri ), the corresponding negative log-likelihood becomes

� log p✓(Y ) =
N
X

t=1

kyat � R(qt)(at � ge) � bak2R�1a +

ky!t � !t � b!k2R�1! + (15)

kymt � ht(pt, qt ,Mt)k2R�1m .

where ✓ = [aT1:N ,!T
1:N , vT0 , b

T
a , b

T
!, m

T ]T , qt is a function of !1:t and pt is a func-
tion of v0 and a1:t . Maximum likelihood minimisation problem can now be for-
mulated as

✓̂ML =argmin
✓

� log p✓(Y ) (16a)

subject to
"

pt
vt

#

= Ft
"

p0
v0

#

+
t

X

i=1

Fi�1Bai , (16b)
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I3 T I3
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"

T 2

2 I3
T I3

#

,

qt =

2

6

6

6

6

6

4

t
Y

k=1

exp
✓T
2
S!(!k)

◆

3

7

7

7

7

7

5

q0. (16c)

The constraints can actually be removed by expanding them and substituting
them into the cost function giving an unconstrained problem. This problem is
solved with e.g., standard Levenberg-Marquardt solver. The estimate obtained
in this way will be used to compare to the estimate obtained with the EM-SLAM
method.

6 Computation Complexity

The main di↵erence between NLS and EM approach is the number of parameters.
While NLS has both landmarks and platform’s motion as parameters, EM consid-
ers the motion as latent variables. Seen the other way around, the ML problem
in (1) can be considered as a marginalised version of (15), where motion is inte-
grated out. As such, the complexity of the EM approach is actually lower than
the NLS approach. To see this, consider the problem sizes of the two approaches,
given N time instances where landmarks are observed, M landmarks and Nm
landmark measurements, the NLS problem will have 6(N � 1) + 3M + 3 variables
(6 more if biases are also included) and 6(N �1)+2Nm measurements. So, the size
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of the problem grows both with the number of landmarks and time and it grows
quadratically in time. For the EM approach, the E-step is realised as an E-RTS
smoother with constant size state vector (unlike traditional EKF-SLAM for exam-
ple), meaning that the complexity increases linearly in the forward pass with the
amount of time points, even if a multirate model is considered, since the measure-
ments are assumed independent and can be processed iteratively. The backward
pass of E-RTS has a worst case cubical complexity in the state dimension (= 10).
For the M-step, the size of the problem to be solved is 3M variables and 2Nm
measurements with a slightly more di�cult problem than NLS. BFGS only uses
gradient information and an approximate inverse Hessian model resulting in a
worst case quadratic complexity (disregarding function evaluations) in the map
size, 3M , at each iteration. Furthermore, it is quite e�cient having superlinear
convergence properties Nocedal and Wright (2006). This means that each step in
the EM-SLAM will eventually be cheaper in total when the number of time steps
grows. For large maps, the limited memory version L-BFGS is recommended hav-
ing complexity which is O(3Mm) for both storage and computations, where m is
the number of iterations.

7 Obtaining an Initial Estimate

Both EM andNLS-SLAMneed an initial value of the parameters in order to do the
iterations. This initial value is also important for the performance of the methods,
since both formulations are non-linear and non-convex. The initialisation can be
performed by simply randomising parameter values but that can lead to solutions
that are stuck in local minima. A better estimate of the initial values can be ob-
tained by noting that the NLS-SLAM problem, defined in (16), is actually almost
linear if rotations are fixed, Martinelli (2012). In that case (13b) is not needed
any more and (13a) is linear in parameters. For the landmark measurements con-
sider the projection according to Equation (11) which for fixed rotations can be
rewritten as

"

[ut R3,:(qt) � R1,:(qt)](m � pt)
[vt R3,:(qt) � R2,:(qt)](m � pt)

#

=
"

R3,:(qt)(m � pt)eut
R3,:(qt)(m � pt)evt

#

, (17)

where Ri,:(qt) denotes the i:th row of the rotation matrix. The only thing that
makes this equation non-linear is the parameter dependent noise term. How-
ever this formulation leads to a well known Iterative Reweighted Least Squares
(IRLS) method which is solved e�ciently, see e.g., Björck (1996). The accuracy of
the estimate obtained in this way is dependent of the fixed rotations, but it still
constitutes a much better initial value for the EM and NLS-SLAM then simply
random values, see Skoglund et al. (2013) for more details. The initial rotations
can be obtained in several ways, for example simply by integrating rate gyros us-
ing Equation (9c), or by some camera based method like 8-point, see e.g., Hartley
and Zisserman (2004). The first method works quite fine if the gyro bias is small,
while the latter one demands that the scene geometry is beneficial.
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Figure 1: The setup used in the MC simulations. True trajectory is in black
and true landmarks are red circles. One of 30 simulation results is depicted
as magenta trajectory and blue landmarks.

8 Results

Evaluation of the proposed method is carried out on both simulated and experi-
mental data.

8.1 Simulations

Simulations give the ability to choose noise levels, correspondences, the true pa-
rameters and the true accuracy of the method. Monte Carlo (MC) simulations
with 30 di↵erent measurement noise realisations have been performed in order
to evaluate the performance of the proposed method and to compare EM-SLAM
with the NLS-SLAM. In Figure 1 the setup used for the simulations is illustrated.
The true trajectory is in black and true landmarks are represented with red circles.
One of the resulting trajectory (magenta) and landmark (blue stars) estimates is
also plotted. Table 1 shows the average of the landmark estimation error for the
two methods, while in Figure 2 the RMSE of the trajectory, for both methods, is
plotted. In general it can be seen that the EM-SLAM method performs slightly
better in average than the NLS-SLAM method.
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Method EM-
SLAM

NLS-
SLAM

Mean k✓̂�✓⇤k/dim(✓⇤) 0.11 0.19

Table 1: MC simulation results for the varying measurement noise (30 real-
isations). Note that ✓ contains only landmarks in this case.
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Figure 2: RMSE of the EM-SLAM and NLS-SLAM estimated trajectories, EM
in blue, NLS in red. 30 MC simulations are used.
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Figure 3: Sensor unit containing both camera and inertial sensors.

8.2 Real Data Experiments

In the experiments, a sensor unit, see Figure 3, equippedwithmonocularmonochrome
VGA camera (Pointgrey firefly) and three axis inertial sensors (gyroscopes and ac-
celerometers) is used. The sensor unit also contains magnetometers, which are
not used here, and a temperature sensor which is used for obtaining internal cal-
ibration of the inertial sensors. For the purpose of an accurately known ground
truth the sensor unit was mounted at the tool position of an IRB-1400 industrial
robot from ABB. Also, a small scene with objects of known size was created so
that the estimated scene could be compared with respect to its size. Prior to us-
age, the camera was calibrated using the toolbox Bouguet (2010) and the relative
pose of the camera centre with respect to the IMU centre was calibrated as de-
scribed in Hol et al. (2010). A open source SIFT implementation from Vedaldi
and Fulkerson (2008) was used to extract the features used as camera measure-
ments. The results of the estimation are depicted in Figures 4 to 6. We see that
both NLS and EM methods have similar performance on this data set. EM per-
forms somewhat worse for the rotations which might be explained by the lack of
biases as opposed to NLS.

9 Conclusions and Future Work

In this workwe presented aMaximumLikelihoodmethod for solving inertial/visual
SLAM problem based on the EM algorithm. The particular structure of the SLAM
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problem, where landmarks are seen as static parameters while the platform’s mo-
tion is introduced as latent variables, makes the EM scheme a natural way to
formulate the problem. This gives better scaling of the problem compared to
both FastSLAM, EKF-SLAM and NLS. In particular, a qualitative analysis of the
computational complexity is made comparing EM-SLAM and NLS. Furthermore,
it is also shown that somewhat better results are obtained for EM-SLAM than the
straightforward formulation in the form of NLS. These results are demonstrated
on both simulated and real data sets,

In the future work it would be interesting to change E-RTS smoother estimate of
the states with the particle smoother estimate, since it may handle nonlinearities
in the models better and see if the performance improves.

Appendix

Given a smoothed estimate of the latent variables, x̂s = x̂1:N |N the measurement
function h(x, ✓) can be linearised around these as

h(x, ✓) ⇡ h(x̂s, ✓)
|  {z  }

ĥ

+rxh(x̂s, ✓)
|      {z      }

H

(x � x̂s)
|  {z  }

x̃

. (18)

Using this approximation and expanding the norm in (7) for one time instant,
while dropping the time index for readability, we obtain

ky � ĥ � Hx̃k2R�1 = (y � ĥ � Hx̃)T R�1(y � ĥ � Hx̃) =

yT R�1y � yT R�1ĥ � yT R�1Hx̃�
ĥT R�1y + ĥT R�1ĥ + ĥT R�1Hx̃�
(Hx̃)T R�1y + (Hx̃)T R�1ĥ + (Hx̃)T R�1(Hx̃) (19)

and taking the expected value

E✓k
{ky � ĥ � Hx̃k2R�1 } = yT R�1y � yT R�1ĥ�

ĥT R�1y + ĥT R�1ĥ + E✓k
{(Hx̃)T R�1(Hx̃)|Y }, (20)

since all termswith only x̃ evaluate to zero under the assumption (x̃|Y ) ⇠ N (0, Ps).
Because (Hx̃)T R�1(Hx̃) is scalar, it is equal to its trace and by using the trace rule
Tr(AT BA) = Tr(BAAT ) together with the linearity of the trace and expectation
operators, the last term becomes

E✓k
{(Hx̃)T R�1(Hx̃)|Y } = E✓k

{Tr((Hx̃)T R�1(Hx̃))|Y }
= E✓k

{Tr(R�1Hx̃x̃T HT )|Y }
= Tr(R�1HE✓k

{x̃x̃T |Y }HT )

= Tr(R�1HPsHT ) (21)
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which results in

Q(✓, ✓k) ⇡ const.�
1
2

N
X

t=1

⇣

kyt � ĥtk2R�1 + Tr(R�1HtP
s
t|NHT

t )
⌘

=

const. � 1
2

N
X

t=1

✓

kyt � ht(x̂t|N , ✓)k2R�1+

Tr(R�1rxht(x̂t|N , ✓)Ps
t|N (rxht(x̂t|N , ✓))T )

◆

(22)

which is the expression in (8).
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